

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

De p

State of California THE RESOURCES AGENCY

partment of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume IV: SAN JOAQUIN VALLEY

DECEMBER 1965

AUG 4 1 1000

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume IV: SAN JOAQUIN VALLEY

DECEMBER 1965

HUGO FISHER
Administrator
The Resources Agency

EDMUND G. BROWN

Governor

State of California

WILLIAM E. WARNE

Director

Department of Water Resources

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALENT METRIC UNIT
Inch (in)	2.54 Centimeters
Foot (ft)	0.3048 Meter
Mile (mi)	1.609 Kilometers
Acre	0.405 Hectare
Square mile (sq. mi.)	2.590 Square kilometer
U. S. gallon (gal)	3.785 Liters
Acre foot (acre-ft)	1,233.5 Cubic meters
U. S. gallon per minute (gpm)	0.0631 Liters per second
Cubic feet per second (cfs)	1.7 Cubic meters per minute

TABLE OF CONTENTS

	Page
ORGANIZATION OF BULLETIN NO. 130 SERIES	ii
AREA ORIENTATION MAP	iii
METRIC CONVERSION TABLE	iv
LETTER OF TRANSMITTAL	ix
ORGANIZATION, DEPARTMENT OF WATER RESOURCES	хi
CHAPTER I. INTRODUCTION	1
Location and General Features of the San Joaquin Valley	1
Scope of Report	1
CHAPTER II. CLIMATE	3
Scope	3
Precipitation	3
Temperatures, Evaporation, and Wind Movement	6
CHAPTER III. SURFACE WATER FLOW	7
Scope	7
Hydrography	7
Hydrographic Activities of Other Agencies	8
Runoff and Water Supply	8
Runoff Comparisons	8
Lakes and Reservoirs	11
Streamflow Measurements	11
Recorders	11
Ratings	12
Use of Water for Irrigation	12
Criteria	12
Irrigation Diversions	12
Imported and Exported Water	13
CHAPTER IV. GROUND WATER MEASUREMENTS	15
Scope	15
Basic Data	15
Processed Data	16
Related Information	16
Cooperative Programs	16
Monthly Program	16
Annual and Semiannual Programs	16
Ground Water Conditions	17
CHAPTER V. SURFACE WATER QUALITY	21
Scope	21
Sampling Program	21
Station Sampling	21
Conductivity Recorders	21
Surface Water Quality Conditions	21

TABLE OF CONTENTS (Continued)

PLATES

(Bound at end of bulletin)

Plate Number	
A-1	Location of Climatological Stations
A-2	Seasonal Precipitation Distribution for 1963-64 in Percent of 50-year Mean
B-1	Location of Surface Water Measurement Stations
C-1	Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-2	Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-3	Location of Selected Observation Wells and Cooperative Program Areas
C-4	Map of 19 Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1963, and 1964
C-5	Fluctuation of Average Water Level, 1921 to 1964, in 19 Ground Water Areas in San Joaquin Valley
C-6	Fluctuation of Water Level in Selected Wells in San Joaquin Valley
C-7	Lines of Equal Elevation of Water in Wells, Unconfined Aquifers, San Joaquin Valley, Spring 1964 (Plate is located in jacket, inside back cover.)
C-8	Lines of Equal Elevation of Water in Wells, Pressure Surface, San Joaquin Valley, Spring 1964 (Plate is located in jacket, inside back cover.)
E-1	Location of Selected Observation Wells, Ground Water Quality
E-2	Location of Selected Wells, Fresno-Madera Area
E-3	Ground Water Quality, Fresno-Madera Area
E-4	Nitrate Concentrations in the San Joaquin Valley

RTMENT OF WATER RESOURCES

X 388 NTO

November 1, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

Bulletin No. 130-64, entitled "Hydrologic Data, Volume IV, San Joaquin Valley", presents data on hydrologic conditions in the San Joaquin Valley during the 1964 reporting year.

This bulletin is the second of a series which incorporates data on surface water, ground water, and climate published annually.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes, and appendixes.

The collection and publication of data as contained in Bulletin No. 130 are authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the California Water Code.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130 presents to the public useful, comprehensive, accurate, timely hydrologic data, which are prerequisites for effective planning, design, construction, and operation of water facilities.

Collection of much of the data presented has been possible only because of the generous cooperation and assistance of others. I wish to especially acknowledge

the assistance of the United States Bureau of Reclamation, Geological Survey, Corps of Engineers, Weather Bureau, and Forest Service, as well as the Kern County Surveyors Office and Kern County Land Company.

The districts, private companies, and individuals are too numerous to list here; however, these cooperators are shown in the tables where appropriate. Without their assistance Bulletin 130-64 would be a much less valuable tool.

Sincerely yours,

8. Wann

Director

State of California The Resources Agency Department of Water Resources

EDMUND G. BROWN, Governor
HUGO FISHER, Administrator, The Resources Agency of California
WILLIAM E. WARNE, Director, Department of Water Resources
ALFRED R. GOLZE', Chief Engineer

This report prepared under the direction of JOHN R. TEERINK, Assistant Chief Engineer, Area Management

by the

SAN JOAQUIN DISTRICT

SAN JOAQUIN DISTRICT
Carl L. Stetson District Engineer, San Joaquin District Floyd I. Bluhm
Activities covered by this report were under the supervision of
Cledith L. Chastain
Collection, correlation, and computation of hydrographic data pertaining to surface water flow, ground water levels, and climatology were supervised by
Laurence O. Grossnickle Ground Water Water Resources Engineering Associate
Harry R. Brenner Surface Water Water Resources Technician II
William A. Mancebo Climatology Water Resources Technician II
Robert W. Grimshaw Modesto Field Office Water Resources Engineering Associate
Office and Field Personnel of the Hydraulic Unit
John Gostanian . Assistant Civil Engineer Keithal B. Dick . Water Resources Technician II Donald R. Henley . Water Resources Technician II Roger G. Neal . Water Resources Technician II Vartkes N. Messerlian . Junior Civil Engineer Donald W. Colburn . Water Resources Technician I Harry H. Tenney . Water Resources Technician I Lloyd Hartwig . Engineering Aid II Henry W. Rogers . Delineator Joseph F. Schweizer . Delineator Anthony D. Camoroda . Drafting Aid II C. Collette Blair . Intermediate Stenographer
The portions of the report covering water quality activities were prepared by
Barney H. Perkins
Assisted by
James W. Windsor

Reviewed and Coordinated by Statewide Planning Office, Data Coordination Branch

CHAPTER I. INTRODUCTION

This is Volume IV, Bulletin 130-64, entitled "Hydrologic Data". It is the second of an annual series reports which present basic data. The five volumes of the bulletin embrace the entire State of California, h volume being prepared by the area branch or district of the Department responsible for the publication of ic data collected in its respective area. These areas are shown on the frontispiece map.

This report contains a record of hydrologic data collected and assembled by the San Joaquin District the Department of Water Resources. It brings together in a permanent and usable form the following types hydrologic basic data collected during the respective time intervals as shown below:

Surface Water Flows October 1, 1963 - September 30, 1964

Diversion Data October 1, 1963 - September 30, 1964

Climate Data

July 1, 1963 - June 30, 1964

Ground Water Level Measurements

July 1, 1963 - June 30, 1964

Surface Water Quality
October 1, 1963 - September 30, 1964
Ground Water Quality
October 1, 1963 - September 30, 1964

Location and General Features of the San Joaquin Valley

The San Joaquin Valley includes approximately the southern two-thirds of the Great Central Valley California. It is a broad structural trough surrounded on three sides by mountains: the Sierra Nevada the east, the Coast Range on the west, and the Tehachapi and San Emigdio Mountains on the south. It is arated from the Sacramento Valley on the north by the combined deltas of the Sacramento and San Joaquin ers. The Valley extends 250 miles southeasterly from Stockton to Grapevine at the foot of the Tehachapi ntains; the width of the valley floor ranges from 25 miles near Bakersfield to 55 miles near Visalia and rages about 35 miles. The area of the valley floor is 10,000 square miles, excluding the rolling thills that skirt the mountains.

East of the San Joaquin Valley the Sierra Nevada rises in a distance of 45 to 60 miles to altitudes 14,000 feet or more; to the west the Coast Range rises to 6,000 feet; and on the south the Valley is losed by the San Emigdio and Tehachapi Mountains which rise to altitudes of about 8,000 feet. Only at quinez Strait, a break in the Coast Range east of San Francisco Bay, does the Great Central Valley n to the sea.

The valley floor rises gently from sea level at the north end to 500 feet above sea level about miles south of Bakersfield; alluvial fans along the valley borders rise to altitudes as high as 700 to 00 feet. The gentle northward gradient of the valley floor is interrupted by a low divide in the ghborhood of the Kings River, about 15 miles west of Hanford; the San Joaquin Valley is divided at that no two separate drainage basins to the San Joaquin River Basin and the Tulare Basin.

Scope of Report

The areal scope of this volume of the report is depicted on Plates A-1, B-1, C-1, D-1, and E-1. elocation of climatological stations for which data are presented is shown on Plate A-1 and the location surface water gaging stations on Plate B-1. The districts or areas in the San Joaquin Valley for which bund water levels are reported are shown on Plate C-1. The locations of surface water sampling stations a shown on Plate D-1, and the ground water quality well locations are shown on Plates E-1 and E-2.

The following chapters present information on precipitation, evaporation, temperature, surface noff, diversions, reservoir storage, imported water supplies, ground water conditions, and surface and ground ter quality.

The tabulated basic data are presented in Appendixes A through E. These appendixes include all sic data collected pertaining to climate, surface water flow, ground water levels, and surface and ground ter quality.

CHAPTER II. CLIMATE

Precipitation is the only significant source of water supply. All runoff and ground water sources derive their waters ultimately from meteorological sources. Planning for more intense development of our available water resources and operation of existing and planned facilities bring to sharp focus the continued need for collection and analysis of basic data pertaining to precipitation, temperatures, wind movement, and evaporation.

For many years it has been apparent that the official network of the U. S. Weather Bureau was not adequate to supply the Department's needs for climatological data required for water resources investigations. One of the primary objectives of this data program is to supplement the observation network of the U. S. Weather Bureau.

There are 16 cooperating agencies and 185 individual observers contributing data for the 407 stations reported.

Scope

The area covered by this report is shown on Plate A-1.

The Department of Water Resources gathers basic data relating to climatic phenomena in the San Joaquin Valley. This involves field measurements and office computations to determine the instantaneous, daily, monthly, seasonal, and annual temperatures, precipitation, and evaporation.

The field activities include the installation and maintenance of weather stations. The installed equipment obtains measurements of: (1) daily maximum and minimum temperatures; (2) precipitation—annual amounts from storage gages in remote areas, daily amounts from standard rain gages, and instantaneous amounts from recording rain gages; (3) evaporation in inches per day; and (4) wind movement in miles per day. In addition, similar data are obtained from many public and private agencies, and individuals.

The Department contributes to the cooperative program with the U. S. Weather Bureau by providing services for the installation, maintenance, and operation of approximately 100 stations in the State, eight of which are located in the San Joaquin Valley. The U. S. Weather Bureau reports these data in its publication, "Climatological Data".

The office activities consist of computation and compilation of approximately 150 monthly climatological station observations to provide a continuous and current record. This includes the computation of intensities from recording rain gages and preparation of hourly precipitation records for future use in development of rainfall intensity-duration-frequency relationships.

Precipitation

The San Joaquin Valley area may be divided into three general parts: the west side, the valley floor, and the east side or Sierra Nevada. Table 1, "Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley", shows the distribution of rainfall west to east across the valley. Averages of precipitation normals show for the west side stations 6.3 inches, for the valley floor 9.7 inches, and for the east side 16.6 inches.

Precipitation during the 1963-64 season for the San Joaquin Valley area was below normal. The seasonal precipitation, expressed in percent of normal, for the three general areas is 68 percent on the west side, 72 percent on the valley floor, and 76 percent on the east side.

TABLE 1

SEASONAL AND MEAN PRECIPITATION AT
SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

Alpha Order Number	Station	County	50-Year Mean 1910-1960 In inches	1963-64 In inches	Season Percent of Mean
в8 6675	Panoche	San Benito	7.51	4.72	63
CO 1867	Coalinga 1 SE	Fresno	6.80	4.79	70
CO 4536	Kettleman Sta.	Kings	6.21	4.51	73
CO 1244	Buttonwillow	Kern	5.38	2.90	54
C7 5338	Maricopa	Kern	5.54	4.41	80
BO 5297-01	Manteca No. 2	San Joaquin	11.65	8.22	71
во 5738	Modesto	Stanislaus	11.56	7.74	67
во 9073	Turlock	Stanislaus	11.71	8.20	70
во 5532	Merced Fire Sta. 2	Merced	11.89	8.76	74
во 5233	Madera	Madera	10.11	7.81	7 7
CO 3257	Fresno WB A. P.	Fresno	9.65	6.76	70
CO 9367	Visalia	Tulare	9.39	7.58	81
CO 3747	Hanford	Kings	8.10	5.01	62
CO 9452	Wasco	Kern	6.32	4.66	74
CO 0442	Bakersfield A. P.	Kern	6.19	4.60	74
во 4590	Knights Ferry 2 SE	Stanislaus	17.42	14.14	81
в6 1588	Catheys Vly. Bull Run Rch.	Mariposa	19.72	14.51	74
B5 5346	Mariposa	Mariposa	28.94	20.95	72
B7 3261	Friant Gov't. Camp	Fresno	13.38	8.71	65
C2 6476	Orange Cove	Fresno	12.90	8.73	68
C2 4890	Lemon Cove	Tulare	13.68	11.89	87
C0 7077	Porterville	Tulare	10.39	9.73	94

The subnormal precipitation for the season was the result of a very dry period covering the months of December and February through June. January received about 70 percent of normal. Only three months out of the season's 12, September, October, and November, were on the wet side. Table 2, "Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley", shows the occurrences described above.

The San Joaquin Valley area normally receives 80 percent of the total seasonal precipitation by April 1. Also, by this date, maximum snowpack has been attained in the Sierras. On April 1, 1964, the valley floor had received rainfall in accumulated totals ranging from 70 percent of normal at Modesto on the north to 75 percent at Bakersfield on the south. Snowpack accumulation in the adjacent Sierras was only 70 percent of normal; however, the precipitation patterns of April, May, and June were far below normal, varying from 60 percent for the Kaweah River watershed to 77 percent for the Stanislaus River watershed.

TABLE 2
ATTVE MONTHLY PRECIE

CUMULATIVE MONTHLY PRECIPITATION
AT KEY STATIONS IN THE SAN JOAQUIN VALLEY
1963-64

IRPORT	Season	In	percent	of mean	0	0	692	371	266	138	96	81	75	9/	75	74
ELD WB A	1963-64		In	inches	00.	00.	.83	1.56	2.50	2.58	2.85	3.26	3.83	4.39	4.59	4.60
BAKERSFIELD WB AIRPORT	50-Year	Mean	1910-60	In inches inches of mean In inches inches of mean	.02	.03	.12	.42	. 94	1.87	2.98	4.01	5.10	5.79	6.11	6.19
	Season	In	percent	of mean	0	200	412	459	278	129	91	69	70	80	81	81
VISALIA	1963-64		In	inches	00.	.02	.33	2.25	3.45	3.63	4.36	4.53	5.69	7.21	7.58	7.58
Λ	50-Year	Mean	1910-60	In inches	00.	.01	.08	.49	1.24	2.81	4.78	6.57	8.18	9.00	9.33	9.39
PORT	Season	In	percent	of mean	0	50	160	179	255	127	91	69	70	69	70	70
FRESNO WB AIRPORT	1963-64		In	inches	00.	.01	.16	1.11	3,65	3.92	4.58	4.58	5.85	6.35	6.70	6.76
FRESN	50-Year	Mean	1910-60	In inches	.01	.02	.10	.62	1.43	3.08	5.01	6.64	8.34	9.22	9.54	9.65
	Season	In	percent	of mean	0	0	230	305	280	135	96	70	73	73	75	77
MADERA	1963-64		In	inches	00.	00.	. 23	1.68	4.06	4.30	4.91	4.92	6.42	7.12	7.54	7.81
ų.	50-Year	Mean	1910-60	In inches inches of mean In inches inches of mean	.01	.02	.10	.55	1.45	3.18	5.18	7.04	8.80	9.70	10.04	10.11
#2	Season	In	percent	теап	0	0	317	308	266	128	92	71	74	71	71	74
MERCED FS #	1963-64		In	inches	00.	00.	.38	1.88	4.69	4.86	5.77	5.93	7.68	8.08	8.35	8.76.
MER	50-Year	Mean	1910-60	In inches	.01	.02	.12	.61	1.76	3.79	6.24	8.35	10.34	11.37	11.81	11.89
	Season	In	percent	of mean	0	0	63	268	238	104	95	73	70	99	65	67
MODESTO	1963-64		ų	inches	00.	00.	.12	1.82	4.00	4.09	2.90	5.95	7.03	7.29	7.40	7.74
-	50-Year	Mean	1910-60	In inches inches of mean In inches inches of	.01	.03	.19	.68	1.68	3,95	6.21	8.17	10.11	11.02	11.46	11.56
		Month			July	August	September	October	November	December	January	February	March	April	May	June

Temperatures, Evaporation, and Wind Movement

The distribution of temperatures, evaporation, and wind movement is presented in Table 3, "Average Temperatures, Total Evaporation, and Average Wind Movement at Selected Stations in the San Joaquin Valley".

TABLE 3

AVERAGE TEMPERATURES, TOTAL EVAPORATION, AND AVERAGE WIND MOVEMENT AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

Alpha Order Number	Station Name	_	Seasonal e. Temp. Min.	°F Mean	Seasonal Evaporation Total Inches	Wind Movement Av.Mi./Mo.
CO 0332-02	Arvin-Frick	71.8	43.4	57.6	62.5	1879
CO 2013	Corcoran El Rico 1	74.2	45.8	60.0	79.5	1952
C6 2222-80	Cummings Valley	67.0	34.9	51.0	79.7	2627
B4 2473	Don Pedro Res.	72.6	43.8	58.2	73.9	М
C5 4303	Isabella Dam	72.8	44.8	58.8	80.5	1940
во 5117	Los Banos Field Sta.	73.3	45.1	59.2	92.4	2953
C1 6895	Pine Flat Dam	75.2	45.4	60.3	65.8	785
в6 7273	Raymond 9N	81.0M	45.4M	63.2M	М	493M
C3 8620	Success Dam	74.4	49.3	61.9	82.5	1532
C7 8755	Taft KTKR	73.0	49.3	61.2	90.9	1084
C2 8868	Terminus Dam	73.2	49.8	61.5	81.2	1522
CO 9145	U.S. Cotton Field Sta.	74.3	48.4	61.4	79.5	1431
во 9565	Westley	75.4M	44.6M	60.0M	М	М

M - All or part of record missing.

CHAPTER III. SURFACE WATER FLOW

The variable flows of the streams entering the San Joaquin Valley on the east side result from the rainfall runoff occurring each winter and spring season, principally from December through April. The snowmelt runoff occurs during the spring and summer months from March through June. A combination of runoff from perennial tributaries and released stored water occurs during the summer and fall seasons. Flood flows in the valley floor channels are caused by runoff from rainfall and melting snow in the mountain areas in excess of mountain reservoir capacities, and by rainstorm runoff from the vast area of minor foothill watersheds and valley floor lands. In more recent years, flooding has become a lesser threat in the San Joaquin Valley as a result of additional reservoirs constructed on many of the tributary watersheds, including the Kern, Tule, Kaweah, Kings, San Joaquin, Merced, Tuolumne, and Stanislaus Rivers. With the completion of the Lower San Joaquin River Flood Control Project and eventual construction of additional dams and reservoirs, such as Buchanan on the Chowchilla River, Hidden on the Fresno River, and New Melones on the Stanislaus River, flooding will cease to be a problem in the San Joaquin Valley except in years of excessive precipitation.

Scope

The area covered by this report is shown on Plate B-1.

Records of mean daily flows and/or stage at 65 stream-gaging stations located on streams on the San Joaquin Valley floor and on streams entering the valley are presented in Appendix B of this report.

Measurements of flows at points of diversion from major streams on the valley floor, diversions and acreage irrigated by east side irrigation districts, and deliveries from canals of the Central Valley Project are also included in Appendix B.

Hydrography

The Department of Water Resources' hydrographic activities in the San Joaquin Valley area are divided into two major categories -- field and office.

The field activities include:

- 1. Operation and maintenance of 35 stream-gaging stations.
- Measurement of streamflows passing the gaging stations at stages varied enough to establish a stage-discharge relationship.
- Measurement of the quantities of water diverted by major diverters from the San Joaquin, Merced,
 Tuolumne, Stanislaus, and Tule Rivers, and from Dry Creek near Modesto.
- 4. Construction of new installations as needed to augment the base network of gaging stations operated by the U. S. Geological Survey.
- 5. Cooperation with public and private agencies and with other branches within the department in the gathering of hydrographic data.

The office activities include:

- 1. Preparation of hydrographic data for computation by machine computation methods.
- Manual computation and compilation of the discharge of stations not adaptable to machine computation.
- 3. Computation and compilation of quantities of water diverted for use in quantities per month for pumped diversions and quantities per day for gravity diversions.
- 4. Preparation of rating curves based on a series of discharge measurements on each stream.
- Computation of rating formulas for the curves written in machine language for machine computation purposes.

Hydrographic Activities of Other Agencies

The U. S. Geological Survey maintains and operates about 180 streamflow gaging stations in addit to the stations operated by the Department in the San Joaquin Valley area. Of these, 57 are operated under the Federal-State Cooperative Surface Water Measurement Program. The records are published annually in a report by the U. S. Department of the Interior, Geological Survey, entitled "Surface Water Records of California, Volume 2, Northern Great Basin and Central Valley".

The U. S. Bureau of Reclamation maintains and operates seven streamflow gaging stations which monitor natural inflow to the southern San Joaquin Valley. These stations are in addition to the Bureau's operation stations on project canals. Data from both types of stations appear in an annual report publish by the Bureau of Reclamation entitled "Fresno Field Division Water Supply".

The U. S. Corps of Engineers, the City and County of San Francisco, and other local agencies maintain and operate streamflow gaging stations within the San Joaquin Valley area. These data are publis in this report. The specific degree of cooperation by these agencies with the Department of Water Resource is detailed in footnotes to tables contained in this report.

Runoff and Water Supply

The streams entering the Valley on the east side produce the major runoff to the Valley. Rainfarunoff occurs principally during the period December to April, while snowmelt is the source during the spring and summer seasons from March through June. During the summer and fall seasons, runoff is a combination of flows from perennial tributaries and releases from reservoir storage.

Runoff Comparisons

Runoff conditions from year to year for a particular stream are compared to the mean runoff for that stream over a long period of time. The mean runoff is a base or normal used to compare runoff with a other year. Flow conditions on all major streams entering the Valley are affected by man-made impairments such as reservoirs and diversions; therefore, the runoff comparisons are made with computed natural runoff which allows for effects of impairments. These computed natural or unimpaired runoffs are considered to the flows that would occur if no impairments were above the points of measurement. Runoff normals are computed for the 50-year period October 1910 through September 1960.

The water supply available during the 1964 season was below normal on all major tributaries, varying from 48 percent on the Tule River to 64 percent on the Tuolumne River.

The annual unimpaired runoff in percent of average for the 50-year normal for the period 1924 through 1964 on the major streams tributary to the San Joaquin Valley is shown in Table 4. The monthly unimpaired runoff for 1964 in percent of average based on the same 50-year period is shown for the same streams in Table 5.

TABLE 4 ANNUAL UNIMPAIRED RUNOFF In percent of average (a)

Water Year	Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River near Three Rivers	Tule Raver Inflow to Success	Kern River Inflow to Isabella
Average Annual Runoff (a)	1090	1776	927	1670	5463	1570	385	127	617
1923-24	24	31	27	27	27	25	26		
1924-25	112	109	98	86	101	82	85		
1925-26	56	63	66	70	64	66	57		
1926-27	125	115	117	120	119	126	126		
1927-28	87	86	79	69	80	62	53		
1928-29	47	55	52	5 2	52	54	58		
1929-30	67	65	55	51	60	55	57		54
1930-31	29	34	28	29	30	30	30	19	30
1931-32	124	119	120	123	121	133	135	109	113
1932-33	56	63	56	67	60	75	74	63	69
1933-34	39	46	39	41	41	42	34	16	37
1934-35	111	119	126	115	118	103	93	70	74
1935-36	121	122	124	111	120	120	126	134	121
1936-37	102	113	131	132	120	149	176	241	180
1937-38	188	193	224	221	206	209	226	279	209
1938-39	48	55	51	55	52	62	64	65	73
1939-40	128	125	118	113	121	114	133	166	113
1940-41	123	141	157	159	145	162	167	186	202
1941-42	136	134	139	135	136	128	127	107	122
1942-43	144	134	139	123	135	129	174	287	163
1943-44	62	74	74	76	72	74	82	80	94
1944-45	117	118	118	128	120	131	143	160	131
1945-46	108	106	102	104	105	103	93	74	105
1946-47	58	62	61	67	62	71	69	41	69
1947-48	82	80	74	73	77	63	68	50	54
1948-49	68	70	69	70	69	61	57	38	48
1949-50	99	87	78	78	86	82	78	49	70
1950-51	155	140	132	111	134	102	109	122	86
1951-52	176	168	169	170	171	182	214	252	226
1952-53	89	86	68	73	79	74	80	78	88
1953-54	82	81	72	79	78	83	79	70	81
1954-55	62	64	58	70	64	71	72	51	58
1955-56	173	178	181	177	177	162	188	165	141
1956~57	82	80	70	79	78	79	77	51	71
1957-58	154	149	152	158	153	157	166	176	171
1958-59	54	56	49	57	54	51	40	25	44
1959-60	54	59	52	50	54	45	47	38	45
1960-61	37	41	34	39	38	36	30	15	28
1961-62	91	100	100	115	102	117	103	68	106
1962-63	116	116	106	117	114	119	130	94	120
1963-64	60	64	49	55	58	54	60	47	51

⁽a)

Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960.

Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from valley floor. (b)

TABLE 5 MONTHLY UNIMPAIRED RUNOFF In percent of average(a)

					,					
Month		Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River near Three Rivers	Tule River Inflow to Success	Kern River Inflow to Isabella
October	Percent ^C	74	130	88	135	116	136	144	275	172
	Average	8	15	7	19	49	19	4	1	14
November	Percent	228	292	22 5	237	253	222	191	130	134
	Average	22	37	17	27	102	25	8	4	18
December	Percent	66	70	55	68	66	75	67	48	89
	Average	44	73	38	53	209	45	16	8	23
T	P	64	62	41	48	55	45	41	33	70
January	Percent	59	98	54	65	276	56	19	12	25
	***************************************	3,		3.			30	**		
February	Percent	36	40	24	33	34	32	32	18	50
	Average	82	135	78	91	386	77	27	18	30
March	Percent	39	40	30	38	38	30	40	28	46
	Average	120	179	99	135	533	112	39	26	47
April	Percent	64	60	51	52	57	59	62	60	44
	Average	202	284	148	241	875	215	63	24	89
May	Percent	61	72	57	60	64	61	67	62	39
	Average	296	447	244	428	1415	428	102	21	149
June	Percent	49	61	46	52	54	47	60	57	40
	Average	188	368	179	386	1121	384	75	9	125
July	Percent	56	35	26	38	36	32	45	38	36
•	Average	52	113	50	160	375	148	23	2	59
		107	6.0		- 4		4.0			
August	Percent	107	52	50	64	65	48	57	60	52
	Average	12	19	10	45	85	42	6	0	24
September	Percent	108	53	14	55	58	47	84	157	59
	Average	5	8	4	19	37	18	3	0	14
1963-64 Water Year	Percent	60	64	49	55	58	54	60	47	51
water rear		1090			1670		1570	365	127	617
	Average	1090	1776	927	1670	5463	15/0	365	127	617

 ⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960.
 (b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from the valley floor.
 (c) Percent figures are preliminary values and subject to revisions.

Lakes and Reservoirs

There are 59 principal reservoirs in the State, of which 25 are located in the San Joaquin Valley area. These 25 have a total storage capacity of 4,727,530 acre-feet. The storage capacity, water in storage on October 1, 1963, and storage on October 1, 1964, in the major reservoirs in the San Joaquin Valley area are shown in Table 6. The quantity of water in storage in these 25 reservoirs at the end of the 1963-64 season was about 27 percent of the total storage capacity as Compared to 49 percent at the end of the 1962-63 season.

TABLE 6
SUMMARY OF PRINCIPAL RESERVOIR STORAGE
IN THE SAN JOAQUIN VALLEY

(In acre-feet)

Watershed	Reservoir	Total Capacity	In Storage Oct. 1, 1963	In Storage Oct. 1, 1964
Stanislaus				
	Relief	15,560	4,400	11,530
	Strawberry	18,270	10,480	9,190
	Melones	112,600	11,060	10,450
	Donnels	64,500	49,576	21,800
	Beardsley	97,500	83,296	77,313
	Tulloch	68,400	33,948	23,670
Tuolumne				
	Lake Eleanor	26,100	18,520	4,650
	Lake Lloyd	268,000	182,450	25,700
	Hetch Hetchy	360,400	289,461	230,490
	Don Pedro	290,000	174,920	111,040
	Turlock Lake	49,000	11,440	17,830
Merced				
	Lake McClure	289,000	63,750	0
San Joaquin				
	Crane Valley	45,400	24,800	24,200
	Lake Thomas A. Edison	125,000	101,360	50,100
	Florence Lake	64,600	31,020	237
	Mammoth Pool	122,700	17,490	27,010
	Huntington Lake	89,800	87,900	49,720
	Redinger Lake	35,000	8,600	9,840
	Shaver Lake	135,400	103,830	15,550
	Millerton Lake	520,500	205,000	172,400
Kings				
******	Wishon	128,300	90,060	58,980
	Pine Flat	1,001,500	467,200	191,860
Kaweah				
110111111111111111111111111111111111111	Terminus	150,000	8,460	7,500
Tule				
1410	Success	80,000	12,350	9,260
Kern				
	Isabella	570,000	217,030	96,970
TOTAL		4,727,530	2,308,401	1,257,290

Streamflow Measurements

Many of the stream-gaging stations, records of which are reported in Appendix B, are maintained and operated by agencies cooperating with the Department of Water Resources. The methods used by all cooperating parties are standardized and the results obtained are equally good.

During the 1964 season 35 of the total of 65 gaging stations on streams for which records are reported in Tables B-4 and B-5 were maintained, operated, and records compiled by the Department of Water Resources.

Recorders

An automatic water stage recorder is in operation at each gaging station in the San Joaquin Valley area. The continuous record of water surface elevation at each station serves two major purposes in the preparation of the data in this report, and assists in the planning of flood control projects. First, the water surface elevation (gage height) is a factor in determining the quantity of flow of the stream in

cubic feet per second passing a given station. Second, the actual surface elevation at two adjacent stations on a stream on the valley floor afford the means of obtaining the water surface elevation at pumping plants along the stream between the stations. This information assists in the determination of the pumping head in order that the rate of diversion by the pumping plants can be obtained.

Ratings

A streamflow rating is made for each stream gaging station. This rating gives the flow in cubic feet per second for each gage height at the station. Normally, the gage height-to-flow relation or streamflow rating is more or less permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel consists of loose, shifting sand; where heavy weed growth accumulates as the season progresses; or where there may be backwater effects due to ice or other downstream conditions. In the last two cases, more frequent measurements of flow are made to obtain accurate records of flows passing the station.

Use of Water for Irrigation

The prevailing warm temperatures and a prolonged frost-free period during the summer season in the San Joaquin Valley favors the profitable production of a wide variety of marketable crops.

The major irrigated crops in the San Joaquin Valley include rice, alfalfa, orchard fruits, nuts, grapes, cotton, corn, grain, flax, pasture grasses, and a large variety of truck crops.

Criteria

The number of diversion points measured on the major streams in the San Joaquin Valley may vary from year to year. The criteria for selecting points to be measured were established in 1960. At that time it was determined that by measuring only those diversion points which had an average of two hundred acre-feet per season based on the previous three years of diversion record, 50 percent of the field work could be eliminated and still 95 percent of the total water diverted could be measured.

Changes in crop pattern and the available water supply are major factors that influence the amounts of water diverted for irrigation purposes.

Irrigation Diversions

Measurements and records of diversions in 1964 included all the major points of diversion on the valley floor along the San Joaquin River and tributaries; along the Stanislaus, Tuolumne, and Merced Rivers, and Dry Creek tributary to Tuolumne River; and along the Tule River.

This report contains records for a total of 171 points of diversion. Table 7 shows, by streams, the number of points of diversion and the acre-feet diverted.

TABLE 7

SUMMARY OF DIVERSION POINTS AND TOTAL ACRE-FEET DIVERTED

Oct. 1, 1963-Sept. 30, 1964

Stream	Number Of Points Measured	Total Acre-feet Diverted
San Joaquin River Vernalis to Fremont Ford Bridge Fremont Ford Bridge to Gravelly Ford (a) Gravelly Ford to Friant Dam	40 18 24	208,700 969,846 11,230
Tuolumne River	22	22,640
Stanislaus River	23	58,220
Merced River	34	62,210
Dry Creek (Tributary to the Tuolumne River)	3	1,259
Tule River	7	31,070
TOTAL	171	1,365,175

⁽a) Records furnished by U. S. Bureau of Reclamation.

Waters diverted by Central Valley Project canals and east side irrigation districts are shown on Table B-7.

The monthly amount of water diverted at the individual points of diversion along all the streams covered in the San Joaquin Valley area together with the total acre-feet diverted for the season is shown in Appendix B, Table B-6 of this report. The monthly use in percentage of seasonal total is also shown.

The location of each diversion point on a given stream is measured from the mouth of that stream progressing upward by river-mile. References to left or right bank assume an orientation facing downstream.

All of the diversions are accomplished by pumping except for 18 by gravity. The records of diversion by gravity are obtained by means of canal ratings established by flow measurements. The records of pumping diversions are obtained in a few instances by means of canal rating but generally are obtained by actual measurement of the pump discharge. Most of the pumps are electrically operated, making it possible to establish a relationship between water pumped and power input. Sufficient measurements are made to establish a rate of discharge for each pump, and the electric meters are read monthly to determine the power used.

The monthly amount of diversions in acre-feet by the large east side irrigation districts from the Stanislaus, Tuolumne, and Merced Rivers during the 1964 season is shown in Appendix B, Table B-7. The monthly amount of diversions in acre-feet by Central Valley Project canals is shown in Appendix B, Table B-9.

Fresno Slough and James Bypass normally convey excess flood flows from the Kings River into the San Joaquin River at a point above Mendota Dam, but during the irrigation season, San Joaquin River water is backed up through those channels by the Mendota Dam to afford irrigation supplies to the James and Tranquillity Irrigation Districts and to certain other diverters. The diversion data for these streams shown in Table B-6 were furnished by the U. S. Bureau of Reclamation.

Imported and Exported Water

Water is imported to the San Joaquin Valley from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal. The amount of water diverted and its distribution for use are shown in Table B-9.

Water is exported from the San Joaquin Valley via the Hetch Hetchy Aqueduct from the Tuolumne River to the City and County of San Francisco. Table B-8 shows the amount of that export.

CHAPTER IV. GROUND WATER MEASUREMENTS

The ground water resources of California have long been recognized as one of the major natural resources of the State. The ever-increasing rate of draft on the ground water basins makes the problems associated with the use and conservation of this resource numerous and complex, and the solution more urgent.

More than one-quarter of all the ground water pumped for irrigation in the United States is used in the San Joaquin Valley. Widespread pumping began about 1900 and, especially since 1940, has increased at an accelerated rate. In response to this heavy withdrawal, ground water levels in extensive areas of the Valley have declined rapidly. The water level decline will continue as long as ground-water pumpage exceeds the natural and artificial recharge of the ground water basin.

Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the Valley, three distinct ground water reservoirs are present. In downward succession there are (1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age overlying the Corcoran Clay Member of the Tulare Formation; (2) a body of fresh water confined beneath the Corcoran Clay Member which occurs in alluvial and lacustrine deposits of late Pliocene age or older; and (3) a body of saline connate water contained in marine sediments of middle Pliocene or older age which underlies the fresh-water body throughout the area. (U. S. Geological Survey Water-Supply Paper 1618 Abstract.)

In much of the eastern part of the Valley, especially in the area of the major streams, the Corcoran Clay Member is not present and ground water occurs as one fresh-water body to considerable depth. Ground water is replenished by infiltration of rainfall, by infiltration from streams, canals, and ditches, by underflow entering the Valley from tributary streams and from canyons, and by infiltration of excess irrigation waters.

The ground-water storage capacity of the San Joaquin Valley to a depth of 200 feet has been estimated to be approximately 93 million acre-feet, equal to roughly 9 times the capacity of the present and proposed surface-water reservoirs in the Valley.

All studies of ground-water problems and plans for solution of these problems have two factors in common: they must be founded upon records of water level measurements and quality analysis of water samples obtained over a period of years.

On the east side of the San Joaquin Valley from Chowchilla River to the southern end of the valley good records of ground water levels extending as far back as 1921 have been obtained through the combined efforts of the State, U. S. Bureau of Reclamation, and many local agencies. In 1930 the Department began collection of ground water level data in connection with special investigations of water resources of specific areas. From this beginning a program of annual, semiannual, and monthly measurements of ground water levels has developed in cooperation with federal and local agencies.

Scope

The area covered by this report is shown on Plates A-1 and B-1.

The areal scope of Appendix C of this volume is depicted on Plates C-1 through C-4. During the period July 1, 1963, to June 30, 1964, the San Joaquin District of the Department of Water Resources obtained approximately 13,000 water level measurements on some 7,500 wells. The period of record of these wells ranges from one to over 40 years.

Basic Data

Because significant trends in water level fluctuations can be indicated by a representative sample, a selection was made of approximately 600 wells for which the records are presented in Appendix C of this volume. These wells, designated as selected wells, were chosen on the basis of a number of factors such as

areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuation in the ground water area; and availability of a log, mineral analysis, and/or production record. Table C-1 presents the water level measurements made from July 1, 1963, through June 30, 1964. This volume continues the records for those wells published in Bulletin 77-62 which fall within the boundary of the San Joaquin Valley area.

Processed Data

Hydrographs depicting average water level fluctuations in 19 selected ground water areas are presented on Plate C-5. Individual well hydrographs depicting graphically the fluctuation of water levels are shown on Plate C-6. These wells distributed among significant areas were selected insofar as possible to be representative of their respective areas.

Ground water maps showing lines of equal elevation of water in wells for spring of 1964 appear on Plates C-7 and C-8. Where sufficient data are available, lines of equal elevation of water are shown for the unconfined or semiconfined aquifer, and the confined aquifer or pressure surface.

Maps showing the areas where the ground water level changed five feet or more in the unconfined, semiconfined, and confined aquifers are presented on Plates C-1 and C-2.

Related Information

For some basins or areas, maps showing depth to ground water are also prepared. At appropriate times, commonly every five years, maps are prepared showing lines of equal change occurring in the water level in wells during the time intervals. These maps are available in the office of the San Joaquin District of the Department of Water Resources and will be presented in future reports.

Cooperative Programs

Within the San Joaquin Valley area the Department of Water Resources has cooperative ground water programs with the U. S. Geological Survey, U. S. Bureau of Reclamation, Kern County, Kings County Water District, Poso Soil Conservation District, and the Los Banos Soil Conservation District.

Monthly Program

Approximately 350 selected wells are measured monthly and the resulting figures are published in a monthly summary report. These wells were selected as being representative of their respective areas. Most of the field work is done by cooperating agencies, while the Department measures 25 of the 350 selected wells. The Department compiles and publishes the collected field data in a monthly report. The water level measurements on the selected monthly wells are included in Appendix C of this volume.

Annual and Semiannual Programs

In Kern County approximately 1,000 wells are measured semiannually under a cooperative agreement between the U. S. Bureau of Reclamation, the County of Kern, and the Department of Water Resources.

Approximately 500 additional water level measurements being made by the Kern County Land Company are made available to the Department.

Maps of Kern County showing lines of equal depth to water and lines of equal elevation of water in wells are prepared for both spring and fall of each year.

In the Kings County Water District approximately 325 selected wells are measured semiannually by that agency and submitted to the Department for use in preparation of ground water maps under a cooperative agreement. Ground water maps are prepared for both spring and fall showing lines of equal elevation of water in wells in the district.

In the Poso Soil Conservation District approximately 40 wells are measured by that agency and the results submitted to the Department. Ground water maps are prepared for the district showing depth to water in wells in January and July.

Ground Water Conditions

Data are presented in this report for two zones or aquifers in 13 of the 50 areas reported in Appendix C.

During the period July 1963 to June 1964, 34 areas in the San Joaquin Valley showed a rise in the unconfined and semiconfined aquifers. There was no change in one area, but in 9 other areas there was a decline. Five of the 15 areas for which the pressure surface is reported show a decline and 10 show a rise in the water level.

In the shallow zone the maximum declines occurred in the Tracy area and the Fresno Slough area, where changes of 6.2 feet and 4.8 feet respectively are noted. The greatest rise in the shallow zone was 17.3 feet in the Vandalia Irrigation District. The maximum decline of 2.4 feet occurred in the deep zone of the Kern River Delta area. The greatest rise in the deep zone was 16.4 feet in the Delano-Earlimart Irrigation District. In those areas for which water levels are based on a composite of shallow and deep zones, the main change was a rise of 4.6 feet in the Buena Vista Water Storage District.

Table 8 presents the average change in ground water levels, spring 1963 to spring 1964. The average change in water level for each district or area was determined where possible by planimetering ground water contour maps. In areas where insufficient data were available to define reliable contours, a numerical average was made from the actual well measurements.

TABLE 8

AVERAGE CHANGE IN GROUND WATER LEVELS
IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY
Spring 1963 - Spring 1964

Ground Water Districts or Areas	Number of Wells Considered	Change in	
Name	Number	in Analysis	Feet
San Joaquin Valley	5-22.00		
Tracy Area	5-22.04	19	- 6.2
Oakdale Irrigation District	5-22.06	<u>a</u> /	+ 0.2
Modesto Irrigation District	5-22.07	<u>a</u> /	0.0
Turlock Irrigation District	5-22.08	<u>a</u> /	- 3.6
Merced Irrigation District	5-22.09	<u>a</u> /	+ 0.7
El Nido Irrigation District	5-22.10	a/	+ 4.7
Delta-Mendota Area	5-22.11	555	- 1.1
Chowchilla Water District	5-22.12	<u>a</u> /	+ 0.3
Madera Irrigation District	5-22.13	<u>a</u> /	+ 0.8
West Chowchilla-Madera Area	5-22.14	<u>a</u> /	- 2.9
Fresno Irrigation District	5-22.15	<u>a</u> /	+ 0.3
City of Fresno	5-22.16	<u>a</u> /	- 0.3
Fresno Slough Area	5-22.17	<u>a</u> /	- 4.8
Consolidated Irrigation District	5-22.18	<u>a</u> /	+ 2.9
Alta Irrigation District	5-22.19	<u>a</u> /	+ 3.4
Lower Kings River Area	5-22.20		
Shallow Zone		<u>a</u> /	+ 2.6
Deep Zone		<u>a</u> /	- 0.9
Orange Cove Irrigation District	5-22.21	<u>a</u> /	+ 1.5
Stone Corral Irrigation District	5-22.22	<u>a</u> /	+ 5.1
Ivanhoe Irrigation District	5-22.23	<u>a</u> /	+ 4.9
Kaweah-Delta Water Conservation District	5-22.24	<u>a</u> /	+ 6.2

AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964

Ground Water Districts or Areas		Number of Wells	Change
Name	Number	Considered in Analysis	in Feet
San Joaquin Valley (Continued)			
Tulare Irrigation District	5-22.25	<u>a</u> /	+ 5.5
Exeter Irrigation District	5-22.26	<u>a</u> /	+11.9
Lindsay-Strathmore Irrigation District	5-22.27	21	+10.6
Lindmore Irrigation District	5-22.28	<u>a</u> /	+15.2
Porterville Irrigation District	5-22.29	<u>a</u> /	+ 8.9
Lower Tule River Irrigation District	5-22.30		
Shallow Zone		<u>a</u> /	+10.3
Deep Zone		<u>a</u> /	+14.6
Vandalia Irrigation District	5-22.31	6	+17.3
Saucelito Irrigation District	5-22.32		
Shallow Zone		<u>a</u> /	+ 3.7
Deep Zone		<u>a</u> /	+ 8.2
Pixley Irrigation District	5-22.33		
Shallow Zone		<u>a</u> /	+ 9.3
Deep Zone		<u>a</u> /	+10.5
Alpaugh-Allensworth Area	5-22.34		
Shallow Zone		<u>a</u> /	+ 7.3
Deep Zone		<u>a</u> /	- 0.8
Delano-Earlimart Irrigation District	5-22.35		
Shallow Zone		<u>a</u> /	+ 6.4
Deep Zone		<u>a</u> /	+16.4
Southern San Joaquin Municipal Utility District	5-22.36		
Shallow Zone		<u>a</u> /	+ 7.1
Deep Zone		<u>a</u> /	+11.9
North Kern Water Storage District	5-22.37		
Shallow Zone		<u>a</u> /	+11.6
Deep Zone		<u>a</u> /	+14.9
Shafter-Wasco Irrigation District	5-22.38		
Shallow Zone		3	- 1.7
Deep Zone		<u>a</u> /	+ 5.4
City of Bakersfield	5-22.39	26	- 5.2
Kern River Delta Area	5-22.40		
Shallow Zone		<u>a</u> /	+ 0.2
Deep Zone		<u>a</u> /	- 2.4
Edison-Maricopa Area	5-22.41		
Deep Zone		<u>a</u> /	- 1.6
Buena Vista Water Storage District	5-22.42	<u>a</u> /	+ 4.6
Semitropic Water Storage District	5-22.43		
Shallow Zone		<u>a</u> /	+10.5
Deep Zone		<u>a</u> /	+ 2.1

TABLE 8 (Cont.)

AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964

Ground Water Districts or Areas		Number of Wells Considered	Change in		
Name	Name Number				
San Joaquin Valley (Continued)					
Avenal-McKittrick Area	5-22.44	33	+ 0.7		
Tulare Lake-Lost Hills Area	5-22.45	12	+ 4.4		
Corcoran Irrigation District	5-22.46				
Shallow Zone		<u>a</u> /	+ 7.7		
Deep Zone		<u>a</u> /	+15.4		
Mendota-Huron Area	5-22.47				
Deep Zone		<u>a</u> /	+ 6.0 <u>b</u> /		
Poso Soil Conservation District	5-22.48	<u>a</u> /	- 2.6		
San Luis Canal Company	5-22.49	<u>a</u> /	- 3.0		
Terra Bella Irrigation District	5-22.50	4	+ 4.9		
Centerville Bottoms Area	5-22.64	<u>a</u> /	+ 1.3		
Garfield Water District	5-22.65	21	+12.8		
Kings County Water District	5-22.66				
Shallow Zone		<u>a</u> /	+ 3.1		
Deep Zone		<u>a</u> /	- 1.8		
Pleasant Valley Area	5-22.69	23	- 4.2		

a/ Average changes were determined by planimetering ground water contour maps.
b/ Average change determined from water level measurements made during December 1962 and December 1963.

Table 9 presents the change in average ground water levels from 1921 to 1951 and 1951 to 1964 in 19 ground water areas in the San Joaquin Valley.

TABLE 9

CHANGE IN AVERAGE GROUND WATER LEVEL FROM
1921 TO 1951 AND 1951 TO 1964
IN 19 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY

_				
Name of Ground Water Area	Area in square miles	Irrigation and Other Water Districts Included in The Ground Water Area	Net change in water level 1921-51ª in feet	Net change in water level 1951-64b/ in feet
Madera	342.6	Madera Irrigation District and Chowchilla Water District	- 24.1º/	- 13.5
Fresno	404.0	Fresno Irrigation District and City of Fresno	- 22.4	- 16.0
Consolidated	243.0	Consolidated Irrigation District	- 19.0	- 6.6
Fresno, Consolidated, and Outside	700.1	Fresno Irrigation District, City of Fresno, and Consolidated Irrigation District	- 23.2	- 13.4
Outside Only	53.1		- 25.6	- 29.7
Centerville Bottoms	18.1		+ 1.0	+ 4.2
Alta	190.9	Alta Irrigation District	- 17.2 ^c /	+ 0.8
Ivanhoe	17.4	Ivanhoe Irrigation District	- 55.9	+ 13.3
Outside Ivanhoe	76.6	Stone Corral Irrigation District and a portion of Alta Irrigation District	- 28.5	- 0.5
Mill Creek	128.2	Portions of Kings County Water District and Kaweah Delta Water Conservation District	- 31.1	- 13.5

TABLE 9 (Cont.)

CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 TO 1951 AND 1951 TO 1964 IN 19 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY

Name of Ground Water Area	Area in square miles	Irrigation and Other Water Districts Included in The Ground Water Area	Net change in water level 1921-51ª/ in feet	Net change in wate: level 1951-64 in fee
Tulare	121.1	Tulare Irrigation District	- 59.1	- 1.8
Elk Bayou	67.6	Portion of Kaweah Delta Water Conservation District	- 47.8	- 7.2
Lindsay-Exeter	136.4	Exeter Irrigation District, Lindsay- Strathmore Irrigation District, and Lindmore Irrigation District	- 77.7	+ 59.4
Tule River	156.6	Porterville Irrigation District, portions of Lower Tule River Irrigation District, and Saucelito Irrigation District	- 62.5	+ 22.7
Lower Deer Creek	162.2	Portions of Lower Tule River Irrigation District, Saucelito Irrigation District, and Delano-Earlimart Irrigation District	-106.7	- 1.1 <u>e</u> + 1.5 <u>f</u>
Middle Deer Creek	54.6	Terra Bella Irrigation District	- 61.8	- 8.9 <u>e</u> - 36.7 <u>£</u>
Delano-Earlimart	140.0	Portions of Delano-Earlimart Irrigation District and Southern San Joaquin Municipal Utility District	-133.8	+ 8.4 <u>e</u> + 5.4 <u>f</u>
McFarland-Shafter	306.0	North Kern Water Storage District, Shafter- Wasco Irrigation District, and a portion of Southern San Joaquin Municipal Utility District	- 99.0	+ 16.2 <u>e</u> - 13.6 <u>f</u>
Rosedale	78.9		- 36.3	- 58.4 - 3.59
Arvin-Edison	205.2	Arvin-Edison Water Storage District	- 69.9 <u>d</u> /	- 20.7 <u>£</u>

¹⁹⁵¹ was the first year of substantial deliveries from the Friant-Kern Canal.
b/ Fall 1951 to spring 1964.
c/ Fall 1929 to fall 1951.
d/ Fall 1941 to fall 1951.
e/ Unconfined aquifer, spring 1961 to spring 1964, only one aquifer reported prior f/ Pressure surface, spring 1961 to spring 1964, only one aquifer reported prior g/ Pressure surface, spring 1963 to spring 1964, only one aquifer reported prior Unconfined aquifer, spring 1961 to spring 1964, only one aquifer reported prior to 1961. Pressure surface, spring 1961 to spring 1964, only one aquifer reported prior to 1961. Pressure surface, spring 1963 to spring 1964, only one aquifer reported prior to 1963.

CHAPTER V. SURFACE WATER QUALITY

The Department of Water Resources maintains a program of surveillance of the quality of water to detect any degradation of the surface waters of California due to contributions of wastes by agricultural, industrial, and municipal water users and to notify the proper control agencies of any such occurrences. The Surface Water Quality Monitoring Program was initiated to meet this surveillance need in April 1951 with the following objectives: (1) to determine the quality of the State's surface waters through a network of strategically located sampling stations representative of the major surface streams and lakes; (2) to detect changes in the quality of surface waters and notify control agencies of adverse changes; (3) to determine trends in surface water quality; and (4) to compile data into readily available form for distribution to cooperators and interested agencies.

Scope

The areal extent of activities discussed in this chapter and in Appendix D is shown on Plate D-1.

Data on the quality of surface waters are presented in graphs and tables in Appendix D for the 1964 water year (October 1, 1963, to September 30, 1964). These data represent the observed physical, chemical, bacteriological, and radiological characteristics of water samples collected at the surface water quality stations shown on Plate D-1. The stations are listed alphabetically in Table D-1.

Sampling Program

The Department of Water Resources has 31 surface water quality monitoring stations in the San Joaquin Valley area. In November of 1963, two new stations were added to the area of the program monitoring the Tulare Lake Basin. Of the 31 stations, 21 are sampled monthly, 8 quarterly, and 2 semiannually. The variation in the sampling frequency is dependent upon past records, need, and the type of data required.

The Kern County Parks and Recreation Department, City and County of San Francisco (Oakdale office), and the U. S. Corps of Engineers collect samples at one, five, and nine stations, respectively. The U. S. Geological Survey, California Department of Public Health, Fresno County, Kern County, and Tulare County Health Laboratories perform the various analyses on the samples from the entire 31 sampling stations.

Station Sampling

Sampling at each station consists of obtaining water samples for partial mineral and bacteriological analyses and field measurement of pH, temperature, gage height, and dissolved oxygen. Samples collected in May and September were subject to: (1) complete mineral analysis, (2) bacteriological analysis, (3) radiological analysis, and (4) determination of concentrations of phosphate, arsenic, and detergents (alkyl benzene sulfonate-ABS). A sample is collected twice each year at ten selected stations for the determination of heavy metals by spectrographic analysis. The results of the spectrographic analyses are contained in Table D-3.

Conductivity Recorders

Conductivity recorders are maintained at selected surface water stations to obtain continuous records of the specific electrical conductance of the waters. The recorder charts are removed, edited, and processed at the end of each month. The data are converted and tabulated into mean hourly, daily, and weekly electrical conductivity values with the daily values being published monthly in an office report. A plot of the mean weekly values versus time for each of these stations is shown on Plate D-2.

Information from these recorders is used to approximate concentrations of several water quality parameters, including but not limited to concentrations of total dissolved solids (TDS), chlorides, and total hardness. These approximations are possible because of the relationship between specific conductance and each of the dissolved mineral constituents in the water.

Surface Water Quality Conditions

Surface water samples taken from the lower reaches of the San Joaquin River indicate an appreciable increase in mineral concentration as compared with results from the same stations for the 1963 water year.

The contribution of mineral constituents from major tributaries was also appreciably higher than it was the previous year. The increase in mineral concentration was most noticeable during the irrigation season when the streamflow regimen was at its lowest stage for the entire year. The incremental change in mineral constituents over the previous year's concentrations increased significantly from Fremont Ford to Vernalis. This accumulation of minerals is attributed to the lack of available streamflow sufficient in quantity to dilute accretions affluent to the lower reaches of the San Joaquin River.

The U. S. Bureau of Reclamation supplemented the flow in the San Joaquin River to aid the migration of fish from the Sacramento-San Joaquin Delta to the lower reaches of the San Joaquin River.

Approximately 45,000 acre-feet were diverted from the Delta-Mendota Canal through the Newman and Westley Wasteways from September 23 to November 1, 1964, to provide adequate streamflow and dissolved oxygen content necessary for fish migration up the San Joaquin River.

CHAPTER VI. GROUND WATER QUALITY

Water development to meet the needs of California's phenomenal growth is one of the major problems facing the State. Although the use of ground water has been, and is, one of the major factors contributing to the economy of the State, insufficient data are available regarding the mineral quality of such ground water supplies. The present widespread dependence upon ground water requires constant vigilance, coupled with remedial action where necessary, to assure that the quality of ground water remains suitable for all intended uses. In view of this need for vigilance, a statewide program of observation and study of ground water quality was initiated by the Department of Water Resources in 1953.

Scope

Approximately 415 wells were sampled throughout the San Joaquin Valley, Panoche Valley, Tehachapi Valley, and Cummings Valley during this reporting period. The locations of monitored wells for 1963 are shown on Plate E-1, "Location of Selected Observation Wells, Ground Water Quality". A special program was conducted in the Fresno-Madera area during 1963 and 1964 by the Department in conjunction with the U. S. Geological Survey. The location of the wells used for this program are shown on Plate E-2.

Ground Water Quality Conditions

Adequate surveillance of the quality of a ground water basin requires the establishment of norms from which deviations can be determined. Considerable information has been gathered during the early years of this program and through other programs where ground water quality data were collected to assist in establishing the norms. Individual wells for the monitoring program were selected by an evaluation of well drillers' logs, water analyses, and water level data to best represent the quality of the ground water in the surrounding area. The number of wells needed for this purpose was mainly determined by the complexity of the ground water basin in a given area. The analyses of samples collected from selected wells in the San Joaquin Valley for the 1964 water year are contained in this bulletin. Included are tables of complete and partial mineral analyses and trace element determinations. The type of analysis made on a sample from a well is based mainly on the history of the data on that well.

With the increased use of fertilizers for agriculture and with the increase in the quantity of domestic waste water discharges, the possibility of an increase in nitrates in ground water is becoming more likely.

Irrigation waters containing nitrate yielding fertilizers may percolate into the ground water bodies as evidenced by the study of well 18S/28E-10Ml (see Plate E-4). The discharge of domestic waste waters into the ground through leach fields or by disposal to ponds where percolation can occur is also another source of nitrates. Specific problems of this type have occurred in the Fresno-Clovis area (see Bulletin 143-3, Fresno-Clovis Metropolitan Area Water Quality Investigation). In light of this concern over the possibility of increases in nitrate concentrations in the Valley a special map was prepared. There were insufficient data in any one year to prepare such a map so it was necessary to use data collected during the period from 1961 through 1964 for Plate E-4, "Nitrate Concentrations in the San Joaquin Valley". It is intended that this plate will provide a base for identifying areas of high nitrates and for determining increases in future years.

Lithium, a relatively rare constituent of ground water, usually appears in very small quantities. In concentrations greater than 0.1 part per million, however, lithium has been found to be detrimental to citrus and other fruit trees in much the same manner as boron. Arsenic, although generally rare, also is found in some ground waters of the Valley and is significant even at 0.01 part per million.

Detergents (ABS: alkyl benzene sulfonate) do not occur in ground water naturally and therefore are an indicator of pollution. Selected nutrient determinations were also made in a few special cases in conjunction with the ABS determinations in the vicinity of sewage or industrial waste discharges.

Fresno-Madera Area Study

During 1963-64 a concentrated sampling program was carried out in the greater part of the valley floor of both Fresno and Madera Counties. This sampling was done in conjunction with the U. S. Geological

Survey's investigations in eastern Fresno County and in Madera County. This coordination eliminated duplication of effort and resulted in more and better coverage of the area. By utilizing the data collected during this period which was supplemented with older data, particularly in western Fresno County, a picture of the ground water quality for the Fresno-Madera area was developed. The ground water quality data for these areas are listed in Appendix E on Table E-2. The data were evaluated and illustrated on Plate E-3. This plate shows the mineral type of the ground water and contours of the electrical conductivity for each aquifer defined

It should be noted that there is a difference between the water quality map on Plate E-3 and a similar plate published in Bulletin 130-63. First, the data are broken down by aquifer in this bulletin, whereas in 1963 sufficient data were not available to make this differentiation. Second, the difference indicated does not mean that the water quality picture was changed since 1963 but that with the greater quantity and quality of data now available more accurate maps could be prepared. It is possible that with more data and a better understanding of the geology and water quality the picture may be further refined. It is believed, however, that the present maps are very close to representing the actual ground water quality in the area. Areas were left blank when sufficient data were not available to make an evaluation. These areas will be studied in more detail in the future.

Kern County Piezometer Sampling Program

An ideal sampling network for an area would contain wells that are representative of single aquifers from which maps of the water quality for each aquifer could be made. It was believed that the U. S. Bureau of Reclamation's piezometer pipes best reflected this ideal network in Kern County. During 1964 a special sampling program was conducted in Kern County in order to sample the piezometers. Table E-5 lists some of the results of this study. The pumping times shown vary considerably and are based on the time required for the electrical conductivity (EC), which was measured continually, to settle down to a steady value. It was assumed that the erratic EC values first noted were indicative of the waters trapped in the pipe and gravel packing and that the water in the aquifer was indicated by the leveled off EC values. The pumping rates shown vary considerably and are thought to be generally indicative of the formation permeability. In a few cases the depth at which the piezometer was pumped would also reflect different rates.

Regular Sampling Program

Samples from the monitored areas are collected from early spring, when pumping begins, through the fall, when pumping generally slows down. Some of the samples collected are obtained by cooperating agencies, the remainder by the Department. Normally the cooperating agencies collect the majority of the samples, but for the 1964 water year most sampling was performed by department personnel due to a concentrated reevaluation in certain areas. At the conclusion of the reevaluation, it is intended that the cooperating agencies again continue with most of the sampling.

APPENDIX A
CLIMATE

TABLE OF CONTENTS

		Page
INTRO	ODUCTION	29
Expla	anation of Tables	29
	Precipitation Station Index	29
	Monthly Precipitation	29
	Monthly Temperatures	29
	Monthly Summary of Evaporation Station Data	29
	Reference Notes	30
	LIST OF TABLES	
Table		
A-1	Index of Climatological Stations for 1963-64, San Joaquin District	31
A-2	Precipitation Data for 1963-64, San Joaquin District	38
A-3	Temperature Data for 1963-64, San Joaquin District	43
A-4	Monthly Summary of Evaporation Station Data	47
	LIST OF PLATES	
	(Bound at end of volume)	
Plate Numbe		
A-1	Location of Climatological Stations	
A-2	Seasonal Precipitation Distribution for 1963-64 in Descent of 50-year Mean	

INTRODUCTION

This appendix presents the climatological data for the period July 1, 1963 to June 30, 1964. The data consist of precipitation station descriptions, monthly precipitation quantities, monthly temperature summaries and monthly evaporation totals.

Explanation of Tables

Precipitation Station Index

Table A-1 shows the precipitation station index. The climatological station designations used are based on the drainage basin and alpha number. Stations are also named, and latitude and longitude are shown to the nearest minute. The county, elevation above sea level, the year the record began, and the name of the current observer of record are also shown.

Each main drainage basin is assigned a letter and each subbasin a number as shown on Plate A-1 of this report.

The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for the station name making some abbreviations necessary.

Each station is generally named after and referenced to the nearest post office (Livingston 5W--a point 5 miles west of the post office in the town of Livingston), or named for a geographic location (Chiquito Creek). Occasionally the observer's name is incorporated in the station name (Hornitos Giles Ranch).

Monthly Precipitation

Table A-2 shows the monthly and seasonal total rainfall for some 395 weather stations within and near the San Joaquin Valley area. This table summarizes all of the available precipitation observations from July 1963 through June 1964. Daily records are available in department office files.

Monthly Temperatures

Table A-3 shows a temperature summary for a monthly period at 60 weather stations throughout the San Joaquin Valley area.

The individual observations were obtained using the observations, techniques, types of thermometers, and exposure conditions recommended by the U. S. Weather Bureau. The Fahrenheit scale is used in all references to temperature.

Terms used in connection with the temperature data are explained in the following:

Term	<u>Definition</u>	Abbreviation
Maximum	The highest temperature of record for the month.	Max.
Minimum	The lowest temperature of record for the month.	Min.
Average maximum	The arithmetic average of daily maximum temperatures for indicated period.	Avg. max.
Average minimum	The arithmetic average of daily minimum temperatures for indicated period.	Avg. min.
Average temperature	The average of the daily maximum and minimum for each day; the daily averages are averaged to make the monthly averages.	Avg.

Monthly Summary of Evaporation Station Data

Table A-4 shows the monthly net evaporation at 12 stations throughout the San Joaquin Valley area.

Observations of the amount of water evaporating from an open pan are made in the manner recommended by the U. S. Weather Bureau. The standard Weather Bureau pan is 47.5 inches in diameter and

10 inches deep. It contains clean water to a depth of seven to eight inches. The pan is placed on a lumber frame to insulate it from significant conductive heat exchange with the ground. The evaporation is measured by the actual difference in the pan water surface elevation over a 24-hour period with the appropriate adjustments for rainfall.

Terms used in connection with evaporation data are explained below:

Term	<u>Definition</u>	Abbreviation
Evaporation	The net amount of water evaporated from the pan for the period given.	Evap.
Precipitation	The total amount of rainfall in inches which occurred during the period.	Precip.
Wind	The total movement of air over the pan, in miles, for the period.	Wind
Average maximum	See explanation in temperature data table.	
Average minimum	See explanation in temperature data table.	

Reference Notes

- A list of the reference notes used in the climatological portion of this report follows:
 - CD Record published in "Climatological Data" by U. S. Weather Bureau.
 - WB All or part of record published by U. S. Weather Bureau.
 - HPD Record published in "Hourly Precipitation Data" by U. S. Weather Bureau.
 - HPD CD Published in both "CD" and "HPD" from separate gages. Record from "CD" reproduced in this report.
 - CD(P) Precipitation data published in "CD". Other data published by DWR.
 - R CD Published in both "CD" and "HPD" from recording rain gage. Record from "CD" reproduced in this report.
 - R Recording rain gage. Hourly precipitation distribution not necessarily available at DWR.
 - (R) Hourly precipitation record also available for this station.
 - S Storage gage. Data published in "Storage Gage Precipitation Data" by U. S. Weather Bureau.
 - Ss Storage gage using standard rain gage. Data published by DWR.
 - T Trace.
 - AS After storm only. Small amounts may not be recorded.
 - b Preliminary data--subject to revision.
 - E Wholly or partially estimated.
 - No record.
 - M One or more days of record missing. If average value is entered, less than 10 days' record is missing.
 - RB Beginning of record.
 - RE End of record.
 - * Amount included in following measurement; time distribution unknown.
 - V Includes total for previous month.
 - D Water equivalent of snowfall wholly or partly estimated using a ratio of 1 inch water equivalent to every 10 inches of new snowfall.
 - SCE Data obtained from Southern California Edison Company.

Additional criteria are:

Dimensional units used in this report are: Temperature in degrees Fahrenheit, precipitation and evaporation in inches, and wind movement in miles (per month).

- Evaporation, wind movement and temperature data in this report are not published by the U. S. Weather Bureau.
 - All temperature data represent air temperatures.

96 -	Alpha					L	ot.	La	ng.	Record		
Droinage Bosin	Order Number	Station Name		Caunty	Elev.	Oeg.	Mın,	Deg	Min.	Began	Observer	
CO B6 CO C7 D6	0009 0049 0204 0215 0239	Academy Ahwahnee 2 NNW Angiola Annette Apache Camp	WB WB	Fresno Madera Tulare Kern Ventura	545 2790 205 2140 4965	36 37 35 35 35 34	53 24 59 39 52	119 119 119 120 119	32 44 29 10 20	1958 1959 1899 1951 1940	Edwin W. Simpson Mrs. Eleanor P. Crooks Angiola Elev. & Whse. Ernest Still Kern Co. Road Camp	
CO CO C2 BO C2	0332 0332-02 0343 0373-80 0374	Arvin Arvin Frick Ash Mountain Atwater Craig Atwell	WB S	Kern Kern Tulare Merced Tulare	445 437 1708 150 6400	35 35 36 37 36	12 14 29 21 28	118 118 118 120 118	49 52 50 37 40	1936 1959 1925 1961 1949	Kern Co. Fstry. & F.D. Dept. Water Resources U.S. Natl. Park Serv. H. J. Craig Corps of Engineers	
B7 C0 C7 C7	0379 0396-02 0399 0399-01 0399-02	Auberry Avenal Walden Avenal Orchard Ranch Avenal 8 SW Avenal 6 SSW	WB	Fresno Kings Kings Kings Kings	2005 810 712 1424 1565	37 36 35 35 35	05 00 48 58 56	119 120 120 120 120	29 08 05 13 10	1915 1957 1919 1957 1953	Pete E. Dubose L. F. Walden E. R. Orchard J. A. Sagaser Leslie Sagaser	
C2 B5 B5 C0 C0	0422 0425 0430 0440 0442	Badger Badger Pass Bagby Bakersfield 1 W Bakersfield WB Airport	WB S	Tulare Mariposa Mariposa Kern Kern	3030 7300 820 400 495	36 37 37 35 35	38 40 37 23 25	119 119 120 119 119	01 40 08 02 03	1940 1941 1958 1913 1933	Lucille E. Weddle U.S. Natl. Park Serv. Mr. Peron Kern County Land Co. U.S. Weather Bureau	
C1 C6 C1 B5 B5	0449 0466 0534 0570 0570-80	Balch Power House Ballinger Barton Flat Bear Valley Trabucco Bear Valley	WB Ss S	Fresno Kern Fresno Mariposa Mariposa	1720 4240 3760 2000 2060	36 34 36 37 37	55 53 49 34 34	119 119 118 120 120	05 22 53 07 07	1921 1961 1961 1952 1960	P. G. & E. Company B. J. Snedden Corps of Engineers Harold Trabucco Corps of Engineers	
B3 C2 B4 C0 V2	0573 0596 0617 0631 0684	Beardsley Dam Beartrap Meadow Beehive Meadow Bellevue Benton Insp. Sta.	s s	Tuolumne Tulare Tuolumne Kern Mono	3165 6800 6500 369 5460	38 36 38 35 37	12 41 00 20 50	120 118 119 119 118	05 52 47 07 29	1958 1959 1947 1961 1959	Oakdale Irrig. Dist. Corps of Engineers Hetch Hetchy Wtr. Sup. Kern County Land Co. John M. Patterson	
BO B7 B7 B7 B7	0688-02 0755 0755-01 0755-02 0755-05	Berenda 2 N Big Creek PH No. 1 Big Creek PH No. 2 Big Creek PH No. 3 Big Creek PH No. 8		Madera Fresno Fresno Fresno Fresno	270 4928 3000 1400 2260	37 37 37 37 37	04 12 12 09 12	120 119 119 119 119	08 14 18 23 20	1959 1913 1913 1922 1921	Closed Jan. 1, 1963. So. Calif. Edison Co. So. Calif. Edison Co. So. Calif. Edison Co. So. Calif. Edison Co.	
V2 V2 V2 C1 V2	0767 0776 0819 0821 0824	Big Pine Creek Big Pine PH No. 3 Bishop Creek Intake 2 Bishop Pass Snow Course Bishop Union Carbide	S WB S WB	Inyo Inyo Inyo Fresno Inyo	10060 4680 8154 11040 9390	37 37 37 37 37	08 08 15 06 22	118 118 118 118 118	29 19 35 34 43	1947 1925 1950 1957	Dept. Water Resources LA Dept Water & Power Calif. Elec. Power Co. Corps of Engineers Union Carbide Co.	
C6 C0 C1 C1 D1	0825-01 0875 0880-80 1069-01 1170	Bitter Creek Blackwells Corner Blasingame Bretz Mill Buena Vista	Ss WB	Kern Kern Fresno Fresno San Benito	1250 644 1050 3250 1640	35 35 36 37 36	00 37 58 02 46	119 119 119 119 121	20 52 27 14 11	1961 1944 1961 1960 1932	B. J. Snedden Dean Sams Calif. Div. Forestry U.S. Forest Service Mrs. Ora Lee Martin	
C0 C0 C6 C0	1174 1175 1180-80 1199-01 1244	Buena Vista Rch. Buena Vista Rch. M & L Buena Vista Rch. M & L 2 Burgess Corrals Buttonwillow	Ss WB	Kern Kern Kern Kern Kern	310 286 290 1600 268	35 35 35 34 35	20 12 14 58 24	119 119 119 119 119	17 18 18 19 28	1914 1955 1962 1960 1940	Kern County Land Co. Miller & Lux, Inc. J. G. Boswell Co. B. J. Snedden Buena Vista W. S. Dist.	
B2 B3 C3 C3 C0	1277 1280 1300 1425 1479	Calaveras Big Trees Calaveras Ranger Sta. Calif. Hot Springs RS Camp Nelson Canfield Ranch	WB WB WB	Calaveras Calaveras Tulare Tulare Kern	4696 3343 2950 4825 334	38 38 35 36 35	17 12 53 08 17	120 120 118 118 119	19 22 41 37 10	1929 1944 1907 1959 1952	Calif Div. Beaches &Pks U.S. Forest Service U.S. Forest Service John F. Lewis Kern County Land Co.	
V7 C0 C0 B0 B8	1488 1490 1557 1580 1583	Cantil Cantua Ranch Caruthers 4 E Castle AFB Castle Rock Rad. Lab.	WB	Kern Fresno Fresno Merced San Joaquin	2010 295 265 170 625	35 36 36 37 37	18 30 33 22 38	117 120 119 120 121	58 19 46 34 32	1955 1955 1960 1951 1956	Postmaster Giffen Ranch R. L. Kincade U. S. Air Force Lawrence Rad. Lab.	
B6 B5 B5 B6 B6	1588 1588-01 1588-03 1590 1591	Catheys Vly. Bull Run Rch. Catheys Vly. Meyer Rch. Catheys Vly. 3 NNW Catheys Vly. Sawyer Rch. Catheys Vly. Stonehouse	, WB	Mariposa Mariposa Mariposa Mariposa Mariposa	1425 2250 1250 1275 1210	37 37 37 37 37	24 29 29 26 25	120 120 120 120 120	03 04 07 06 05	1940 1957 1957 1957 1951		

e e							ot.	Lo	0.0		
Drainage Basin	Alpha Order	Station Name		County	Elev.				ī	Record Began	Observer
ŏ	Number				L	Deg	Min.	Deg	Min.		
B4 B7 D3 C7 Z2	1697 1737 1743 1743-02 1754	Cherry Valley Dam Chiquito Creek Cholame Hatch Ranch Cholame Twisselman Chuchupate Ranger Sta.	WB S WB WB	Tuolumne Madera San Luis Obpo. San Luis Obpo. Ventura		37 37 35 35 34	58 30 41 34 48	119 119 120 120 119	55 23 12 07 01	1955 1961 1925 1951 1941	Hetch Hetchy Wtr. Sup. Dept. Water Resources Everett C. Hatch H. A. Twisselman U.S. Forest Service
C0 B7 C0 C7 C0	1770-80 1844 1864 1864-02 1867	Citrus Clover Meadows GS Coalinga Coalinga Roberts Rch. Coalinga 1 SE	S WB WB	Kern Madera Fresno Fresno Fresno	660 7002 671 1350 663	35 37 36 36 36	02 32 09 02 08	118 119 120 120 120	58 17 21 27 21	1963 1945 1942 1953 1911	Kern County Land Co. Dept. Water Resources Coalinga Fire Dept. R. J. Roberts Union Oil Company
C7 C0 C0 B6 C0	1869 1870-80 1871-80 1878 1885	Coalinga 14 WNW Coalinga CDF Coalinga Feed Yards Inc. Coarsegold Coit Ranch Hdq.	WB	Fresno Fresno Fresno Madera Fresno	1640 690 1000 2363 278	36 36 36 37 36	14 08 13 16 42	120 120 120 119 120	34 22 21 42 28	1949 1961 1964 1952 1954	Mrs. Charles Howell Calif. Div. Forestry Dept. Water Resources Dorothy McAllister Coit Ranch
B4 B3 C0 C0	1904 2003 2012 2013 2013-05	Cold Springs Copperopolis Corcoran Irrig. Dist. Corcoran El Rico 1 Corcoran El Rico 33	WB	Tuolumne Calaveras Kings Kings Kings	5680 1000 200 198 190	38 37 36 36 35	10 59 06 03 58	120 120 119 119 119	03 38 34 39 42	1961 1954 1912 1958 1951	John D. Morrison Corps of Engineers S. S. Whitehead J. G. Boswell Co. J. G. Boswell Co.
V2 V2 B5 B5 C5	2069 2071 2072 2072-05 2114	Cottonwood Creek Cottonwood Gates Coulterville FFS Coulterville 5 E Crabtree Meadow	s	Inyo Mariposa Mariposa	10600 3710 1870 3010 10720	36 36 37 37 36	29 25 43 43 34	118 118 120 120 118	11 02 12 06 20	1947 1959 1959 1950	Dept. Water Resources LA Dept. Water & Power Calif. Div. Forestry Norman Jaenecke Corps of Engineers
B7 V2 C6 D6 D6	2122 2181 2222-80 2236 2248	Crane Valley PH Crowley Lake Cummings Valley Cuyama Cuyama Ranch	WB WB	Madera Mono Kern Santa Barbara San Luis Obpo.	3440 6870 3825 2240 2170	37 37 35 34 34	17 35 07 56 59	119 118 118 119 119	32 42 35 37 40	1903 1920 1961 1944 1948	P. G. & E. Company LA Dept. Water & Power Dept. Water Resources John S. Rowell Corps of Engineers
B6 C0 B8 B0 B0	2288 2346 2369 2375 2389	Daulton Delano Del Puerto Road Camp Delta Ranch Denair	WB WB	Madera Kern Stanislaus Merced Stanislaus	410 323 1125 90 124	37 35 37 37 37	07 47 25 07 32	119 119 121 120 120	59 15 23 45 48	1946 1876 1958 1948 1917	M. M. Greenman Delano Fire Dept. Stanislaus County Pasquale Bisignani Closed Feb. 29, 1964.
BO CO CO CO	2389 2408 2436 2440-01 2464	Denair 3 NNE Devils Den SLF DiGiorgio Dinuba Alta I.D. Domengine Ranch	WB	Stanislaus Kern Kern Tulare Fresno	137 500 483 334 1000	37 35 35 36 36	34 46 15 33 20	120 119 118 119 120	47 58 51 23 22	1964 1959 1937 1944 1959	Ken C. Bratten South Lake Farms DiGiorgio Fruit Corp. Alta Irrig. Dist. V. Ciesielski
C7 B4 C5 B5 B4	2464-01 2473 2492 2539 2609	Domengine Spring Don Pedro Reservoir Doublebunk Meadow Dudleys Early Intake PH	S WB	Fresno Tuolumne Tulare Mariposa Tuolumne	1700 700 6200 3000 2356	36 37 35 37 37	20 43 57 45 53	120 120 118 120 119	24 24 36 06 57	1958 1940 1955 1909 1925	V. Ciesielski Hetch Hetchy Wtr. Sup. Corps of Engineers W. D. McLean Hetch Hetchy Wtr. Sup.
C1 C0 V0 C7 B0	2653 2752-80 2756 2785 2820	East Vidette Meadow Eighth Standard Ranch Ellery Lake El Rancho Cantua El Solyo Rch.	S WB	Tulare Kern Mono Fresno Stanislaus	10400 338 9600 1020 50	36 35 37 36 37	44 06 56 25 37	118 119 119 120 121	23 02 14 29 14	1955 1963 1924 1938 1953	Corps of Engineers Kern County Land Co. Calif. Elec. Power Co. Sta. discontinued 7/63. John K. Ohm
BO BO B5 CO BO	2860 2909 2920 2922 2968	Escalon Swanson Eugene Exchequer Reservoir Exeter Fauver Ranch Fancher Ranch Camp 3	WB WB	San Joaquin Stanislaus Mariposa Tulare Merced	125 173 484 439 225	37 37 37 36 37	47 55 35 21 19	121 120 120 119 120	00 51 16 04 20	1944 1923 1935 1938 1959	Clark Swanson Corps of Engineers Merced Irrig. Dist. Charles O. Coulter Calif. Packing Corp.
C7 80 C0 C0 B7	3005 3063 3083 3084 3093	Fellows Firebaugh 9 W Five Points 5 SSW Five Points Diener Florence Lake	WB WB	Kern Fresno Fresno Fresno Fresno	1340 187 285 263 7344	35 36 36 36 37	11 51 21 22 16	119 120 120 120 118	33 37 09 06 58	1956 1934 1942 1933 1940	Kern Co. Fire Dept. Thomas & Thomas Ranch Raymond Thomas Ranch Frank C. Diener So. Calif. Edison Co.
CO CO B7 VO E5	3257 3258-80 3261 3369 3387	Fresno WB Airport Fresno Co. Westside FD Friant Government Camp Gem Lake Gerber Ranch	WB WB WB	Fresno Fresno Fresno Mono Santa Clara	326 600 410 8970 2140	36 36 36 37 37	46 08 59 45 22	119 120 119 119 121	43 16 43 08 29	1899 1963 1896 1924 1912	U.S. Weather Bureau Dept. Water Resources U.S. Bur. Reclamation Calif. Elec. Power Co. Mrs. Hilda Draghi

Drainage Basin	Alpha Order	Station Name		Caunty	Elev.	Lo	ıt.	Lo	ng.	Record	Observer
Drail Bo	Number	J.O.TOT. NOTICE			Lick.	Deg.	Mın.	Deg	Min	Began	
Dl	3397 3422 3428-01 3463 3465	Giant Forest Gilroy 14 ENE Gin Yard Glennville Glennville Fulton RS	WB WB WB	Tulare Santa Clara Kern Kern Kern	6412 1350 295 3140 3500	36 37 35 35 35	34 06 09 43 44	118 121 119 118 118	46 20 14 42 40	1921 1940 1960 1951 1940	U.S. Natl. Park Serv. Seth E. Auser Miller & Lux, Inc. Kern Co. Fstry. & F.D. U.S. Forest Service
CO B4 C1 C1 B5	3512 3529 3548 3551 3612-03	Gosford Feed Mill Grace Meadow Granite Basin Grant Grove Green Valley Ranch	S S WB		360 8900 10000 6580 3170	36	19 09 52 44 46	119 119 118 118 120	05 36 36 58 09	1953 1947 1949 1924 1957	Kern County Land Co. Hetch Hetchy Wtr. Sup. Corps of Engineers U.S. Natl. Park Serv. Mrs. D. Davidson
B4 B4 B0 B0 B0	3669 3672 3690-02 3690-04 3694	Groveland 2 Groveland Ranger Sta. Gustine 5 SW Gustine Snyder Gustine Avoset	WB WB	Tuolumne Tuolumne Merced Merced Merced	2825 3135 145 150 98	37 37	13	120 120 121 121 121	14 06 03 03 00	1940 1940 1927 1954 1928	Duane J. Cox U.S. Forest Service W. P. Jorgensen Harry M. Snyder Foremost Co.
BO V7 CO C1 D1	3698-80 3710 3747 3811-11 3925	Gustine 7 SSW Haiwee Hanford Haslett Basin Hernandez 2 NW	WB WB	Merced Inyo Kings Fresno San Benito	156 3810 242 2400 2160	37 36 36 36 36	10 08 20 58 25	121 117 119 119 120	02 57 40 13 55	1959 1923 1899 1960 1940	Mrs. George E. Butts LA Dept. Wtr. & Power Calif. Div. Forestry U.S. Forest Service Max D. Ley
D1 B4 B6 B2 B0	3928 3939 3948 3952 3981	Hernandez 7 SE Hetch Hetchy Hidden Valley Highland Lakes Hilmar	WB WB	San Benito Tuolumne Mariposa Alpine Merced	2765 3870 1880 8650 90	37	18 57 26 30 25	120 119 119 119 120	42 47 56 48 51	1940 1910 1949 1960 1948	Mrs. Clorene Akers Hetch Hetchy Wtr. Sup. Howard Brady Dept. Water Resources Hilmar Fire Dept.
	4012 4061-01 4061-02 4061-03 4101-80	Hockett Meadow Homeland Dist. Sec. 9 Homeland Dist. Sec. 17 Homeland Dist. Sec. 34 Hornitos Bridge Cafe	5	Tulare Kings Kings Kings Mariposa	8500 190 206 195 825	36 35 35 35 37	22 57 50 53 30	118 119 119 119 120	39 36 37 34 14	1959 1952 1952 1951 1962	J. G. Boswell Co.
B5 B5 B5 C3 B4	4102-01 4103 4104-80 4120 4148	Hornitos Erickson Ranch Hornitos Giles Ranch Hornitos Hossack (Radio) Huckleberry Lake	s s	Mariposa Mariposa Mariposa Tulare Tuolumne	1150 1050 850 7100 7800	37 37 37 36 38	30 28 30 11 06	120 120 120 118 119	09 14 14 37 45	1955 1939 1960 1959 1959	Corps of Engineers
B3 B7 B8 V2 V2	4170 4176 4204 4232 4235	Hunters Dam Huntington Lake Idria Independence Independence Onion Vly.	WB WB WB WB	Calaveras Fresno San Benito Inyo Inyo	3220 7020 2650 3950 9175	36	12 14 25 48 46	120 119 120 118 118	22 13 40 12 20	1950 1915 1918	P. G. & E. Company So. Calif. Edison Co. New Idria Mine & Chem. LA Dept. Wtr. & Power LA Dept. Wtr. & Power
B5 V7 C5 B5 C5	4246 4278 4303 4369 4389	Indian Gulch Inyokern Isabella Dam Jerseydale G5 Johnsondale	WB	Mariposa Kern Kern Mariposa Tulare	1000 2440 2660 3605 4680	35	26 39 39 33 58		12 49 29 50 32	1937	Frank N. Solari Kern County Fire Dept. Corps of Engineers U.S. Forest Service U.S. Forest Service
C2 C6 B8	4442 4452 4463 4508 4510-02	Kaiser Meadows Kaweah PH 3 Keene Kerlinger Kerman 2 ESE		Fresno Tulare Kern San Joaquin Fresno	9110 1370 2575 172 225	36 3 5 37	18 29 13 41 43		06 50 34 26 01	1913	So. Calif. Edison Co. So. Calif. Edison Co. Kern County Fire Dept. Pac. Coast Aggregates Dept. Water Resources
C5	4513 4518 4519 4520 4523	Kern Canyon Kern River Intake No. 3 Kern River Intake 3 SCE Kern River PH No. 1 Kern River PH No. 3	WB WB WB	Tulare Tulare Tulare Kern Kern	700 3650 3642 970 2703	35 35	26 57 57 28 47		48 29 29 47 26		So. Calif. Edison Co.
CO CO	4572-01 4534 4535 4536 4590	Kernville RS Kettleman City 1 SSW Kettleman Hills Kettleman Station Knights Ferry 2 SE		Kern Kings Kings Kings Stanislaus	2600 310 1255 508 315	36 36	00 02 04	119 120 120	25 58 06 05 39	1953 1930 1931 1933 1905	Standard Oil Co. Calif. Standard Oil Co. Calif. P. G. & E. Company
B4 V2 D3	4664 4679 4705 4767 4863	Lake Alpine Lake Eleanor Lake Sabrina La Panza Ranch Lebec	S S WB	•	7500 4662 9065 1550 3585	37 37 35	13 23	119 118 120			Hetch Hetchy Wtr. Sup.

		SAN JOAQUIN DISTRICT									
Drainage Basin	Alpho Order	Station Name		County	Etev.	L	at.	Lo	ng.	Record	Observer
Dra	Number			,		Deg	Min.	Oeg	Min.	Begon	
B6 B0 B0 C2 B0	4883 4884 4884-05 4890 4953-02	Le Grand Preston Rch. Le Grand Le Grand 6 N Lemon Cove Linden Fire Station	WB WB	Mariposa Merced Merced Tulare San Joaquin	984 255 280 513 90	37 37 37 36 38	20 14 19 23 01	120 120 120 119 121	02 15 15 02 05	1950 1899 1945 1899 1948	See White Rock Preston Merced Co. Fire Dept. James Massengale (USCE) Kaweah Lemon Company E. J. Murphy
CO BO B7 V2 B8	4957 4999-03 5040 5067 5074	Lindsay Livingston 5 W Logan Meadow Lone Pine Cottonwood PH Lone Tree Canyon	WB S WB WB	Tulare Merced Madera Inyo San Joaquin	395 112 3400 3790 420	36 37 37 36 37	11 22 20 27 37	119 120 119 118 121	04 48 19 03 23	1913 1952 1948 1940 1933	Frank De Chaine E & J Gallo Winery Rch. See Mammoth Pool LA Dept. Wtr. & Power Edward C. Gerlach
B3 C6 V2 B0 B0	5078 5098 5111-09 5116 5117	Long Barn Exp. Station Loraine LA Aqueduct Intake Los Banos 5 S Los Banos Field Sta.	WB WB	Tuolumne Kern Inyo Merced Merced	5200 2720 3841 175 160	38 35 36 36 37	11 18 58 59 01	120 118 118 120 120	01 26 12 51 54	1960 1941 1919 1948 1956	Closed February 1964. Charles W. Poole LA Dept. Wtr. & Power H. G. Fawcett U.S. Bur. Reclamation
B0 B8 C0 C1 B4	5118 5119 5151 5155-51 5160	Los Banos Los Banos Arburua Ranch Lost Hills Lower Big Creek Lower Kibbey Ridge	WB WB WB	Merced Merced Kern Fresno Tuolumne	125 860 285 1078 6500	37 36 35 36 38	03 53 37 55 01	120 120 119 119 119	51 56 41 15 53	1873 1932 1912 1960 1948	Roger C. Rice Arburua Ranch Kern Co. Fstry & F.D. U.S. Forest Service Hetch Hetchy Wtr. Sup.
B6 B0 B0 C0 V2	5 202 5 233 5 233 - 03 5 257 5 284	Lushmeadows Ranch Madera Madera I. D. Magunden Mammoth Pass	WB S	Mariposa Madera Madera Kern Mono	3215 268 263 440 9380	37 36 36 35 37	29 58 55 22 37	119 120 120 118 119	50 04 02 55 02	1959 1899 1964 1927 1947	F. L. Raby Calif. Div. Forestry Madera Irrig. Dist. So. Calif. Edison Co. LA Dept. Wtr. & Power
B7 B0 B0 C7 C7	5288 5297-01 5297-02 5338 5338-01	Mammoth Pool Manteca No. 2 Manteca SP Maricopa Maricopa FS	S WB	Madera San Joaquin San Joaquin Kern Kern	3390 46 42 685 885	37 37 37 35 35	21 48 48 05 04	119 121 121 119 119	19 12 13 23 24	1948 1930 1935 1911 1958	So. Calif. Edison Co. Spreckles Sugar Co. Southern Pacific Co. Signal Oil & Gas Co. Kern County Fire Dept.
B5 B5 B6 B5 B5	5346 5346-01 5346-04 5348 5352	Mariposa Mariposa Reynolds Mariposa 8 ESE Mariposa Circle 9 Rch. Mariposa RS	WB	Mariposa Mariposa Mariposa Mariposa Mariposa	2011 2000 2780 3536 2100	37 37 37 37 37	29 29 27 33 30	119 119 119 119 119	58 58 50 51 59	1909 1958 1952 1957 1957	Mrs. Gabrielle Wilson E. F. Reynolds D. A. Boyce Miss D. D. Sevedge Calif. Div. Forestry
C7 B4 B0 B0 B5	5372-01 5400 5408-80 5418-80 5460	Martinez Spring Mather Mattos Ranch Maze Bridge 2 S McDiermid Sta.	WB	Fresno Tuolumne Merced Stanislaus Mariposa	1875 4515 170 35 2990	36 37 36 37 37	20 53 59 37 43	120 119 120 121 120	25 51 51 13 06	1959 1930 1961 1958 1959	V. Ciesielski City of San Francisco Bobbie Mattos Dept. Water Resources Dale Goodner
C7 B7 B3 B0 C0	5480-01 5496 5511 5526 5526-04	McKittrick FS Meadow Lake Melones Dam Mendota 1 NNW Mendota Murietta Ranch	WB	Kern Fresno Tuolumne Fresno Fresno	1051 4480 900 172 253	35 37 37 36 36	18 05 57 46 39	119 119 120 120 120	37 26 31 23 27	1956 1948 1955 1941 1958	Kern County Fire Dept. Radio Station KRFM Oakdale Irrig. Dist. Henry E. Schreiner Mrs. R. Truelove
BO CO CO BO BO	5528 5529 5530 5532 5532-01	Mendota Dam Mendota Halfway Pump Mendota VDL Farms Merced Fire Station 2 Merced SP	WB WB	Fresno Fresno Fresno Merced Merced	166 444 230 169 170	36 36 36 37 37	47 28 45 18 18	120 120 120 120 120	22 23 28 29 29	1873 1956 1948 1872 1872	Frank F. Moitoza Tidewater Oil Co. Vista Del Llano Farms City of Merced Southern Pacific Co.
BO BO BO B8 C3	5532-03 5534 5535 5550 5669	Merced 5 SE Merced Fancher Ranch Merced 2 Mercey Hot Springs Milo 5 NE	WB WB	Merced Merced Merced Fresno Tulare	198 212 168 1165 3400	37 37 37 36 36	16 18 19 42 17	120 120 120 120 120	23 21 29 52 46	1959 1920 1938 1932 1957	Dept. Water Resources Calif. Packing Corp. Merced Irrig. Dist. Horace C. Swatzel Mrs. Ethel Walker
87 C2 C2 C1 B4	5677-80 5680 5708 5723 5735	Minarets RS Mineral King Miramonte Honor Camp Mitchell Meadow Moccasin	s s	Madera Tulare Fresno Fresno Tuolumne	5180 7975 3005 9700 950	37 36 36 36 36 37	25 26 40 45 49	119 118 119 118 120	21 35 05 43 18	1962 1956 1957 1957 1935	U.S. Forest Service Corps of Engineers Calif. Div. Forestry Corps of Engineers Hetch Hetchy Wtr. Sup.
BO BO BO V8 V8	5738 5740 5741 5756 5758	Modesto Modesto KTRB Modesto 2 Mojave Mojave 2 ESE	WB WB WB	Stanislaus Stanislaus Stanislaus Kern Kern	91 93 92 2735 2680	37 37 37 35 35	39 40 38 03 02	121 120 121 118 118	00 59 00 10 09	1926 1959 1942 1947 1963	Modesto Irrig. Dist. Clifford Price City of Modesto Kern County Fire Dept. KDOL Radio Station

TABLE A-1 (Cont.)

age	Alpha			6	F	Lo	ıt	Lo	ng.	Record	Observer
Drainage Basin	Order Number	Station Name		County	Elev	Oeg	Min,	Oeg	Mın.	8egan	Coserver
C5 C0 C3 C1 V8	5777 5822-80 5893 6122	Monache Meadows Moody Ranch Mountain Home 2 Mountain Rest FFS Neenach	s s wb	Tulare Kern Tulare Fresno Los Angeles	7900 405 5360 4100 2890	36 35 36 37 34	13 06 14 03 43	118 118 118 119 118	10 58 43 22 35	1950 1963 1962 1960 1931	Corps of Engineers Kern County Land Co. Corps of Engineers U.S. Forest Service LA Dept. Wtr. & Power
BO BO CO B7 BO	6168 6168-01 6230-50 6252 6303	Newman 2 NW Newman 1 SE North Belridge North Fork Ranger Sta. Oakdale	WB WB	Stanislaus Merced Kern Madera Stanislaus	108 80 630 2630 155	37 37 35 37 37	21 18 33 14 46	121 121 119 119 120	03 00 47 30 51	1899 1960 1953 1904 1880	Richard A. Smith Dept. Water Resources Belridge Oil Co. U.S. Forest Service A. L. Gilbert Co.
BO B6 CO C7 C5	6305 6321-80 6393 6395 6462	Oakdale Woodward Dam Oakhurst Oilfields FFS Oilfields Joaquin Ridge Onyx		Stanislaus Madera Fresno Fresno Kern	215 2250 950 3620 2750	37 37 36 36 36	52 20 15 18 42	120 119 120 120 118	52 39 19 24 13	1918 1961 1952 1949 1962	S. San Joaquin I. D. Oakhurst School Gene Martin U.S. Weather Bureau Corps of Engineers
CO BO B5 B8 CO	6467 6490 6552 6583 6651	Orange Cove Orestimba Ostrander Lake Pacheco Pass Paloma Ranch	s	Fresno Stanislaus Mariposa Merced Kern	431 110 8600 880 2 90	36 37 37 37 35	37 22 38 04 11	119 121 119 121 119	18 04 33 11	1931 1896 1947 1949 1957	Orange Cove Cit. Assn. Central Calif. I. D. U.S. Natl. Park Serv. U.S. Bur. Reclamation Miller & Lux, Inc.
B8 B8 B0 B0 B4	6675 6676 6677 6679–05 6688	Panoche Panoche 2 W Panoche Creek Panoche Water Dist. Paradise Meadow	WB WB S	San Benito San Benito Fresno Fresno Tuolumne	1265 1320 370 183 7700	36 36 36 36 38	36 37 41 53 03	120 120 120 120 119	50 53 35 44 40	1922 1957 1963 1949 1948	
D3 D3 B0 C6 C2	6703 6706 6746-01 6754 6767	Parkfield Parkfield 7 NNW Patterson Pattiway Pear Lake	WB WB	Monterey Monterey Stanislaus Kern Tulare	1482 3590 105 3868 9700	35 36 37 34 36	53 00 28 56 36	120 120 121 119 118	26 28 07 23 40	1938 1948 1912 1915 1956	Herbert H. Durham Raulston P. Morrison Yancey Lumber Co. Hudson Ranch Corps of Engineers
B8 C1 B3 C1 C1	6847 6857 6893 6895 6902	Pfeiffer Ranch Piedra Pinecrest Strawberry Pine Flat Dam Pinehurst	WB	Merced Fresno Tuolumne Fresno Fresno	1615 580 5700 610 4050	36 36 38 36 36	53 48 12 49 42	121 119 119 119 119	08 23 59 20 01	1954 1917 1922 1949 1954	P. G. & E. Company
B7 C0 C0 C0 C5	6959-80 7055-80 7077 7079 7093	Placer G. S. Pond 1 N Porterville Porterville 3 W Portuguese Meadow	WB S	Madera Kern Tulare Tulare Tulare	3670 268 393 413 7000	37 35 36 36 35	22 44 04 05 48	119 119 119 119 118	22 19 01 04 34	1962 1962 1893 1958 1953	U.S. Forest Service Dept. Water Resources John H. Daybell Porterville I. D. Corps of Engineers
C4 C0 B0 B4 D2	7096 7098-11 7099-11 7145 7150	Posey 3 E Poso Ranch Poso Canal Co. Hdq. Priest Priest Valley	WB WB	Tulare Kern Fresno Tuolumne Monterey	4920 370 125 2245 2300	35 35 36 37 36	48 37 59 49	118 119 120 120 120	38 16 30 16 42	1954 1913 1928 1898	Panorama Height Lodge Kern County Land Co. Central Calif. I. D. Hetch Hetchy Wtr. Sup. Nelson H. Palmer
B6 B6	7179 7259 7270-01 7272-01 7273		s	Tulare Fresno Madera Mariposa Mariposa	7200 9900 635 1640 1210	36 37 37	07 59 11 22 21	118	43 56 54	1940	Corps of Engineers Sam Wood Fred Bunning Jr.
	7276 7288 7354-80 7447-80 7460	Raymond 12 NNE Rector Reedley MVFD Ripon Riverdale		Mariposa Tulare Fresno San Joaquin Fresno	345 65	37 36 36 37 36	37 45	119 119 121	50 15 27 07 52	1963	So. Calif. Edison Co. Mid-Valley Fire Dist. Arthur N. Clemens
	7510 7528 7555 7560 7579	Rock Creek Rocky Village Rosedale Rose Marie Meadow Round Meadow		Inyo Mariposa Kern Fresno Tulare	9700 570 380 10000 9000	37 35 37	27 22 26 19 58	120 119 118	08 52	1957 1914 1953	W. R. Down Kern County Land Co. So. Calif. Edison Co.
B4 D1 Z2 C0 D1		Saches Springs San Benito Sandberg WB San Emigdio Ranch San Felipe Highway Sta.		San Benito Los Angeles Kern	7900 1355 4517 1450 365	36 34 35	31 45 00	121 118	12	1936 1933 1901	John M. Shields U. S. Weather Bureau

		SAN JOAQUIN DISTRICT									
nage sin	Alpha Order	Station Name		County	Elev.	Lo	ıt.	Lor	ıg.	Record	Observer
Orainage Basin	Number	atonon Nume		County	Liev.	Oeg.	Min.	Oeg	Min.	Begon	00361761
CO CO CO B7 CO	7800-02 7800-03 7816 7817 7819-80	Sanger 1 NE Sanger RS San Joaquin San Joaquin Exp. Range San Joaquin MVFD	WB	Fresno Fresno Fresno Madera Fresno	375 375 174 1100 174	36 36 36 37 36	44 44 36 06 36	119 119 120 119 120	33 33 11 44 11	1959 1958 1919 1934 1962	James S. Minter Calif. Div. Forestry James Irrig. Dist. U.S. Forest Service Mid-Valley Fire Dist.
BO B8 BO CO D7	7836-01 7846 7855 7987-80 8259-02	San Juan Hdqrs. M & L San Luis Dam San Luis Canal Co. Hdq. Santiago Ranch M & L Simmler R. W. Cooper	WB	Merced Merced Merced Kern San Luis Obpo.	105 277 106 437 2040	37 37 37 35 35	05 03 03 06 24	120 121 120 119 120	39 04 40 13 06	1947 1963 1944 1963 1936	Miller & Lux, Inc. U.S. Bur. Reclamation San Luis Canal Co. Mr. Leo Destranpe R. W. Cooper
D7 D2 C6 B5 C1	8259-04 8276 8304 8318 8323-01	Simmler Maint. Sta. Slack Canyon Smith Flat Snow Flat Soaproot Saddle	WB Ss S	San Luis Obpo. Monterey Kern Mariposa Fresno	2030 1730 3800 8700 3830	35 36 34 37 37	21 05 54 50 02	119 120 119 119 119	59 40 21 30 15	1946 1955 1960 1947 1960	Div. of Highways Calif. Div. Forestry B. J. Snedden Dept. Water Resources U.S. Forest Service
D7 B4 G9 CO BO	8326 8353 8355 8375-50 8378	Soda Lake Sonora RS Sonora Junction South Belridge South Dos Palos	WB WB	San Luis Obpo. Tuolumne Mono Kern Merced	1960 1749 6886 575 116	35 37 38 35 36	15 59 21 27 58	119 120 119 119 120	55 23 27 43 39	1925 1887 1959 1938 1938	Dewey Werling Calif. Div. Forestry Div. of Highways Belridge Oil Co. Southern Pacific Co.
B5 V2 C0 B3 C3	8380 8406 8407-11 8450 8455	So. Entrance Yosemite NP South Lake South Lake Farms Hdq. Spring Gap Forebay Springville 7 ENE	WB S	Mariposa Inyo Kings Tuolumne Tulare	5120 9580 190 4900 2470	37 37 35 38 36	30 11 56 10 10	119 118 119 120 118	38 34 39 06 42	1941 1948 1959 1921 1953	U.S. Natl. Park Serv. Calif. Elec. Power Co. South Lake Farms P. G. & E. Company Elmer A. Sutton
C3 C3 C2 B3 C1	8460 8463 8474-80 8499 8510	Springville RS Springville Tule Hdwks. Squaw Valley Fr. Stanislaus Power House State Lakes	WB WB WB	Tulare Tulare Fresno Tuolumne Fresno	1050 4070 1750 1130 10300	36 36 36 38 36	08 12 45 08 56	118 118 119 120 118	48 39 13 22 35	1924 1907 1961 1955	U.S. Forest Service P. G. & E. Company Edgar Young P. G. & E. Company Corps of Engineers
C0 C3 C1 C7 C7	8520 8620 8643 8752 8755	Stevenson Dist. Sec. 33 Success Dam Summit Meadow Taft Taft KTKR Radio	S WB	Tulare Tulare Fresno Kern Kern	212 590 6240 1025 1030	36 36 37 35 35	03 03 05 09	119 118 119 119 119	30 55 13 28 28	1951 1959 1960 1940 1954	J. G. Boswell Co. Corps of Engineers Dept. Water Resources Kern Co. Fstry & F.D. G. K. Mann
C6 C6 C0 C2 C7	8826 8832 8839 8868 8893-80	Tehachapi Tehachapi RS Tejon Rancho Terminus Dam Thirty-Two Corral	WB WB WB	Kern Kern Kern Tulare Fresno	3975 3975 1425 5 70 1700	35 35 35 36 36	08 08 02 25 19	118 118 118 119 120	27 27 45 00 22	1876 1940 1895 1959	Mrs. Anita Cowan Kern County Fire Dept. Tejon Ranch Company Corps of Engineers V. Ciesielski
C2 C2 C2 B0 B8	8912 8914 8917 8997 8999	Three Rivers 6 SE Three Rivers Edison PH 2 Three Rivers Edison PH 1 Tracy 2 SSE Tracy Carbona	WB WB WB WB	Tulare Tulare Tulare San Joaquin San Joaquin	2200 950 1140 105 140	36 36 36 37 37	22 28 28 43 42	118 118 118 121 121	51 53 52 25 25	1940 1909 1940 1951 1934	Glenn Baker So. Calif. Edison Co. So. Calif. Edison Co. Aage R. Tugel Banta Carbona Irr. Co.
C0 C1 C0 C0	9006 9011-80 9025 9051 9051-04	Tranquillity Glotz Traver 4 ESE Trimmer RS Tulare Tulare Dist. Sec. 27		Fresno Tulare Fresno Tulare Kings	165 285 736 293 179	36 36 36 36 36	38 26 54 13 05	120 119 119 119 119	14 24 17 20 48	1953 1962 1948 1919 1953	Ted Gromala Dept. Water Resources U.S. Forest Service So. Calif. Edison Co. J. G. Boswell Co.
CO C3 C3 C5 B3	9052 9059 9060 9061 9062	Tulefield Tule River Intake Tule River PH Tunnel RS Tullock Dam	WB S	Kern Tulare Tulare Tulare Calaveras	295 2450 1240 8950 515	35 36 36 36 37	09 10 08 22 53	119 118 118 118 120	01 42 47 17 36	1948 1910 1910 1945 1958	
B4 B0 B0 B0 C0	9063 9073 9073-01 9073-02 9145	Tuolumne Meadows Turlock Turlock 5 SW Turlock 8 WSW U. S. Cotton Field Sta.	S WB	Tuolumne Stanislaus Stanislaus Stanislaus Kern	8600 115 76 60 367	37 37 37 37 35	53 29 28 27 32	119 120 120 120 119	20 51 55 58 17	1947 1893 1958 1958 1922	Dept. Water Resources Carl A. Pearson Chatom Co. Ltd. Herbert Ellis U.S. Dept. Agriculture
B7 D1 B7 C0 C0	9162-80 9189 9301 9304 9367	Upper Chiquito Upper Tres Pinos Vermilion Valley Vestal Visalia	WB S WB	Madera San Benito Fresno Tulare Tulare	6800 2050 7520 500 354	37 36 37 35 36	30 38 22 50 20	119 121 118 119 119	24 02 59 05 18	1962 1940 1947 1920 1903	U.S. Forest Service Eldon Fancher So. Calif. Edison Co. So. Calif. Edison Co. Tulare Co. C. of C.

sın	Alpha Order	Station Name		County	Etev.	Lo	ot.	Lai	ng.	Record	Observer
Drainage Basin	Number	Station Name		County	Erev.	Oeg.	Min,	Oeg	Min.	Began	Observer
CO CO B5 C5 C0	9369 9452 9482 9512 9535	Visalia 4 E Wasco Wawona RS Weldon 1 WSW West Camp SLF	WB WB WB	Tulare Kern Mariposa Kern Kings	357 333 3965 2680 290	36 35 37 35 35	20 36 32 40 51	119 119 119 118 119	13 20 40 18 53	1959 1899 1934 1940 1959	J. V. Pimentel Kern Co. Fstry. & F.D. U.S. Natl. Park Serv. Vernon J. Blount South Lake Farms
B6 C0 B0 C5 C0	9556-80 9560 9565 9602 9614-81	Westfall RS Westhaven Westley Wet Meadow Wheeler Ridge LWU A-122	WB S	Madera Fresno Stanislaus Tulare Kern	4793 285 85 8950 1230	37 36 37 36 34	27 13 33 21 59	119 119 121 118 118	39 59 12 34 57	1958 1925 1928 1959 1963	U.S. Forest Service Boston Ranch Co. W. Stanislaus I. D. Corps of Engineers Dept. Water Resources
B6 C0 C1 C5 C1	9640-80 9670-80 9749 9754 9773	White Rock Preston Wilbur Ditch Wishon Res. Wofford Heights Woodchuck Meadow			984 210 6600 2700 9200	37 35 37 35 37	20 56 01 43 02	120 119 118 118 118	02 45 58 27 54	1950 1962 1958 1894 1955	Ray Preston South Lake Farms P. G. & E. Co. James H. Jorgensen Corps of Engineers
C4 B5	9805 9855	Woody Yosemite National Park	WB	Kern Mariposa	1630 3985	35 37	42 45	118 119	51 35	1956 1904	Kern Co. Fstry. & F.D. U.S. Natl. Park Serv.

WB - All or part of data published by U. S. Weather Bureau.
S - Storage gage - Data published by U. S. Weather Bureau.
Ss - Storage gage using standard rain gage.
Note - Data collected from all other stations by Department of Water Resources.

8.	Alpho					CAQUIN D			In ir	chea		_			
Orolno Bosir	Order Number	Station flame	Seasonal Tatal	July	Aug.	Sept.	Oct.	Nov	Dec.	Jan.	Feb.	Mgr.	Apr.	Moy	June
CO 86 CO C7 D6	0009 0049 0204 0215 0239	Academy Ahwahnee 2 NNW Angiola CD Annette Apache Camp HPD	10.53 19.89 5.94 5.99 9.78	.00 .00 .00	.02 .02 .05 .00	.20 .44 .55 .42	1.62 1.47 1.10 1.34 1.39	3.43 7.41 1.19 1.08 2.75	.87 .53 .23 .00	1.15 3.03 .66 1.59 1.24	.00 .00 .06 .00	1.98 3.33 1.21 .90 1.31	.81 1.64 .77 .20	.45 1.48 .12 .46 .39	.00 .54 T
C0 C0 C2 80 C2	0332 0332-02 0343 0373-80 0374	Arvin Prick Ash Mountain CD Atwater Craig Atwell S	6.34 6.30 17.76 8.76 30.00	.00 .00 .00	T .02 .13 .00	.99 1.20 .62 .21	.65 .76 1.45 1.57	1.65 1.51 5.06 2.59 July 26	.08 .15 .55 .28 1963 to	.51 .49 1.81 1.31 5 July 2	.42 .44 .31 .21 7, 1964	.69 .52 3.61 1.22	.63 .69 2.49 .56	.71 .50 1.50 .34	.01 .02 .23 .47
87 B7 C0 C7	0379 0381 0396-02 0399 0399-01	Auberry CO Auberry Valley Avenal Walden Avenal Orchard Rch. Avenal 8 SW	18.10 4.02 5.92 7.55	.00	.11 RE T .20	.36 .26 .40 .15	1.90 1.01 .80 1.11	.94 1.42 2.01	.46 .05 .04 .16	.92 1.40 2.03	T .08 T	3.45 .33 .92 1.07	1.73 .47 .56 39	.04 .10 .22	.34 T .00
C7 C2 B5 B5 C0	0399-02 0422 0425 0430 0440	Avenal 6 SSW Badger HPD Badger Paes S Bagby Bakerefield 1 W	6.71 24.25 16.21M 5.31	.00	.25 .DO	.30	1.00 - RB .75	1.58 4.99 April 28 5.24 1.08	.13 .67 3, 1963 .56	1.62 2.44 to April 4.23 .49	.14 .49 12, 196 .18 .32	.85 5.32 4 2.84 .45	1.40 1.21	.04 1.73 1.43 .17	.00 .07
C0 C1 C6 C1 B5	0442 0449 0466 0534 0570	Bakersfield WB Airport R CD Balch Power House HPD CO Ballinger Ss 8arton Flat S Bear Valley Trabucco	4.60 21.40 9.00 16.48 19.27	.00	T .02	.83 .56	.73 1.59	.94 6.51 July 22, 5.84	.08 .69 1963 to	.27 2.61 August 4.40	.41 .05 10, 196	.57 3.87 4 2.77	.56 2,29	.20 2.80	.01
B5 83 C2 B4 C0	0570-80 0573 0596 0617 0631	Bear Valley (R) Beardsley Dam Beartrap Meadow S Beehive Meadow S Bellevue	17.86 27.40 33.24 38.68 5.06	.00	.00	.16 .59	1.40 2.63 Sept.	5.49 7.81 July 22 ember 12 1.55	.36 .81 .1963 t .1963 t		.09 .21 5, 1964 ber 15,	3.18 2.98 1964 .50	1.18 2.01	1.57 2.44	.35 1.64
V2 B0 B7 B7	0684 0688-02 0755 0755-01 0755-02	Benton Insp. Sta. Berenda 2 N Big Creek PH No. 1 b Big Creek PH No. 2 b Big Creek PH No. 3 b	4.60 - 24.25 21.14 21.10	.00	.66 .00 .09 .02	.68 .17 .49 .63	.22 1.40 1.48 1.57 1.89	.37 3.02 8.17 7.63 7.01	.07 .49 .46 .42	.58 RE 2.55 2.23 2.95	.15 .03 .05	.07 3.66 3.14 3.49	.86 2.65 1.66 1.55	1.06 3.62 3.15 1.75	.03 .93 .66
B7 V2 V2 V2 V2 C1	0755-05 0767 0776 0819 0821	Big Creek PH No. 8 b Big Pine Creek S Big Pine PH No. 3 Bishop Creek Intake 2 (R) CD Bishop Pass Snow Course S	19.29 12.10 3.46 7.44 17.42	.00	.04 .40 .80	.83 .47 .78	1.33 Oc .08 .81 ctober 1	6.68 tober 23 .30 1.10	.44 1963 t .04 .20 August	2.39 o Octobe .88 1.00 25, 196	.02	3.24 64 .11 .65 ontinued	1.36 .40 .70	.76 1.00	.49 .00 .10
V2 C6 C0 C1 C1	0824 0825-01 0875 0880~80 1069-01	8ishop Union Carbide CO 8itter Creek Ss Blackwella Corner CD 8lasingame 8retz Hill	6.58E 2.11E 3:89 14.18 24.14	.00	.22 .12 .03 .00	1.34 .32 .38 .68	.72 .88 1.52 1.57	1.28 .81 4.51 10.36	.05 .03 .59	.24 .62 1.83 2.30	.05 .05 T	.69 .13 3.79 3.45	.52 .54 .48 2.35	1.34 .39 .98 2.68	.13E .00 .07 .22
D1 CD CD CO CO	1170 1174 1175 1180-80 1199-01	Buena Vista Rch. Buena Vista Rch. Buena Vista Rch. M & L Buena Vista Rch. H & L 2 Burgese Corrals Ss	4.36 3.98 4.92	.00 .00 .00	.00 T .00 .00	- .56 .76 1.12 1.02	1.52 .78 .94 1.10 1.80	- 1.03 .98 1.03 2.89	.53 .13 .00 .00	2.38 .31 .35 .40 .82	.31 .07 .04 .05	2.74 .82 .61 .79 .46	.43 .08 .04	.54 .23 .22 .39 .00E	.49 .00 .00 .00
CD 82 83 C3 C3	1244 1277 1280 1300 1425	Buttonwillow CD Calaveras Big Trees CD Calaveras Ranger Sta. HPD Calif, Hot Springs RS HPD Camp Nelson	2.90 45.01 36.06 19.64	.00 .00 .00 .00	T .00 .00 .42 .64	.31 .50 .36 .47 1.29	.95 3.87 2.99 2.12 1.76	.52 13.39 11.29 4.30 5.49	.04 1.15 .73 .92 2.77	.36 9.12 7.51 1.96	.04 .63 .48 .79 1.30	.33 7.10 6.41 *	.25 2.93 1.36 V6.44 1.86	.10 3.99 3.65 2.02 2.07	.00 2.33 1.28 .20 .40
CO V7 CO CO BD	1479 1488 1490 1557 1580	Canfield Ranch Cantil CO Cantua Ranch Caruthers 4 E Castle AFB	4.56 3.86 6.77 6.80 7.78	.00	T .29 .00 .09	.68 1.77 .00 .24 .26	.80 .82 1.99 1.02 1.47	1.30 .61 1.70 1.92 2.42	.04 .10 .00 .16	.22 .13 1.10 .61 1.00	.18 .00 .00 T	.66 .10 1.43 1.48 1.57	.49 .00 .50 .42 .28	.19 .04 .00 .82 .20	.00 .00 .05 .04
88 86 85 86 86	1583 1588 1588-03 1590 1591	Castle Rock Rad. Lab. (R) Catheys Vly. Bull Run Rch CD Catheys Vly. 3 NNW Catheys Vly. 5awyer Rch. Catheys Vly. Stonehouse	7.68 14.51 14.45 15.16 14.17	.00 .00 .00	.00	.13 .19 .00 .15	.98 1.50 1.10 1.37 1.50	1.86 4.45 5.78 4.70 4.29	.15 .28 .00 .40 .36	2.60 2.34 2.50 3.02 1.82	.04 .13 .00 .06	.79 2.81 2.22 2.57 2.91	.25 1.23 1.30 1.22 1.22	1.23 1.55 1.32 1.34	.56 .35 .00 .35 .46
B4 B7 D3 C7 Z2	1697 1737 1743 1743-02 1754	Cherry Vailey Oam CD Chiquito Creek S Cholame Hatch Rch. HPD Cholame Twisselman Chuchupate RS HPD	32.51	.00	.00 .06 .00	.80 .66 .41 1.46	2.30 1.12 1.34 2.47	10.12 July 16 .97 1.11	.78 .1963 t .00 .00	7.77 a July 1 1.48 1.61 1.26	.16 3. 1964 .06 .07 .46	1.00 1.18	2.56 .32 .28 V2.96	2.95 .40 .53 .72	.00 .00 .00
C0 B7 C0 C7 CD	1770-80 1844 1864 1864-02 1867	Citrus Clover Meadows GS S Coalinga CO Coalinga Roberts Rch. Coalinga 1 SE HPD	6.16 31.72 5.10 8.96 4.79	.00	.01 .00	1.09 .17 .00 .11	.87 .93 1.42 .94	1.27 July 16 1.41 3.17 1.63	.04 , 1963 t .09 .13 .06	.52 o July 1 1.46 2.62 1.25	3, 1964 .01 .00	1.18 .93 .90 .77	.72 .02 .72 .00	.37 .07 .00 .03	.00 T
C7 C0 C0 B6 C0	1869 1870-80 1871-80 1878 1885	Coalinga 14 WNW CD Coalinga CDF Coalinga Feed Yards Inc. Coarsegold Coit Ranch Hdq.	9.50 4.54 - 20.10 5.08	.00	.11 T	.17 .12 .43 .11	1.39 .71 2.16 .92	3.23 1.66 6.76 1.51	.10 .00	2.62 1.34 2.99 .43	.00 .00	1.36 .63 RB 3.46	.33 .03 .30 2.03 .48	.19 .03 .00 1.46 .21	.00 .02 .00 .44
84 B3 C0 C0	1904 2003 2012 2013 2013-05	Cold Springs Copperopolis Corcoran Irrig. Dist. HPD CD Corcoran El Rico 1 Corcoran El Rico 33	19.29E 5.29 5.45 5.82	.00 .00E .00	.30 .00E .00 .06	.68 .23 .45 .51	2.88 2.30 1.04 1.15 1.40	6.15 .82 .92 1.33	.20 .15 .10	3.45 .75 .86 .87	.41 .12 .08 .13	2.69 .60 .95	1.09 1.22 .53	1.77 .14 .29 .05	1.00 .00 .00
V2 V2 85 B5 C5	2069 2071 2072 2072-05 2114	Cottonwood Creek Cottonwood Gatea Coulterville FFS Coulterville 5 B Crabtree Meadow S	10.15 2.58 20.36 13.62	.00 .00 T	.53 .00 T	.56 .24 .25	1.70	.21 6.30 - ember 21	.06 .54	o Octobe .56 3.64	.00	1964 .20 4.19 - 1964	1.00	.12 2.25 -	.00
B7 V2 C6 D6 D6	2122 2181 2222-80 2236 2248	Crane Valley PH Crowley Lake Cumminge Valley 2 Cuyama CD Cuyama Ranch HPD	21.71 5.80 13.24 5.96	.00	.00 .43 .70 .04	.45 .65 1.62 .86	1.69 .63 .95 1.09	9.13 .77 2.44 .87	.59 .25 .72 .02	2.05 1.18 1.06 .86	.00 .12 .65 .13	4.11 .45 2.19 .44 .71	1.95 .56 1.39 .28	1.05 .74 1.42 .37	.69 .02 .10 .00
B6 C0 B8 B0 B0	2288 2346 2369 2375 2389	Daulton Oclano Del Puerto Road Camp (R) CD Delta Ranch Denair CD	5.95E	.00 .00 .00	.00 .03 .00 .00	.24 .88 .25 .10	1.40 1.08 1.07 1.31 1.62	4.65 .82 2.27 1.62E 1.46	.40 .23 T .10	1.32 -53 2.56 .80 .88	.00 .17 T .05	3.70 .58 .96 1.15 RE	.90 .93 .20 .44 See 1	.25 .17 T .10 Denair 3	.40 .00 .50 .28
			ļ				L								

PRECIPITATION DATA FOR 1963-64 SAN JOAOUIN DISTRICT

1	Alpha								In in	ches					
Drainog Basin	Order Number	Station Name	Secsonsi Total	July	Aug.	Sept.	Oct.	Nov	Dec.	Jan.	Feb.	Mgr.	Apr.	May	June
BD CO CD CO C7	2389 2408 2436 2440-01 2464	Denair 3 NNE CO Devils Den SLF DiGiorgio Dinuba Alta I. D. Domengine Ranch	7.08 4.59 6.42 7.79 6.56	.00	.08 T .02	.27 1.17 .26	1.01 .20 1.41 .80	1.03 1.45 2.04 2.28	T .05 .24	.89 .50 1.20 1.14	RB .10 .54 .10 T	1.33 .30 .73 1.58 1.56	.47 .91 1.24 .48 .23	.63 T .51 .45	.45 .00 .03 .01
C7 B4 C5 85 B4	2464-01 2473 2492 2539 2609	Domengine Spring Don Pedro Reservoir Doublebunk Meadow S Dudleys CD Early Intake PH	7.908 16.73 31.03 26.06 26.09	.00 .00	.00E .00	.00£ .25 .35 .35	1.17 1.72 1.98 1.85	2.63 4.98 July 10 9.07 7.22	.15 .63 1963 to .65 .72	1.60 2.80 June 23 5.12 4.71	.30 .35 1, 1964 .11 .09	2.05 3.19 4.50 4.30	.00E .78	.00E 1.53 1.84 2.85	.00E .50 .95 1.70
C1 CO VD 80 B0	2653 2752-80 2756 2820 2860	East Vidette Headow S Eighth Standard Ranch Ellery Lake CD El Solyo Rch. Escalon Swanson	15.16 5.51 18.89 6.18 10.00	.00	.00 .60 .00	.99 1.10 .13 .22	.80 1.45 1.24 1.82	1.24 5.04 1.40 3.27	. 1963 .03 .70 .05	.0 August .39 2,90 1,95 1.86	.10 .18 .01	1.03 2.85 .84 1.41	.63 1.41 .15 .40	.30 1.61 .41 .31	.00 1.05 .00 .56
80 85 C0 80 C7	2909 2920 2922 2968 3005	Rugene (R) Exchequer Reservoir CD Exeter Fauver Ranch HPD Fancher Rch. Camp 3 Fellows	10.43 14.07 - 9.18 4.61	.00 .00 .00	.00 .00 .09 .00	.10 .14 .29 .26	1.84 1.59 1.68 1.58	3.51 3.70 1.85 2.66 1.53	.13 .31 .18 .19	1.60 2.76 - 1.09 .81	.07 .17 .35 .22	1.21 2.65 2.30 1.45 .53	.81 1.18 .92 .93	.74 1.40 .97 .30	.42 .17 .05 .50
B0 CD C0 B7 C0	3063 3083 3084 3093 3257	Firebaugh 9 W Five Points 5 SSW Five Points Diener Florence Lake Fresno WBAP (R) CD	3.76 19.14 6.76	.00	.00 T .84	- .07 .05 .79 .15	- .84 .53 1.58 .95	1.64 1.22 5.52 2.54	.09 .11 .53	.53 .84 .68 2.53 .66	.00 .00 .00 .25	1.00 1.22 1.16 3.11 1.27	.29 T .01 2.38 .50	.19 .03 T 1.38 .35	.15 T T .23
CD B7 V0 E5 C2	3258-80 3261 3369 3387 3397	Fresno Co. Westside FD Friant Government Camp CD Gem Lake CD Gerber Ranch CD Giant Forest HPD CD	11.54	- .00 .00 .00	RB .00 .34 .01 .32	.07 .33 1.58 .24 1.26	.99 1.42 .75 .85 1.31	1.77 2.99 3.52 3.68 6.89	.04 .35 .50 .25	1.14 .92 2.58 4.36 4.56	.08 .08 .30 .12	1.00 1.34 1.95 1.18 6.89	.14 .80 1.89 .25 4.47	.01 .48 1.63 .24 2.67	.01 .00 1.00 .36 1.06
D1 C0 C4 C4 C0	3422 3428-01 3463 3465 3512	Gilroy 14 ENE CD Gin Yard Glennville CD Glennville Fulton RS Gosford Feed Mill	12.71 4.17 18.57	.00 .00 .00	.00 .00 .44 .31	.25 .66 1.54	1.17 .88 2.26 1.70 RE	4.57 1.42 3.93 4.04	.11 .00 .56 .55	3.85 .43 1.92 1.51	.07 .03 .63 .61	1.56 .46 3.45 3.85	.47 .05 1.95 1.61	.34 .24 1.89 1.97	.32 .00 T
B4 C1 C1	3529 3548 3551	Grace Headow 5 Granite Basin S Grant Grove HPD CD	34.27 28.64 33.16	.00	.25	1,78	2.41	ember 16, August 21 8.76	1.28	4.33	.28	7.19	2.73	3.40	.75
B5 B4	3612-03 3669	Green Valley Rch. Groveland 2 HPD Groveland Ranger Sts. CD		.00	.00	.45 .39	2.38 1.74 1.86	10.40 8.58 8.53	.70 .64	5.46 3.71 6.63	.02	6.15 3.86 3.64	2.06 1.39 2.06	2.55 2.64 1.91	1.15
B4 B0 B0 B0 B0	3672 3690-02 3690-04 3694 3698-80	Gustine 5 SW Gustine Snyder Gustine Avoset Gustine 7 SSW	7.18 5.88 6.16	.0D .00 .00 T	.00	.26 .24 .10	1.31 1.21 1.07 1.29	2.12 2.20 1.72 1.82	.02 .05 .03 .02	1.54 1.65 1.34 1.29	.04 .00 .00 T	1.11 .92 1.04 .90	.51 .36 .02 .13	.01 .00 .18 .03	.48 .55 .38
V7 C0 C1 D1	3710 3747 3811-11 3925 3928	Haiwee CD Hanford CD Haslett Basin Hernandez 2 NW CD Hernandez 7 SE HPO	18.23 10.42	.00	1.42 .00 .00 .02 .10	1.37 .33 1.04 .19	1.12 .75 1.63 1.26 1.21	.51 1.23 6.36 3.75 4.67	.01 .29 .50 .21	.20 .61 1.72 2.27 2.94	.02 .00 .06	.08 .94 2.86 1.81 2.25	.08 .64 1.80 .24	.23 .20 2.07 .43 .51	.00 .00 .25 .18
B4 B6 B3 BD C2	3939 3948 3952 3981 4012	Hetch Hetchy HPD CD Hidden Valley Highland Lakes S Hilmar Hockett Meadow S	24.23 23.24 28.80 6.42 26.56	.00	.11 T	.64	2.23 1.98 1.42	7.09 8.33 July 23: 1.64 August 2	.30	3.38 4.03 July 1 1.76 O July	.11	3.73 3.99 .78	2.19 1.47 .27	2.65 1.24 .00	1.43 .57
CO CD CD B5 B5	4061-01 4061-02 4061-03 4101-80 4102-01	Homeland Dist. Sec. 9 Homeland Dist. Sec. 17 Homeland Dist. Sec. 34 Hornitoa Bridge Cafe Hornitos Erickson Rch.	6.02 4.67 5.54 - 14.50	.00	.00	.44 .38 .42 -	1.25 1.52 1.41 1.09 1.48	1.34 1.27 1.01 3.76 4.81	.21 .13 .11 -	.87 .99 .90 1.93 2.75	.08 .14 .19 -	.93 .24 .76 2.35 2.25	.81 .00 .69 .85	.09 .00 .05 1.13 1.21	.00 .00 .00 RE .20
B5 B5 C3 84 B3	4103 4104-80 4120 4148 4170	Hornitos Giles Rch. Hornitos USCE (R) Hossack (Radio) S Huckleberry Lake S Hunters Dam	32.88	.00	T -	.18	1.74 1.61 Sept 3.09	4.21 3.65 July 10 ember 20 11.55	.26 .31 . 1963 tr . 1963 tr	1.89 1.72 June 2 Septem 7.92	.27 .27 4, 1964 ber 20,	2.35 2.25 1964 6.24	.39 .57	1.13 .86M	1.36
87 88 V2 V2 B5	4176 4204 4232 4235 4246	Huntington Lake HPE Idria (R) CE Independence CE Independence Onion Vly HPE Indian Gulch	10.06	.00	.13 .07 1.39 1.60	1.15 .28 .76 1.85 .23	1.74 1.08 .16 - 1.54	8.96 3.86 .03 - 3.91	1.05 .08 T .59	4.40 2.60 .14 2.88 2.29	.39 .07 T .20	5.76 1.59 .02 2.77 1.95	2.45 .27 .07 1.13 1.08	4.08 .14 .35 1.89	1.01 .02 .00 .35
V7 C5 B5 C5	4278 4303 4369 4389 4442	Inyokern CD Isabella Dam Jerseydale GS Johnsondale CD Kaiser Meadows S	9.94 29.33	.00	.30 1.16 .00 .85	.74 1.16 .39 1.27	.60 2.02 1.88 1.63	.30 1.20 10.47 3.73 June 25	.01 .46 1.10 .70 1963 to	.34 .97 3.53 - June 2	.00 .07 .02 -	.09 1.68 6.27 3.68	T .50 2.27 1.69	.00 .69 2.12 .90	.00 .03 1.28 .22
C2 C6 98 CD C5	4452 4463 4508 4510-02 4513	Kaweah PH 3 Keene Kerlinger Kerman 2 ESE Kern Canyon	14.58	.00	.18 .44 .00 .00	.63 1.33 .21 .21 1.76	1.39 .89 .85 1.22 1.03	5.09 2.39 1.15 2.21 2.10	.55 .97 .18 .31	1.80 1.51 1.63 .58	.36 .66 .03 .04	3.69 3.06 .31 1.77	1.06 1.95 .11 .21 .73	1.40 1.30 .15 .28	.15 .08 .64 .14
C5 C5 C5 C5	451B 4519 4520 4523 4527-01	Kern River Intake No. 3 CC Kern River Intake 3 SCE 1 Kern River PH No. 1 CI Kern River PH No. 3 CI Kernville RS	12.94 12.6D	.00	.53 .54 .03 .24	1.33 1.12 2.00 1.29 1.36	1.69 1.77 1.30 1.90 1.87	1.81 2.14 2.60 1.11 1.24	.79 .42 .19 .43	2.14 1.78 1.30 1.48 1.19	.29 T 1.12 .09	3.23 3.46 1.75 2.40 2.25	.97 .89 1.37 .48	.73 .71 .94 .77	.11 .11 .00 .07
CO CD CD BD B3	4534 4535 4536 4590 4664	Kettleman City 1 S5W CI Kettleman Hills Kettleman Station CI Knights Ferry 2 SE CI Lake Alpine S	3.92 4.51 14.14	.00	.38 .15 .13 .00	.15 .21 .15 .11	1.16 1.01 1.02 1.73	.65 .81 .85 3.96 July 23	.12 .08 .18 .20	.76 .68 .85 3.18 July 1	.06 .05 .13 .21	.45 .89 .81 1.94	.40 .01 .38 1.34	.00 .03 .01 1.02	.00 .00 .00 .45
84 V2 03 C6 B0	4679 4705 4767 4863 4884-05	Lake Eleanor Stake Sabrina Stake Sabrina Stake Sabrina Stake Sabrina HPI Lebec CI	11.40	.00	.00	.64 1.88 .08	1.14 2.31 1.62	June 30 June 30 .74 4.26 2.27	, 1963 t , 1963 t .00 .33	June 3 June 3 1.40 1.28	0, 1964 0, 1964 1, 15 1, 64 1, 17	1.49 2.33 1.84	.09 .23 .78	. 26 . 54 . 45	.00
80 B6 C2 B0 C0	4884 4883 4890 4953-02 4957	Le Grand CCI Le Grand Preston Rch. (R: Lemon Cove CI Linden Fire Station Lindsay CI	11.89	.00	.00 .23 .00 .14	.08 .34 .27 .41	1.40 1.56 1.44 1.84	2.70 See 2.45 3.64 1.93	.27 White F .40 .16 .43	.83 ock Pres 1.05 2.09	.08 ton .39 .15	2.30 2.44 1.75 1.78	.77 1.47 .55 .86	.30 1.48 .86 .81	.38 .08 .86 T

8 s	Alpha			Seasonal						In :	inchee					
Drain Basi	Order Number	Station Name		Tatal	July	Aug.	Sept.	Oct.	Nov	Dec.	Jan.	Feb.	Mor.	Apr.	May	June
80 V2 B8 83 C6	4999-03 5067 5074 5078 5098	Lone Tree Canyon Long Barn Exp. Station		9.03 2.86 5.28 Closed	.00	.00 .60 .00E .38	.19 1.15 .15 1.04 1.34	1.52 .26 1.05 2.61 1.29	2.26 .03 .97 8.53 1.83	.17 .08 .04 1.06	1.89 .39 1.91 7.05 2.09	.16 .00 .06 RE .64	1:17 .14 .43	.41 .00 .11	.50 .21 .17	.76 .00 .39
V2 BD BO BO BO	5111-09 5116 5117 5118 5119	LA Aqueduct Intake Los Banos 5 S Los Banos Field Sta. Los Banoe Los Banos Arburua Ranch	CD C0	2.86 3.63 4.61 4.85 3.36	.00 .00 .00	.88 .00 .00 T	.56 .03 .08 .05	.10 1.08 1.17 1.07	.02 .60 .87 1.22	T .08 .06 .12	.30 .56 .72 .66	.00 .03 .04 .02	.05 .72 .98 .87	.10 .32 .33 .45	.85 T .00 T	.00 .21 .36 .39
CO C1 B4 B6 BD	5151 5155-51 5160 5202 5233	Lost Mills Lower Big Craek Lower Kibbey Ridge Lushmeadows Rch. Madera	2	3.86 -46.69 21.44 7.81	.00	.05 .00 T	.17 .35E .34 .23	1.26 1.50 Septe 1.44 1.45	1.05 - mber 21, 10.50 2.38	.06 - 1963 to .54 .24	.31 - Septemb 1.71 .61	13 - ber 24, T	.56 1964 3.39 1.50	1.40 .70	.02 - 1.54 .42	.00 ~ .58 .27
BD CO V2 87 BO	5233-03 5257 5284 5288 5297-01	Madera ID Magunden Mammoth Pass Mammoth Pool Manteca No. 2	S 2	6.03 52.78 20.46 8.22	.00	.00	1.01	.80 Oct	1.53 ober 10, July 1, 2.54			.59 r 15, 19 4, 1964 .06	RB .83 64	.42	.00	.00
BD C7 C7 B5 85	5297-02 5338 5338-01 5346 5346-01	Manteca SP Maricopa Maricopa FS Mariposa Mariposa Reynolda	CD 2	4.41 5.18 20.95 20.47	.00	.00 .00 .00	.75 1.04 .28 .24	1.05 1.07 1.66 2.05	1.70 1.86 7.80 7.30	.06 .08 .43 .48	.58 .63 3.29 3.05	.OD .04 .11	.17 .30 4.12 3.63	.02 .08 1.32 1.44	.08 .08 1.51 1.63	.00 .00 .43
B6 B5 B5 C7 B4	5346-04 5348 5352 5372-01 5400	Mariposa 8 ESE Mariposa Circle 9 Rch. Mariposa RS Martinez Spring Mather	(R) 3	23.66 32.43 20.27M 6.45E 23.28E	.00 .00 .00E T E	.00 .00 .00 .00E	.36 .39 .18 .00E .15E	1.85 1.88 1.68 .80 2.14	10.01 12.39 7.94 2.35 7.07	.47 .69 .42 .10	3.06 6.33 3.40 1.20 4.07	.01 T .16M .20	3.88 5.01 4.13 1.80 3.46	1.90 1.86 1.16 .00E 2.73	1.53 2.66 .68 .00E 2.27	.59 1.22 .52 .00E
80 80 85 C7 87	5408-80 5418-80 5460 5480-01 5496	Mattos Ranch Maze Bridge 2 S McDiermid Sta. McKittrick FS Meadow Lake	- 1	4.04 7.10 26.31E 4.18 22.46	.00 .00 .00E .00	.00 .00 .04 .00	.04 .12 .39 .39	1.15 1.33 1.86 1.00 2.20	.63 1.51 8.19 1.07 8.19	.08 .13 .72 .02 .43	.60 1.89 6.63 .85 2.51	.06 .00 .08 .07	.77 .61 3.64 .43 4.20	.37 .19 2.06 .14 1.99	.04 .35 1.91 .21 1.99	.25 .97 .79 .00
B3 B0 C0 B0 C0	5511 5526 5526-04 5528 5529	Melones Dam Mendota 1 NNW Mendota Murietta Rch. Mendota Dam Mendota Halfway Fump		22.55 5.64 6.39E 5.25 4.57	.00 .00 .00E .00	.00 .00 .00E .00	.34 .21 .20E .20	2.74 .88 1.00 .76 .89	6.57 1.81 2.03 1.44 1.35	.40 .21 .29 .25	4.21 .38 .60 .43 .86	.50 .05 .07 .06	3.65 1.20 1.56 1.37 .67	1.33 .49 .23 .34	2.29 .19 .35 .17	.52 .22 .06 .23 .05
CO BO BO BD BD	5530 5532 5532-01 5532-03 5534	Mendota VDL Farms Merced Fire Station 2 Merced SP Merced 5 SE Merced Fancher Rch.	СЪ	8.76 8.22 8.94 9.23	.00 .00 .00	.00	.38 .13 .24 .33	1.50 1.41 1.61 1.53	2.81 2.74 2.54 2.66	record (.17 .18 .31 .25	.91 .96 .97	.16 .11 .23 .25	1.75 1.56 1.78 1.42	.40 .45 .48 .94	.27 .28 .33 .27	.41 .40 .45
80 B8 C3 B7 C2	5535 5550 5669 5677-80 5680	Mercey Mot Springs	HPD 2	7.98 4.09 23.25 22.58	.0D .00 .00	.0D T .69	.28 .04 .94 .61	1.34 .86 1.83 1.40	2.90 .99 5.50 4.55M July 26	.14 .00 .55		.11 .00 .84 Closed for	1.41 .97 6.01 or seaso	.31 .00 2.20	.27 .07 1.66	.38 .06 .60
C2 C1 B4 B0 BD	5708 5723 5735 5738 5740	Miramonte Honor Camp Mitchell Meadow Moccasin Modesto Modesto KTRB	S 2	20.19 24.95 21.63 7.74 7.30	.00	.00 .00 .00	.46 .29 .12 .12	1.92 1.97 1.70 1.56	5.51 July 23, 7.59 2.18 2.02	.87 1963 to .40 .09 .12	2.14 August 4.17 1.81 1.72	.34 17, 1964 .22 .05	4.74 3.02 1.08 1.04	2.00 1.43 .26 .19	2.12 2.15 .11 .14	.09 .39 .34 .34
B0 V8 V8 C5 CD	5741 5756 5758 5777 5822-80	Modesto 2 Mojave MPD Mojave 2 ESE Monache Meadows Moody Ranch	MPD CD CD S	7.91 5.15 4.22 7.62 5.90E	.00	.00 .29 .13	.10 1.64 1.38	1.80 1.03 .95 Sep	2.03 .90 .85 tember :	.05 .04 .00 25, 1963 .06	1.98 .53 .35 to Augu	.03 .02 .20 st 5, 19	1.27 .32 .01 64	.23 .20 .15	.11 .18 .20	.00
C3 B7 V8 BD BO	5893 6122 6168 6168-01	Mountain Home 2 Mountain Rest FFS Neenach Newman 2 NW Newman 1 SE		28.63 20.61 - 6.39 5.77	.00 .00 .00	.07 .43 T	.45 2.24 .13 .16	2.05 1.64 1.24 .77	June 24 7.50 1.10 1.44 1.68	1963 to .55 .07 .05 .12	July 1 1.90 1.01 1.57 1.44	1, 1964 .01 .17 T	4.18 .97 1.19 1.04	1.86 .28 .22 .19	1.61 - .26 .09	.43 - .29 .28
CO B7 80 B0 B6	6230-50 6252 6303 6305 6321-80	North Belridge North Fork Ranger Sta. Dakdale Oakdale Woodward Oam Oakhurst	CD 1	3.72 22.82 10.22 9.74 20.34	.00 .00 .00 .00	T .04 T .00	.37 .38 .16 .28 .33	1.25 1.65 1.74 1.78 1.61	.87 8.23 3.18 3.34 7.44	.05 .57 .17 .15	.44 3.77 2.14 1.60 3.75	.05 .00 .05 .02	.35 3.92 1.15 1.08 3.09	.12 1.98 .56 .66 1.46	.22 1.71 .56 .41 1.40	.00 .57 .51 .42 .71
CD C7 C5 C2 BD	6393 6395 6462 6476 6490	Dilfields FFS Oilfields Joaquin Ridge Onyx Orange Cove Orestimbs	Sa CD	6.30 7.11E 8.36 8.73 6.30	.00 .00E .00 .00	.28 .20E .70 .00	.05 .12E 1.69 .21 .16	1.53 .95E 1.89 1.47 1.04	1.65 2.72E 1.10 2.24 1.65	.10 .00 .28 .61	1.02 1.42E .95 1.02 1.57	.00 .00 .00 .06	1.06 1.70E 1.05 1.34 .95	.53 .00E .33 1.20	.08 .00 .37 .55	.00 .00 .00 .03
B5 B8 C0 B8 B8	6552 6583 6651 6675 6676	Ostrander Lake Pacheco Pass Paloma Ranch Panoche Panoche 2 W	S 3	37.40 - 4.81 4.72 5.21	.00	.00 .00 T	.32 .67 .20 .44	.76 1.25 .87 1.00	ptember 2.62 1.40 1.28 1.39	3, 1963 - .00 .22 .22	to July 2.11 .42 1.14 1.36	17, 196 .02 .08 T	1.40 .68 .92 .04	.11 .31 .02	.28 .00 .04 .16	.31 .00 .03 .28
BO BO B4 O3 C7	6677 6679-05 6688 6703 6706	Panoche Creek Panoche Water Dist. Paradise Meadow Parkfield Parkfield 7 NNW	CD S CO HPD	- 4.92 38.08 8.80	.00	.00 .00	.14 .11	1.47 1.52 Septe 1.00	1.41 .70 ember 14, 2.87 3.72	.19 .38 1963 to T	.41 .52 Septem 2.21 1.22	.07 T ber 15, .05	.80 1.27 1964 1.12 .57	.41 .22 .67	.56 .49	- .20 T
80 C6 C2 B8 C1	6746~01 6754 6767 6847 6857	Patterson Pattiway Pear Lake Pfeiffer Ranch Piedra	1	6.53 8.65 26.80 13.32 12.29	.00	.00	.11 1.14 .20 .28	1.15 1.80 1.15 1.49	1.57 2.38 August 20 2.77 3.68	.07 .04 .1963 .53 .62	1.59 .97 to July 3.72 1.59	.00 .21 13, 1964 .20	1.05 .89 2.91 2.62	.58 .95 .42 1.07	.08 .25 .96 .81	.33 .02
B3 C1 C1 87 C0	6893 6895 6902 6959-80 7055-80	Pinecrest Strawberry Pins Flat Dam Pinehurst Placer GS Pond 1 N	1	34.55 13.06 29.78 5.41	.00 .00 .00	.10 T .00 .11	.99 .20 1.86 .66 .57	2.77 1.53 1.89 1.16 1.21	9.29 3.96 7.10	1.00 .65 .83	6.35 1.59 2.79 Closed for	.15 .03 .60 or seaso .16	5.04 2.77 4.76	2.72 1.13 7.42	3.89 1.12 2.25 1.77 .20	2.25 .08 .28 .87
C0 C0 C5 C4 C0	7077 7079 7093 7096 7098-11	Porterville Portarville 3 W Portuguese Meadow Poaey 3 E Poso Ranch		9.73 8.57 39.92 26.68 6.26	.00	.13 .10 .25	.63 .46 1.16 .93	1.99 1.64 2.79 1.01	1.95 1.84 July 8 5.33 .93	.31 .15 1963 to .97 .08	1.24 .99 June 2 2.89 .64	.15 .10 2, 1964 1.01 .20	1.59 1.98 6.16 .49	1.01 .55 3.06 1.67	.73 .76 2.29 .31	.00 .77

PRECIPITATION DATA FOR 1963-64 SAN JOAQUIN DISTRICT

ا ۽ ا	Alpha		T	Seasonal						In	inches					
Drainage Basin	Order Number	Station Name	\perp	Total	July	Δυg	Sept	Oct	Nov.	Dec.	Jan.	Feb.	Mar	Δpr	May	June
BO B4 02 C5 C1	7099-11 7145 7150 7179 7259	Poso Canal Co. Hdq. Priest Priest Valley Ouaking Aspen Rattlesnake Creek	CO S	5.70 22.16 13.14 30.88 31.62	.00	.00 .00	.14 .32 .25	1.25 1.97 1.53	1.68 7.51 5.11 July 10 August	.06 .49 .20 .1963 to	.55 3.88 2.98 5 June 2 to July	.03 .16 .07 3, 1964 9, 1964	1.09 3.01 1.95	.47 1.86 .53	.05 2.31 .43	.38 .65 .09
B6 B6 B6 CO	7270-01 7272-01 7273 7276 7288	Raymond 3 SSW Raymond 10 N Raymond 9 N Raymond 12 NNE Rector	CD	12.90 17.18E 18.01E 18.24 7.93	.00 .00E .00	.00 .00E .00 T	.10 .03 .49 .35 .27	1.80 2.00 1.85 1.79 2.08	3.95 6.68 6.82E 6.96 1.56	.20 .40 .42E .41	1.75 1.65 2.12 2.07 .84	.25 .00E .01 T	2.95 4.20 3.46E 4.46 1.17	1.30 .70 1.42E .65	.35 .90 .90 1.00	.25 .62 .52 .55
CO BO CO V2 B6	7354-80 7447-80 7460 7510 7528	Reedley MVFD Ripon Riverdale Rock Creek Rocky Village		8.67 9.51 5.02 12.95 13.76E	.00 .00 .00	.00 T	.14 .15 .13	1.20 1.67 .89 No	2.21 2.80 1.39 vember 4 4.48	.42 .18 .10 , 1963 t	2.01	.14	3.27	.51 .02 .09	.49 .30 .21	103 .03
CO B7 C5 B4 D1	7555 7560 7579 7623 7719	Rosedale Rose Marie Meadow Round Meadow Saches Springs San Benito H	5	4.50 29.08 31.77 45.18 8.53	.00	.00	.71		1.13 July 17 July 9, ember 20	, 1963 t	June 22 o Septem 2.09	, 1964 ber 23, .29	.41 1964 2.36	.02	.14	.00
22 C0 01 C0 C0	7735 7753 7755 7800-02 7800-03		CD CD PD	11.29 6.48 M 8.89 8.28	.00 .00 .00	.22 .00 .00 T	2.52 .96 - .13 .15	2.11 1.93 1.56 1.40 1.29	2.48 1.29 3.62 3.06 2.88	.06 .23 - .54 .59	.91 .43 3.34 .77	.21 .15 .08 .02	1.61 .47 - 1.81 1.87	.51 .36 .03 .75	.66 .50 .41	.00
CO CO B7 80 BB	7816 7819-80 7817 7836-01 7846	San Juan Hdgrs. M & L	PD CD	4.40 4.76 12.73 6.72 6.50	.00 .00 .00	.00	.13 .29 .28 .14 .20	.46 .72 1.58 1.25 1.31	1.46 1.35 4.76 1.91 1.92	.08 .00 .32 .10	.43 .15 1.29 .85 1.26	.00 .00 .00	1.19 1.29 2.46 1.32	.55 .86 1.15 .51	.04 .10 .84 .16	.06 T .05 .40
BO CO D7 D7 D7	7855 7987-80 8259-02 8259-04 8276	San Luis Canal Co. Hdq. Santiago Ranch M & L Sammler R. W. Cooper Simmler Maint. Sta. Slack Canyon H	PD	6.47 4.53 7.02 5.67E 10.14	.00 .00 .00 .00	.00 .00 .00	.20 .45 .62 .59	1.46 .98 1.26 1.17 1.59	1.86 1.41 1.01 .74 3.80	.20 .02 .00 .00E	.78 .39 1.20 1.32 2.15	.11 .03 .20 .00	1.12 .45 1.74 1.69 1.81	.34 .43 .62 .01	.08 .37 .37 .15	.32 .00 .00 .00
C6 B5 C1 07 B4	8304 8318 8323-01 8326 8353	Snow Flat Soaproot Saddle Soda Lake	Ss S CO	7.76 38.60 18.21 6.43 24.56	.00	.00	.73 .47 .30	1.56 1.28 2.28	July 1, July 17 5.63 .71 7.31	1963 to . 1963 t .53 .00 .42			2.71 2.06 4.05	2.51 .00 1.62	2.41 .26 2.49	.22 .00 .82
G9 C0 B0 B5 V2	8355 8375~50 8378 8380 8406	South Belridge South Dos Palos		10.67 3.77 5.39 31.18 13.50	.00	.10 .13 .00 .40	1.41 .29 .04 .63	1.12 1.41 1.66	2.80 .78 1.29 13.00 June 30	.43 T .18 .55	1.78 .56 .55 4.33 o June 3	.17 .09 .00 .03 0, 1964	.98 .41 1.13 4.15	.60 .20 .41 1.53	1.46 .19 .20 2.61	.40 .00 .18 2.29
CO B3 C3 C3 C3	8407-11 8450 8455 8460 8463	Springville Ranger Sta. H	CD PO	5.93 34.21 22.05 M 25.09	.00 .00 .00	.00 .63 .36 .38	.48 .53 .87 .87	1.49 2.97 1.44 - 1.34	1.17 10.53 6.10 - 6.38	1.07 .68 -	.71 7.58 2.00 - 3.02	.11 .20 .64 -	.83 5.12 4.72 - 5.91	.82 1.15 2.63 - 2.56	3.70 2.18 - 2.20	.00 .73 .43 -
C2 B3 C1 C0 C3	8474-80 8499 8510 8520 8620	Squaw Valley Fr. Stanislaus Power House State Lakes Stevenson Dist. Sec. 33 Success Dam	CD S	15.11 26.28 24.70 6.32 10.41	.00	.00 .00	.27 .17 .54 .45	1.50 2.50 A 1.11 1.89	5.29 7.88 ugust 22 .80 2.28	.65 .66 , 1963 t	1.75 4.35 o August .91 .89	.08 .27 12, 196 .11 .34	2.49 5.13 4 1.03 1.97	1.72 1.47 1.24 1.10	1.32 2.90 .16 .86	.04 .95 .00
C1 C7 C7 C6 C6	8643 8752 8755 8826 8832	Taft KTKR Radio Tehachapi	S PD CO	34.74 4.13 4.45 8.61 11.06	.00	.00 T 1.36 2.24	.61 .56 1.34 1.54	.81 .86 .37	July 15 1.50 1.54 1.10 1.86	, 1963 t .02 .08 .00 .49	o July 1 .64 .68 .80 .73	.1, 1964 .04 .09 .42 .47	.35 .37 1.84 1.56	.12 .20 1.00 1.10	.04 .07 .38 .37	.00 .00 T
C0 C2 C7 C2 C2	8839 8868 8893-80 8912 8914	Terminus Dam Thirty-Two Corral Three Rivers 6 SE H	CD CD	11.52 11.72 9.15E 17.20 15.62	.00 .00 .00E .00	.35 .11 .00E .71	1.21 .37 .00E .55	1.26 1.52 1.50 1.64 1.56	2.85 2.59 3.30 4.74 4.54	.32 .34 .00E .64	.93 .96 1.80 1.40 1.34	.71 .41 .30 .89	1.85 2.41 2.25 3.34 2.86	1.35 1.46 .00E 1.48 1.93	.69 1.50 .00E 1.64 1.59	.00 .05 .00E .17
C2 B0 88 C0 C0	8917 8997 8999 9006 9011-80	Tracy 2 SSE H	CD IPO CD	15.55 6.06 5.91 5.01 7.26	.00	.09 .00 .00 T	.74 .30 .27 .24	1.56 1.17 1.07 1.15 1.58	4.54 1.51 1.51 1.40 1.51	.59 .08 .10 .05	1.34 1.63 1.63 .24 .84	.30 .05 .06 .03	2.86 .51 .39 .98 1.29	1.98 .07 .12 .59 1.27	1.48 .14 .13 .18 .23	.07 .60 .63 .15
C1 C0 C0 C0	9025 9051 9051-04 9052 9059	Trimmer RS Tulare Tulare Dist. Sec. 27 Tulefield Tule River Intake	CD b	17.89 7.05 4.45 5.11 22.70	.00 .00 .00 .00	.01 .08 .02 T	.39 .31 .24 .88 .83	1.31 1.10 1.09 .86 1.42	6.61 1.23 1.10 1.58 6.11	.61 .27 .04 T	2.45 .94 .78 .56 2.18	.00 .15 .09 .13	3.33 1.17 .64 .55 5.18	1.59 1.24 .39 .33 2.33	1.42 .55 .06 .22 2.38	.17 .01 .00 .00
C3 C5 B3 B4 B0	9060 9061 9062 9063 9073	Tule River PH Tunnel Ranger Station Tulloch Dam Tuolunne Meadows Turlock	b E CD	16.86 9.92 16.75 23.07 8.20	.00	.66 .00	.88	1.66 Se 1.97	3.91 eptember 4.37 July 17 1.81		1.58 to Augu 3.40 b July 1.91	.23 29t 4, 19 30 4, 1964 .07	3.60 964 2.34 1.13	1.54 1.24 .86	1.79 1.65	.19 .56
80 BO CO B7 O1	9073-01 9073-02 9145 9162-80 9189	Turlock 5 SW Turlock 8 WSW U. S. Cotton Field Sta. Upper Chiquito Upper Tres Pinos	iPO	8.43 7.34 4.56 M	.00 .00 .00	T .05 .03 .16 .00	.25 .23 .61 1.22 .20	1.55 1.26 .99 -	1.82 1.52 1.10 - 1.59	.15 .10 .10 -	2.06 1.78 .40 - 2.45	.05 .06 .19 -	2.15 1.17 .34 -	.20 .39 .76	.20 .58 .04 -	.20 .00
B7 C0 C0 C0	9301 9304 9367 9369 9452	Vermilion Valley Vestal Visalia Visalia 4 E Wasco	в Б С	18.22 6.09 7.58 7.73 4.66	.00	.00 .02 .07	.66 .31 .28 .50	1.30 1.92 1.73	June 25 1.13 1.20 1.47 .83	.1963 t .10 .18 .27 .16	.62 .73 .75 .57	3, 1964 .18 .17 .18 .19	1.24 1.16 1.32 .25	.66 1.52 1.10 1.54	.20 .37 .56 .06	.00 T T
85 C5 C0 86 C0	9482 9512 9535 9556-80 9560		PD PD CO	26.85 6.79 4.76 35.00 5.25	.00 .00 .00	.00 .38 .14 .09	.45 1.71 .20 1.04	1.68 1.72 1.11 1.75 1.37	9.97 .81 .76 14.29 1.16	.64 .18 .04 6.76 .06	5.42 .71 .84 .05	.03 .00 .11 .00	4.23 .88 .30 4.22 .85	1.12 .13 1.26 2.35 .78	1.95 .27 T 2.71 .08	1.36 .00 .00 1.74 T
BO C5 C0 B6 C0	9565 9602 9614-81 9640-80 9670-80	Westley Wet Meadow Wheeler Ridge LWUA-122 White Rock Preston Wilbur Ditch	S (R)	7.41E 25.11 7.71E 12.73E 4.56	.00 .00E .00E	.00 .00E .00E	.11E .93 .08E .24	1.64 1.57 1.45 .92	1.64 August 2.07 4.21 1.18	.07 28, 1963 .15 .39	1.86 to July .55 1.87 .78	.00 21, 196 .33 .08 .11	1.06 2.57 .72	.19 .55 .96 .49	.32 .50 .79 .01	.85 .00 .33 .00

TABLE A-2 (Cont.)

PRECIPITATION DATA FOR 1963-64 SAN JOAQUIN DISTRICT

960 UI	Alpha		Seasanal						In i	nches					
Drainage Basin	Order Number	Station Name	Total	July	Aug	Sept	Oct	Nav.	Dec.	Jan	Feb.	Mar	Apr	Моу	June
C1 C5 C1 C4	9749 9754 9773 9805	Wishon Res. Wofford Heights Commondehuck Meadow Woodchuck Meadow	29.85 9.42 9.43	.00	.23	1.13	1.81 1.79	9.62 .99 August 2.61	.71 .38 9, 1963	4.46 .87 to July 1,25	.19 .02 7, 1964	5.76 2.01	2.26 .53	2.79 .78	.89
B5	9855	Yosemite National Pk HPO C		T	. 20	.93	1.85	9,55	.81	4.49	.06	3.50	1.49	2.46	.96

0

TABLE A-3
TEMPERATURE DATA FOR 1963-64
SAN JOAOUIN DISTRICT

9 0	Alpha							In	degrees	Fahrenhe	it				
Basin Basin	Order Number	Station Name		July	Aug	Sept	Oct.	Nov.	Dec	Jan.	Feb	Mar.	Apr	May	June
86	0049	Ahwahnee 2NNE	Max Min Av Max Av Min Avg	94 56 86.9 63.5 75.2	95 56 88.2M 64.3M 76.2M	97 52 85.2 62.5 73.8	M M M M	80 38 65.2 47.0 56.1	80 34 69.1 43.3 56.2	80 32 59.4 38.4 48.9	76 34 62.3M 39.6M 51.0M	78 32 61.0 41.0 51.0	78 36 67.1 46.6 56.8	84 38 70.1M 51.5M 60.8M	98 44 79.9 60.3 70.1
co	0332	Arvin	Max Min Av Max Av Min Avg	102 53 95.0M 67.0M 77.8M	102 53 92.5 58.4 75.5	106 56 89.7 61.6 75.6	96 44 75.1 54.1 64.6	76 31 63.7 44.2 54.0	60 25 47.9 33.1 40.5	66 25 57.6M 34.0M 45.8M	77 27 65.9 33.6 49.8	92 31 68.4 39.9 54.2	97 39 74.0 47.3 60.6	95 37 81.8 50.5 66.2	110 52 90.4 58.7 74.6
со	0396-02	Avenal Walden	Max Min Av Max Av Min Avg	104 60 97.8 71.9 84.8	106 59 97.9M 66.7M 82.3M	M M M M	96 48 78.2 57.4 67.8	76 37 65.5M 47.5M 56.5M	61 29 52.8M 38.1M 45.4M	66 32 58.3M 39.0M 48.7M	73 35 64.7M 40.1M 52.4M	87 34 69.5M 44.6M 57.6M	93 41 76.0 50.0 63.0	99 41 83.0M 53.5M 68.3M	109 53 92.7 61.9M 77.3M
B5	0430	ва9ру	Max Min Av Max Av Min Avg						RB RB RB RB	66 29 55.7 36.1 45.9	73 29 62.9 34.2 48.6	79 28 64.9 37.8 51.4	91 34 71.9 43.5 57.7	92 37 77.6 48.2 62.9	M M 83.6M 54.9M 69.3M
co	1557	Caruthers 4E	Max Min Av Max Av Min Avg	104 49 96.6 56.6 76.6	102 50 95.0 56.6 75.8	104 53 91.5 57.5 74.5	96 41 78.7 50.1 64.4	75 33 63.5 42.3 52.9	56 27 48.0 35.6 41.8	67 24 56.0 34.2 45.1	70 '25 62.9 32.1 47.5	90 31 69.6 37.2 53.4	94 36 78.2 44.0 61.1	94 37 82.8 47.4 65.2	M M M M
80	1580	Castle AF8	Max Min Av Max Av Min Avg	99 50 91.2 60.0 75.6	100 54- 91.3 61.7 76.5	105 56 87.7 61.5 74.6	91 42 74.5 53.2 63.8	71 34 57.5 44.1 50.8	52 29 42.9 35.8 39.4	61 26 51.7 36.6 44.2	68 29 59.9 35.2 47.6	80 27 63.6 40.2 51.9	91 35 71.1 44.5 57.8	91 40 75.5 49.3 62.4	109 50 84.8 56.9 70.8
88	1583	Castle Rock Rad. Lab.	Max Min Av Max Av Min Avg	102 52 90.8 61.0 75.9	102 52 93.0 61.4 77.2	102 50 89.1 61.6 75.4	99 38 78.2 51.4 64.8	78 32 63.0 42.3 52.6	76 25 49.2 33.2 41.2	66 26 57.4 35.3 46.4	75 29 64.0 36.6 50.3	83 33 66.3 41.4 53.8	92 32 77.3 44.3 58.8	91 34 76.2 50.2 63.2	107 47 84.1 58.4 71.3
B 6	1590	Catheye Vly. Sawyer Rch.	Max Min Av Max Av Min Avg	100 49 91.5 57.8 74.6	101 49 91.9 59.2 75.6	105 53 89.0 60.2 74.6	93 40 74.5 51.4 63.0	74 32 58.6 41.6 50.1	68 25 49.2 32.9 41.0	63 29 50.5 35.7 43.1	67 29 58.1 33.7 45.9	77 2 7 59.2 37.6 48.4	87 31 66.9 41.9 54.4	89 31 73.5 46.5 60.0	108 43 84.3 54.5 69.4
B6	1591	Catheys Vly. Stonehouse	Max Min Av Max Av Min Avg	99 44 90.2 51.1 70.6	100 44 90.8 52.7 71.8	104 47 88.4 54.7 71.6	94 36 76.0 48.4 62.2	73 27 60.5 37.1 48.8	68 22 49.2 29.3 39.2	65 22 51.3 30.9 41.1	67 24 59.2 27.9 43.6	78 21 61.5 31.9 46.7	86 27 68.8 36.0 52.4	88 30 74.5 40.9 57.7	105 38 82.8 48.7 65.8
B7	1844	Clover Meadowa GS	Max Min Av Max Av Min Avg	80 28 74.5M 34.1M 54.3M	88 24 76.0M 32.7M 54.4M	80 30 M M M	M M M M			Close	d for Se	ason			M M M M
со	1871-80	Coalinga Feed Yards Inc.	Max Min Av Max Av Min Avg		:				RB RB RB RB RB	M 53.3M 33.3M 43.3M	M M M M	82 32 64.5 39.6M 52.1M	91 35 74.3M 45.6M 60.0M	96 34 78.7M 48.6M 63.7M	108 46 88.8M 58.3M 73.6M
B4	1904	Cold Springs	Max Min Av Max Av Min Avg	M M M M	M M M M	86 42 74.5M 50.6M 62.6M	83 29 64.5 41.2 52.8	M M M M	M M M M	M M M M	M M M M	M M M M	M M M M	M M M M	M M M M
co	2013	Corcoran El Rico 1	Max Min Av Max Av Min Avg	106 49 96.9 57.5 77.2	103 50 95.0 57.9 76.4	106 53 90.2M 59.2M 74.7M	96 43 78.6 53.5 66.0	78 32 62.4 43.9 53.2	58 29 44.3M 36.1M 40.2M	66 25 53.1 34.4 43.8	73 24 61.7 31.2 46.4	86 26 65.5 35.5 50.5	94 34 73.4 41.2 57.3	96 33 79.5 45.2 62.4	111 48 90.1 54.0 72.0
B5	2072	Coulterville FFS	Max Min Av Max Av Min Avg	99 50 90.4 58.6 74.5	102 49 91.7 60.9 76.3	102 50 87.6 60.6 74.1	95M 44M 75.0M 52.7M 63.8M	M M M M	67 28 M M M	69 28 M M M	M M M M	M M M M	M M M M	86 32 M M M	105 41 83.0M 57.0M 70.0M
В7	2122	Crane Valley PH	Max Min Av Max Av Min Avg	97 50 88.2 60.2 74.2	96 48 89.0 60.0 74.5	96 50 86.5 58.8 72.7	92 40 73.6 50.1 61.9	74 28 59.3 40.6 50.0	70 18 59.4M 34.4M 46.9M	74 23 55.2M 31.9M 43.6M	66 26 58.2 32.0 45.1	75 28 56.7 34.9 45.8	80 30 63.9 40.0 52.0	80 32 68.9 45.3 57.1	98 40 79.3 54.6 67.0
C6	2222-80	Cummings Valley	Max Min Av Max Av Min Avg	92 38 84.1 43.9 64.0	97 36 85.6 44.9 65.2	98 40 83.5 48.7 66.1	94 28 73.4 39.2 56.3	81 22 58.9 33.0 46.0	82 20 59.1 28.5 43.8	74 13 53.2 23.3 38.2	69 12 56.2 22.1 38.2	72 12 54.1 26.6 40.4	80 22 58.5 31.2 44.8	80 20 63.3 34.2 48.8	93 30 74.3 42.6 58.4
88	2369	Del Puerto Road Camp	Max Min Av Max Av Min Avg	103 44 95.4 54.7 75.1	99 43 91.3 55.6 73.4	100 48 86.8 55.5 71.1	92 36 73.4 48.4 60.9	70 28 59.5 38.3 48.9	68 24 52.6M 31.0M 41.8M	65 24 54.7 33.9 44.3	68 27 60.3M 33.1M 46.7M	78 29 62.1 36.6 49.4	86 30 69.8 41.3 55.6	92 31 77.2M 44.2M 60.7M	51.4M
co	2436	OiGiorgio	Max Min Av Max Av Min Avg	104 56 96.4 63.5 79.9	106 55 98.1 63.6 80.8	111 57 91.3 61.5 76.4	100 45 77.4 54.8 66.1	81 34 66.3 45.2 55.7	65 30 50.4 36.6 43.5	70 30 58.2 36.5 47.4	81 29 67.5 36.4 51.9	93 29 68.1 38.8 53.4	98 38 75.7 46.2 60.9	96 36 80.8 50.3 65.5	112 48 91.0 59.3 75.2
C7	2464	Domengine Ranch	Max Min Av Max Av Min	101 52 93.2 64.4 78.8	101 53 91.1 67.5 79.3	105 54 89.3 65.6 77.4	95 49 76.6 57.2 66.9	88 34 61.2 45.0 53.1	63 24 46.7 33.4 40.0	61 32 54.0 39.3 46.6	68 37 60.1 43.1 51.6	83 35 64.4 45.4 54.9	90 38 71.6 48.8 60.2	92 39 76.9 50.6 63.8	109 48 85.7 60.5 73.1
B4	2473	Don Pedro Reservoir	Max Min Av Max Av Min Avg	104 47 95.3 58.0 76.7	105 48 94.4 58.3 76.6	106 51 91.8 57.8 74.8	97 41 78.0 49.0 63.5	76 28 51.2 39.4 45.3	62 25 47.5 30.8 39.2	60 25 52.9 31.4 42.2	69 25 61.3 30.4 45.9	81 26 63.0 35.5 49.3	90 30 71.9 39.1 55.5	91 32 77.3M 44.0M 60.7M	107 42 86.3 51.4 68.9

TABLE A-3 (Cont.)

TEMPERATURE DATA FDR 1963-64 SAN JOAQUIN DISTRICT

Basin	Order Number	Station Name							legrees l	т т				Y	
co				July	Aug	Sept.	Oct.	Nov	Osc	Jan	Feb	Mar	Apr	May	June
	3084	Five Points Diener	Max Min Av Max Av Min Avg	103 52 94.4 60.6 77.5	100 52 93.6 61.1 77.4	104 54 89.5 60.9 75.2	94 41 77.6 53.2 65.4	76 34 61.2 43.0 52.1	57 27 45.6 35.6 40.6	65 26 54.0 35.6 44.8	70 30 61.5 35.6 48.6	84 30 65.8 39.2 52.6	92 39 74.7 44.2 59.4	95 38 79.9 49.4 64.7	109 50 86.7 57.3 73.0
CD	3258-80	Fresno Co. Westside FD	Max Min Av Max Av Min Avg			RB RB RB RB RB	96 41 78.9 52.2 65.6	84 32 64.4 42.1 53.5	60 22 49.3 32.8 41.1	64 25 55.3 33.2 44.3	72 29 63.0 34.4 48.7	85 24 68.8 37.3 53.1	93 34 75.7M 43.6M 59.7M	97 34 61.7 47.6 64.7	110 46 90.8 56.0 73.4
86	3948	Hidden Valley	Max Min Av Max Av Min Avg	104 51 95.9 59.7 77.8	101 52 93.2 61.9 77.6	104 54 91.3 62.0 76.6	96 43 76.0 52.6 64.3	M M M M	73 28 58.0 34.2 46.1	67 30 55.4 35.4 45.4	74 30 62.3 34.1 48.2	79 27 58.8 36.9 47.8	86 31 68.4 42.7 55.6	91 33 73.7 46.4 60.1	110 44 86.1 55.3 70.7
2 5	4103	Hornitos Gilea Ranch	Max Min Av Max Av Min Avg	100 50 91.2 60.8 76.0	100 50 91.3 61.8 76.6	105 52 88.5 62.5 75.5	92 44 74.6 53.6 64.1	73 32 56.7 42.1 49.4	65 26 45.6 33.2 39.4	58 31 50.2 36.0 43.1	66 30 57.9 35.4 46.7	79 30 60.2 39.2 49.7	88 32 68.6 43.7 56.2	89 36 74.7 47.9 61.3	106 44 84.1 56.9 70.5
B 3	4170	Munters Dam	Max Min Av Max Av Min Avg	92 40 85.2 46.5 65.8	96 40 86.7 46.4 66.6	98 42 84.8 47.8 66.3	92 31 70.8 41.2 56.0	74 24 57.2 33.2 45.2	69 21 58.6 28.7 43.6	63 20 50.8 27.1 39.0	70 20 58.0 25.4 41.7	73 19 • 54.4 27.8 41.1	80 21 61.2 31.9 46.6	80 28 65.2 36.2 50.7	96 32 74.0 42.1 58.1
C 5	4303	Isabella Dam	Max Min Av Max Av Min Avg	100 51 92.8 59.5 76.2	101 49 93.4 59.6 76.5	99 51 89.5 58.7 74.1	97 39 76.8 49.7 63.2	75 30 63.0 39.7 51.4	72 22 60.6 31.7 46.2	67 22 52,3 31.4 41.8	70 22 60.9 29.5 45.2	79 20 59.2 33.8 46.5	87 30 66.9 40.5 53.7	89 35 73.5 46.7 60.1	103 42 84.5 56.5 70.5
C6	4463	Keene	Max Min Av Max Av Min Avg	95 46 87.2 53.1 70.1	95 44 87.6 56.7 72.2	98 37 84.3 57.9 71.1	87 38 70.4 47.5 59.0	78 26 61.3 36.9 49.1	72 26 61.1 33.3 47.2	77 16 53.1 28.3 40.7	73 23 58.6 30.1 44.4	79 21 57.4 31.6 44.5	87 29 65.7 37.0 51.3	84 28 71.8 40.3 56.1	103 39 81.8 51.5 66.7
C 5	4513	Kern Canyon	Max Min Av Max Av Min Avg	99 51 91.6M 66.2M 78.9M	98 56 M M	98 57 M M M	95 47 74.8M 54.9M 64.9M	76 35 M M M	60 24 45.8M 32.3M 39.0M	64 26 M M M	74 33 60.3M 38.0 49.2M	86 32 62.6M 42.7M 52.7M	91 38 70.5M 49.4M 60.0M	89 38 M M	106 49 84.5M 60.9M 72.7M
co	4535	Kettleman Hills	Max Min Av Max Av Min Avg	102 54 94.3 68.0 81.1	102 56 93.0 70.6 81.8	106 56 68.6 67.2 77.9	92 50 73.4 57.9 65.6	76 38 60.0 47.3 53.6	66 29 47.4 34.4 40.9	63 34 52.0 39.5 45.8	72 36 59.4 44.0 51.7	85 35 62.5 45.6 54.0	92 39 71.4 50.1 60.8	96 40 77.4 54.8 66.1	109 50 86.6 63.2 74.9
B0	4999-03	Livingston 5W	Max Min Av Max Av Min	105 45 97.0M 53.7M 75.4M	103 46 97.1M 54.4M 75.8M	109 47 92.5M 55.1M 73.8M	99 35 80.1M 48.6M 64.4M	75 31 60.4M 41.1M 50.8M	55 25 44.1M 34.5M 39.3M	62 23 53.3M 32.9M 43.1M	74 27 65.4 31.0 48.2	84 27 68.2 36.8 52.5	97 33 77.8M 40.7M 59.2M	101 32 83.2M 43.5M 63.4M	115 41 90.9M 51.6M 71.3M
DO	5117	Los 8anos Field Sta.	Max Min Av Max Av Min	104 48 92.5 57.8 75.2	101 45 94.3 57.4 75.8	103 50 89.4 56.7 73.0	96 39 77.4 49.3 63.4	73 28 60.5 39.2 49.8	54 22 46.1 31.8 39.0	63 21 54.0 32.4 43.2	71 29 62.9 34.2 48.6	78 25 66.0 39.1 52.5	92 33 74.0 44.1 59.0	93 36 77.0 46.8 61.9	107 37 85.9 52.7 69.0
86	5202	Lushmeadows Rch.	Max Min Av Max Av Min Avg	100 52 M M	102 44 M M M	102 50 M M	M M M M	76 31 58.1M 38.6M 48.4M	72M 29 61.2M 39.9M 50.6M	72 27 52.3M 33.5M 42.9M	73 28 61.9 35.5M 48.7M	77 27 60.7M 37.1M 48.9M	87 29 65.7M 41.4M 53.6M	87 30 M M	105 39 83.0M 54.9M 69.0M
со	5257	Magunden	Max Min Av Max Av Min Avg	106 56 97.7 64.3 81.0	105 40 97.4 64.5 81.0	106 56 90.9 63.8 77.4	96 48 77.8 56.1 67.0	78 35 64.3 44.4 54.4	60 26 47.9 34.5 41.2	68 26 56.7 34.6 45.6	75 30 63.9 35.4 49.8	91 32 66.6 40.8 53.7	95 38 73.5 47.2 60.4	96 41 81.4 52.4 66.9	113 51 91.8 60.8 76.3
B 5	5348	Mariposa Circle 9 Rch.	Max Min Av Max Av Min	100 44 93.3 51.0 72.1	102 44 91.5M 52.0M 71.8M	97 42 M M M	78 34 67.0M 41.9M 54.4M	73 28 55.3M 35.3M 45.3M	70 23 58.1M 31.1M 44.6M	70 19 48.5 27.1M 37.8M	66 22 56.7 27.3 42.0	70 17 53.0M 28.6M 40.8M	82 22 63.4M 34.1 48.8M	98 24 72.0M 38.9M 55.5M	109 34 85.5M 47.6M 66.6M
B 5	5352	Mariposa RS	Max Min Av Max Av Min Avg	99 47 91.5 54.8 73.1	100 47 92.3 57.3 74.8	103 48 89.0 57.1 73.0	98 40 77.2 48.8 63.0	79 30 M M	78 24 M M M	75 26 55.5M 30.7M 43.1M	71 25 M M	79 22 60.6M 33.2M 46.9M	86 29 68.2M 38.9M 53.6M	88 31 72.8 43.3 58.1	104 35 82.9 48.3 65.6
87	5496	Meadow Lake	Max Min Av Max Av Min Avg	90 53 82.2 62.5 72.3	91 54 83.8 63.1 73.4	94 44 79.5 60.1 69.8	92 40 69.1 51.5 60.3	74 30 55.9 40.1 48.0	68 25 58.4 40.4 49.4	72 23 50.6 33.7 42.2	66 26 53.0 36.5 44.8	70 21 50.3 34.6 42.5	78 28 57.2M 39.8M 48.5M	84 29 63.7 44.5 54.1	95 35 74.8 55.6 65.2
87	5677-80	Minareta RS	Max Min Av Max Av Min Avg	86 42 80.9 49.3 65.1	90 40 82.9 50.4 66.6	90 40 77.6 50.6 64.1	88 30 68.0 41.1 54.6	!		Closed f	or Winte	r Season			M M M M
80	5740	Modesto KTRB	Max Min Av Max Av Min Avg	99 51 91.0 56.8 73.9	100 49 91.5 57.1 74.3	103 52 88.4 58.2 73.3	94 39 76.6 51.1 63.8	71 32 59.1 43.3 51.2	54 27 46.7 35.7 41.2	61 25 54.6 36.3 45.4	74 27 64.7 32.9 48.8	83 27 67.2 38.5 52.8	92 34 75.0 43.1 59.0	93 36 78.8 47.6 63.2	107 46 85.3 54.1 69.7
87	5893	Mountain Rest FFS	Max Min Av Max Av Min Avg	91 51 83.6M 59.6M 71.6M	92 50 86.0 61.3 73.6	99 45 83.0M 59.1M 71.0M	89 37 70.3M 50.5M 60.4M	M M M M	M M M M	62 25 51.5M 33.2M 42.3M	62 26 54.0M 34.4M 44.2M	70 22 53.8M 34.2M 44.0M	77 26 62.0M 41.7M 51.8M	79 26 65.6M 43.4M 54.5M	95 34 76.5M 52.8M 64.7M
со	6230-50	North Belridge	Max Min Av Max Av Min Avg	105 50 96.1 67.8M 81.9M	106 59 92.8 66.1M 79.4M	105 62 91.5 66.8 79.2	96 48 77.2 57.3 67.2	78 37 63.1M 45.2M 54.2M	62 25 47.7 34.0 40.8	65 28 55.1 35.5 45.3	75 34 62.6 37.2 49.9	87 32 66.7M 41.1M 53.9M	94 40 74.7 48.1 61.4	95 41 79.6 54.2 66.9	109 54 89.7 63.4 76.6

TEMPERATURE DATA FDR 1963-64 SAN JOAQUIN DISTRICT

	41-h-				DAM 00	AQUIN DI	DIRICI	Tn	degrees	Fahronho					
Drainage Basin	Alpha Order Number	Station Name		July	Aug	Sept.	Oct.	Nav	Oec	Jan.	Feb	Mar.	Apr	May	June
86	6321-80	Oakhurst	Max Min Av Max Av Min Avg	95 33 88.4 42.5 65.4	97 36 89.2 43.6 66.4	103 40 86.9 45.8 66.4	95 29 74.7 39.3 57.0	80 24 61.8 31.8 46.8	73 18 61.6 22.1 41.8	77 16 55.1 24.5 39.8	69 13 59.9 20.1 40.0	75 16 56.8 28.5 42.6	80 23 62.2 33.6 47.9	81 21 67.6 37.0 52.3	97 32 78.2 42.4 60.3
83	6893	Pinecrest Strawberry	Max Min Av Max Av Min Avg	84 38 79.1 45.8 62.4	86 38 77.7 44.8 61.2M	88 42 75.7 47.3 61.5	84 32 67.1 40.6 53.8	64 22 51.7 31.2 41.4	66 14 54.6 27.0 40.8	60 18 47.5 24.6 36.0	64 16 54.2 24.1 39.2	68 10 49.2 24.2 36.6	74 12 56.7 28.7 42.7	78 22 60.4 32.8 42.7	88 30 68.7 39.9 54.3
C1	6895	Pine Flat Dam	Max Min Av Max Av Min Avg	105 50 97.6 58.1 77.8	105 49 97.8 56.6 77.2	110 51 93.2 58.4 75.8	100 42 79.4 51.1 65.2	78 34 63.0 41.3 52.2	67 27 49.4 33.5 41.4	63 27 54.4 32.5 43.4	71 28 61.8 32.6 47.2	84 27 64.1 36.6 50.4	92 35 72.4 43.1 57.8	94 33 78.8 47.5 63.2	109 43 90.1 53.9 72.0
Cl	6902	Pinehurst	Max Min Av Max Av Min Avg	88 51 82.3M 58.3M 70.3M	89 50 82.9 58.7 70.8	92 47 82.0 58.7 70.4	92 37 69.8M 48.2M 59.0M	M M M M	M M M M	M M M	M M M M	M M M M	M M M M	78 30 66.7M 43.1M 54.9M	94 36 74.6 52.1 63.4
В7	6959-80	Placer G5	Max Min Av Max Av Min Avg	94 40 M M	96 40 87.8M 47.2M 67.5M	96 44 87.1M 48.7M 67.9M	M M M M	c	losed fo	r Winter	Season		м м м м	84 26 69.0M 39.0M 54.0M	96 36 79.4M 46.2M 62.8M
86	7273	Raymond 9 N	Max Min Av Max Av Min Avg	102 45 94.5 54.1 74.3	106 46 96.7M 57.9M 77.3	108 49 94.0 57.1 75.6	97 40 M M M	-	1111	65 25 53.7 31.0 42.4	70 24 63.5 29.4 46.5	-	-	89 27 77.0 39.9 58.5	108 40 87.6 48.7 68.2
CD	7288	Rector	Max Min Av Max Av Min Avg	102 53 95.3 58.8 77.0	102 52 94.3 58.3 76.3	104 49 90.5 59.5 75.0	96 44 77.1 52.0 64.6	79 33 63.1 43.3 53.2	58 29 44.6 35.4 40.0	70 26 54.0 34.7 44.4	72 30 63.1 33.7 48.4	85 30 66.4 38.5 52.4	93 35 73.5 45.2 59.4	95 37 79.6 49.7 64.7	110 50 88.5 56.7 72.6
со	7460	Riverdale	Max Min Av Max Av Min Avg	102 42 95.9 58.3 77.1	102 51 93.9 58.5 76.2	106 53 89.8 58.8 74.3	94 40 77.3 49.8 63.6	76 31 62.0 41.0 51.5	53 26 44.4 33.8 39.1	65 27 54.4 33.6 44.0	72 24 63.2 31.6 47.4	83 32 66.3M 38.7M 52.5M	92 36 74.2 43.3 58.8	94 36 79.1 48.1 63.6	113 45 88.2 55.4 71.8
co	7800-02	Sanger 1 NE	Max Min Av Max Av Min Avg	104 53 96.5 58.3 77.4	104 52 96.3 58.2 77.2	105 54 90.8 59.6 75.2	94 42 75.9 52.7 64.3	72 37 60.7 45.5 53.1	57 29 46.3 38.0 42.2	63 29 54.1 37.9 46.0	71 30 62.8 35.8 49.3	84 29 66.4 40.2 53.3	95 37 74.9 46.3 60.6	95 37 81.5M 50.1M 65.8M	108 51 90.3 56.4 73.4
co	8375-50	South Belridge	Max Mln Av Max Av Min Avg	104 54 96.5M 63.8M 80.1M	103 53 95.9 63.8 79.8	105 55 91.3 62.6 76.9	97 44 77.6M 52.1M 64.8M	76 33 64.2M 41.0M 52.6M	62 22 47.1M 30.7M 38.9M	63 27 56.0M 33.0M 44.5M	78 31 64.6 36.2 50.4	87 31 67.4 39.4 53.4	94 38 74.8 47.0 60.9	95 40 80.4 50.8 65.6	110 50 90.4M 60.6M 75.5M
co	8407-11	South Lake Parms Hdq.	Max Min Av Max Av Min Avg	103 49 96.0 57.5 76.7	103 49 95.7 59.2 77.4	108 54 91.2 60.1 75.6	94 42 77.0 51.6 64.3	77 30 63.0 40.6 51.8	59 27 44.1 35.1 39.6	67 24 54.6 33.8 44.2	74 25 62.6 31.2 46.9	83 27 66.0 36.6 51.3	92 35 73.7 43.5 58.6	94 33 79.1 45.9 62.5	108 48 88.8 54.2 71.5
В3	8450	Spring Gap Forebay	Max Min Av Max Av Min Avg	M M M M	м м м м	M M M M	86 30 67.1M 39.8M 53.5M	68 22 50.5M 30.9M 40.7M	66 18 55.7M 28.9M 42.3M	58 18 43.9M 25.4M 34.7M	62 18 51.3M 25.1M 38.1M		68 12 52.3M 28.4M 40.4M	74 22 61.8M 33.4M 47.6M	M M M M
В3	8499	Stanislaus Power House	Max Min Av Max Av Min Avg	99 45 91.5 53.5 72.5	103 46 92.8 55.8 74.3	104 48 90.1 57.1 73.6	100 36 73.8 43.8 58.8	75 27 60.6 37.2 48.9	63 25 55.3 30.5 42.9	68 22 54.1 29.5 41.8	72 23 62.5 28.0 45.3	82 23 62.7 32.6 47.7	88 30 72.4 41.3 56.9	91 31 76.6 46.4 61.5	106 42 85.5M 53.7M 69.6M
C3	86 20	Success Dam	Max Min Av Max Av Min Avg	102 54 94.6 62.1 78.4	101 53 94.5 62.8 78.6	105 58 90.6 63.6 77.1	99 47 77.5 55.7 66.6	78 36 63.6 45.0 54.3	65 26 49.0 34.2 41.6	67 29 55.2 34.7 44.9	72 31 62.9 36.9 49.9	82 31 64.8 40.8 52.8	94 37 72.6 47.3 60.0	94 37 78.7 50.8 64.8	111 47 89.3 58.0 73.7
C7	8755	Taft KTKR Radio	Max Min Av Max Av Min Avg	103 56 94.0M 65.2M 79.6M	102 55 94.2 66.0 80.1	104 51 88.4 63.3 75.8	96 48 75.5 55.5 65.5	76 35 62.3 43.4 52.9	61 26 47.6 31.9 39.8	65 22 54.4M 34.0M 44.2M	73 31 61.2 35.7 48.5	85 32 63.6 40.2 51.9	92 36 70.4 46.5 58.4	92 38 76.9 50.5 63.7	107 44 87.7 59.7 73.7
C2	8868	Terminus Dam	Max Min Av Max Av Min Avg	101 54 93.9 63.9 78.9	101 54 93.6 65.4 79.5	105 57 89.7 64.6 77.1	97 49 76.9 56.0 66.4	76 35 62.1 45.0 53.6	63 26 47.0 33.6 40.3	66 28 54.2 35.4 44.8	70 32 61.5 37.7 49.6	85 33 63.2 40.8 52.0	90 38 71.5 46.6 59.1	93 36 77.4 51.0 64.2	109 47 87.8 58.1 73.0
со	9006	Tranquillity Glotz	Max Min Av Max Av Min Avg	100 52 91.4 59.3 75.3	98 50 88.5 59.4 74.0	98 54 84.6M 59.4M 72.0M	88 40 75.7M 50.9M 63.3M	77 28 59.8 41.8 50.8	48 24 42.5 33.3 37.9	M 50.8M 33.0M 41.9M	M M M M	74 28 60.4 36.4 48.4	84 35 68.8 42.2 55.5	M 72.0M 44.9M 58.5M	M M M M
CI	9025	Trimmer RS	Max Min Av Max Av Min Avg	102 45 95.1 57.5 76.3	103 49 96.2 61.0 78.6	104 49 91.5 61.3 76.4	-	= = = = = = = = = = = = = = = = = = = =	-	-	-	-	-	-	1
co	9051	Tulara	Max Min Av Max Av Min Avg	106 54 97.9 60.4 79.1	104 54 97.1 60.6 78.8	107 56 92.1 60.5 76.3	98 44 78.4 52.5 65.4	78 33 62.5 43.4 53.0	55 28 43.2 35.8 39.5	68 26 53.6 35.7 44.6	76 30 63.1 34.5 48.8	86 30 65.9 39.0 52.4	96 37 75.0 45.7 60.4	97 40 81.8 49.8 65.8	113 48 90.8 57.1 74.0
со	9145	U. S. Cotton Field Sta.	Max Min AV Max AV Min AVg	102 55 94.8 62.6 78.7	101 50 93.8 61.5 77.6	108 57 90.1 62.1 76.1	95 46 76.7 53.6 65.2	80 34 62.6 43.9 53.2	59 27 45.3 34.7 40.0	68 26 54.8 34.1 44.4	76 27 63.4 33.1 48.2	86 30 66.5 39.5 53.0	94 39 73.8 46.5 60.2	96 39 80.6 50.0 65.3	111 48 89.3 58.8 74.1

TABLE A-3 (Cont.)

TEMPERATURE DATA FOR 1963-64 SAN JOAQUIN DISTRICT

980	Alpha					19	63	In	degrees	Fahrsnh	eit	196	54		
Drainage Bosin	Order Number	Station Name		July	Aug.	Sept.	Oct	Nov	Oec	Jan.	Feb	Mar.	Apr.	May	June
87	9162-80	Upper Chiqulto	Max Min Av Max Av Min Avg	78 26 74.2M 32.1M 53.1M	82 22 72.4M 28.3M 50.4M	84 23 69.9M 30.7M 50.3M				losed fo	r Winter	Season			
CD	9304	Vestal	Max Min Av Max Av Min Avg	104 57 96.7 65.4 81.0	103 61 97.0M 67.6M 82.3M	107 58 91.7 66.4 79.6	97 51 78.1 58.2 68.2	79 37 64.1M 47.0M 55.6M	63 28 49.4 37.2 43.3	69 27 57.3 37.1 47.2	74 32 65.2M 37.9M 51.6M	85 32 67.3M 42.3M 54.8M	98 39 76.8M 49.6M 63.2M	97 39 82.6M 53.0M 67.8M	113 53 91.8M 63.3M 77.6M
во	9565	Westley	Max Mln Av Max Av Min Avg	98 47 91.2M 53.7M 72.4M	97 48 91.4M 54.4M 72.9M	M M M M	M M M	70 29 M M M	53 26 M M M	60 27 53.8M 34.5M 44.2M	M 63.4M 35.0M 49.2M	79 30 66.7M 39.9M 53.3M	88 33 73.5M 42.7M 58.1M	90 36 78.0M 45.1M 61.1M	105 47 85.4M 51.8M 68.6M
C1	9749	Wishon Res.	Max Min Av Max Av Min Avg	80 40 74.5M 46.4M 60.4M	м м м м	90 37 M M M	81 30 63.1m 38.8m 51.0m	м м м м	м м м м	55 10 43.4M 22.8M 33.2M	55 13 47.0M 22.7M 34.9M	61 7 43.0M 21.3M 32.2M	68 14 51.7M 27.5M 39.6M	70 19 M M M	82 29 65.1M 41.0M 53.1M
C4	9805	Weody	Max Min Av Max Av Min Avg	108 49 92.8 58.2 75.5	M. 37 M 58.6 M	104 34 89.5 55.7 72.6	94 41 74.4 51.4 62.9	77 30 62.0 40.2 51.1	67 24 52.0 30.0 41.0	65 25 52.4M 31.9M 42.2M	68 28 58.8 33.6 46.2	81 27 60.0 35.9 47.9	92 33 68.9 41.6 55.2	92 32 75.8 45.8 60.8	109 41 86.9 56.8 71.9

TABLE A-4
MONTMLY SUMMARY OF EVAPORATION STATION OATA

rainage Basin	Alpha					19	63					19	64		
Bas	Order Number	Station Name		July	Aug.	Sept.	Oc1	Nov	Oec.	Jon	Feb	Mar.	Apr.	Мау	June
со	0332-02	Arvin-Frick	Evap Wind Precip Av Max Av Min	9.69 1723 .00 92 57	7.85 1318 .02 93 56	5.50 1046 1.20 87 58	3.35 1040 .76 75 48	2.05 1720 1.51 61 38	.77 1280 .15 42 29	1.46 1669 .49 52 28	3.32 1944 .44 61 29	4.46 2477 .52 64 35	6.06 2458 .69 70 42	8.18 2766 .50 78 47	9.78 3107 .02 86 54
co	2013	Corcoran El Rico l	Evap Wind Precip Av Max Av Min	14.03E 2390E .00 96.9 57.5	13.02 2115 .06 95.0 57.9	8.25 1940 .51 90.2 E 59.2 E	4.63 1720 1.15 78.6 53.5	1.32 1520 .92 62.4 43.9	.41 1120 .10 44.3 M 36.1 M	1.09 1515 .86 53.1 34.4	2.94 1425 .08 61.7 31.2	4.98 2520 .95 65.5 35.5	6.73 2110 .53 73.4 41.2	8.77 2216 .29 79.5 45.2	13.33 2834 .00 90.1 54.0
C6 -	2222-80	Cummings Valley	Evap Wind Precip Av Max Av Min	11.74 1810 .00 84.1 43.9	11.33 1940 .70 85.6 44.9	8.17 1720 1.62 83.5 48.7	4.55 1520 .95 73.4 39.2	3.75 2850 2.44 58.9 33.0	6.05 4070 .72 59.1 28.5	3.24 3500 1.06 53.2 23.3	4.32 3320 .65 56.2 22.1	3.93 2920 2.19 54.1 26.6	5.38 2720 1.39 58.5 31.2	6.99 2680 1.42 63.3 34.2	10.27 2470 .10 74.3 42.6
В4	2473	Don Pedro Reservoir	Evap Wind Precip Av Max Av Min	13.21 - .00 95.3 58.0	12.28 - .00 95.2 58.3	8.80 - .25 91.8 57.8	4.53 - 1.72 78.0 49.0	1.89 - 4.98 51.2 39.4	.75 - .63 47.5 30.8	1.46 - 2.80 52.9 31.4	2.63 - .35 61.3 30.4	3.86 - 3.19 63.0 35.5	6.24 - .78 71.9 39.1	6.93 - 1.53 77.3 M 44.0 M	.50 86.3 51.4
C5	4303	Isabella Dam	Evap Wind Precip Av Max Av Min	14.15 2344 .00 92.8 59.5	12.21 1947 1.16 93.4 59.6	8.00 1501 1.16 89.5 58.7	4.73 1544 2.02 76.8 49.7	2.48 1595 1.20 63.0 39.7	2.05 1202 .46 60.6 31.7	2.27 1932 .97 52.3 31.4	3.21 1493 .07 60.9 29.5	4.34 2291 1.68 59.2 33.8	6.30 2181 .50 66.9 40.5	8.92 2600 .69 73.5 46.7	11.81 2655 .03 84.5 56.5
во	5117	Los Banos Field Sta.	Evap Wind Precip Av Max Av Min	16.02 4056 .00 92.5 57.8	13.35 3156 .00 94.3 57.4	9.58 2687 .08 89.4 56.7	5.08 2082 1.17 77.4 49.3	1.19 1542 .87 60.5 39.2	.46 1167 .06 46.1 31.8	1.53 1933 .72 54.0 32.4	3.63 2070 .04 62.9 34.2	6.06 3588 .98 66.0 39.1	9.61 3709 .33 74.0 44.1	11.27 4259 .00 77.0 46.8	14.64 5187 .36 85.9 52.7
Cl	6895	Pine Flat Dam	Evap Wind Precip Av Max Av Min	12.07 721 .00 97.6 58.1	9.97 628 T 97.8 56.6	7.47 703 .20 93.2 58.4	4.23 681 1.53 79.4 51.1	1.40 631 3.96 63.0 41.3	.88 701 .65 49.4 33.5	1.23 790 1.59 54.4 32.5	2.37 878 .03 61.8 32.6	3.43 991 2.77 64.1 36.6	5.34 914 1.13 72.4 43.1	7.32 867 1.12 78.8 47.5	10.05 916 .08 90.1 53.9
₿6	7273	Raymond 9 N	Evap Wind Precip Av Max Av Min	11.99 579 .00 94.5 54.1	9.44E 532E .00 96.7 M 57.9 M	9.60E 482E .49 94.0 57.1	M 346 1.85 M M	M M M M	M M M M	1.78 467 2.12 53.7 31.0	2.49 435 .01 63.5 29.4	M M M M	M M M M	7.45 408 .90 77.0 39.9	8.07 696 .52 87.6 48.7
С3	8620	Success Dam	Evap Wind Precip Ay Max Av Min	14.20 1776 .00 94.6 62.1	12.83 1648 .21 94.5 62.8	9.12 1575 .45 90.6 63.6	5.18 1363 1.89 77.5 55.7	2.20 1266 2.28 63.6 45.0	.79 1084 .30 49.0 34.2	1.52 1362 .89 55.2 34.7	3.18 1545 .34 62.9 36.9	4.34 1530 1.97 64.8 40.8	7.21 1674 1.10 72.6 47.3	9.90 1837 .86 78.7 50.8	12.02 1727 .12 89.3 58.0
C7	8755	Taft KTKR Radio	Evap Wind Precip Av Max Av Min	14.21 750 .00 94.0 M 65.2 M	13.56 710 T 94.2 66.0	9.06 570 .56 88.4 63.3	5.40 570 .86 75.5 55.5	2.55 660 1.54 62.3 43.4	1.08 510 .08 47.6 31.9	1.93 1080 .68 54.7 M 34.0 M	4.04 1150 .09 61.2 35.7	5,81 1710 .37 63.6 40.2	9.12 2000 .20 70.4 46.5	10.91 1740 .07 76.9 50.5	13.21 1560 .00 87.7 59.7
C2	8868	Terminus Dam	Evap Wind Precip Av Max Av Min	13.64 1268 .00 93.9 63.9	12.77 1445 .11 93.6 65.4	9.65 1621 .37 89.7 64.6	5.27 1474 1.52 76.9 56.0	2.11 1476 2.59 62.1 45.0	.77 1237 .34 47.0 33.6	1.52 1634 .96 54.2 35.4	3.39 1802 .41 61.5 37.7	4.42 1756 2.41 63.2 40.8	6.25 1356 1.46 71.5 46.6	9.20 1581 1.50 77.4 51.0	12.19 1618 .05 87.8 58.1
со	9145	U. S. Cotton Field Sta.	Evap Wind Precip Av Max Av Min	12.29 1156 .00 94.8 62.6	10.93 962 .03 93.8 61.5	7.31 793 .61 90.1 62.1	4.75 762 .99 76.7 53.6	1.70 668 1.10 62.6 43.9	.62 586 .10 45.3 34.7	1.19 1028 .40 54.8 34.1	3.72 1161 .19 63.4 33.1	5.03 2104 .34 66.5 39.5	7.89 2443 .76 73.8 46.5	10.89 2841 .04 80.6 50.0	13.17 2673 .00 89.3 58.8
BD	9565	Westley	Evap Wind Precip Av Max Av Min	9.10E - .00 91.2 M 53.7 M	7.16 - .00 91.4 M 54.4 M	м - м м	м - м м	M - 1.64 M M	.38 - .07 M M	3.40 1.86 53.8 M 34.5 M	3.62 - .00 63.4 M 35.0 M	5.52 - .73 66.7 M 39.9 M	7.29 - .19 73.5 M 42.7 M	8.21 - .32 78.0 M 45.1 M	9.46 - .85 85.4 M 51.8 M

APPENDIX B
SURFACE WATER FLOW

TABLE OF CONTENTS

		Page
ALPHABETIC	CAL INDEX TO TABLES	. 52
DRAINAGE E	BASIN INDEX TO DAILY MEAN DISCHARGE TABLES	. 53
INTRODUCTI	ION	. 55
Defin	nition of Terms	. 55
Surfa	ace Water Gaging Station Designation	• 55
EXPLANATIO	ON OF TABULAR DATA	. 56
Lakes	and Reservoirs	• 56
Daily	Mean Discharge	• 56
Daily	Mean Gage Height	• 56
Diver	sions	• 57
	LIST OF TABLES	
Table Number		
B-1	Gaging Station Additions and Discontinuations	. 59
B-2	Daily Inflow Millerton Lake	. 60
B-3	Daily Content Millerton Lake	. 61
B-4	Daily Mean Discharge	. 62
B-5	Daily Mean Gage Height	. 116
B-6	Diversions	. 143
B-7	Diversions and Acreage IrrigatedEast Side Canals and Irrigation Districts	. 152
B-8	Imports and Exports	. 152
B-9	Deliveries from Central Valley Project Canals	. 153
	LIST OF PLATES	
	(Bound at end of volume)	
Plate Number		

B-1

Location of Surface Water Measurement Stations

Page

	Daily Mean Discharge	Daily Mean Gage Height and Crest Stages
Bear Creek below Bear Reservoir	79	
near Catheys Valley	78	
Big Creek Diversion near Fish Camp	66 59	
Burns Creek below Burns Reservoir	81	
at Hornitos	80 106	
Chowchilla River near Raymond	106	118
East Fork near Ahwahnee	70	
Middle Fork near Nipinnawassee	72 71	
Cross Creek below Lakeland Canal #2	100	
Delta-Mendota Canal near Tracy	63 64	
Dry Creek near Modesto	92	133
Elk Bayou near Tulare	101	İ
Fresno River, Lewis Fork near Oakhurst	67 102	
to Tule River	103	
Hubbs-Miner Ditch at Porterville	112 115	
Kings River, South Fork below Empire Weir #2	99	
Mariposa Bypass near Crane Ranch	76	
Mariposa Creek near Catheys Valley	74 75	
Maxwell Creek at Coulterville	84	
Merced River at Cressey	86 85	123 122
near Livingston	85	124
North Fork near Coulterville	83	
Miami Creek near Oakhurst	68 60	
Daily Content	61	
Orestimba Creek near Crows Landing	87 77	
Owens Creek below Owens Reservoir	59	
Poplar Ditch near Porterville	111	
Porter Slough at Porterville	107 109	
Porter Slough Ditch at Porterville	108	
Rhodes-Fine Ditch near Porterville	113	106
San Joaquin River at Crows Landing Bridge	69	126
at Fremont Ford Bridge		121
below Friant	62 88	117 128
at Grayson	94	120
at Maze Road Bridge		136
near Mendota	65	125
at Patterson Bridge		127
above Sand Slough near El Nido	82	119 120
near Stevinson	98	142
at West Stanislaus Irrigation District Intake	0.7	129
Stanislaus River at Koetitz Ranch	97	140 141
at Orange Blossom Bridge	95	137
at Ripon	96	139 138
Striped Rock Creek near Raymond	73	133
Tulare Lake	105	116
Tule River below Porterville	103	
Tuolumne River at Hickman Bridge	91	132
at La Grange Bridge	89	130 134
at Roberts Ferry Bridge	90	131
at Tuolumne City	93	135
Vandalia Ditch near Porterville	110 114	
		<u>Page</u>
DCTANG		2440
RSIONS Deliveries from Central Valley Project Canals		153
Dry Creek		149

	-	
DIVER	IONS	
	eliveries from Central Valley Project Canals	153
	ry Creek	149
	ast Side Canals and Irrigation Districts	152
	erced River	147
	an Joaquin River	
	Vernalis to Fremont Ford Bridge	143
	Fremont Ford Bridge to Gravelly Ford	145
	Gravelly Ford to Friant Dam	146
	tanislaus River	150
	ule River	
	uolumne River	148

ALPHABETICAL INDEX TO TABLES

	<u>Page</u>				
LAKES AND RESERVOIRS Millerton Lake, Daily Inflow Millerton Lake, Daily Content Tulare Lake, Daily Mean Gage Height	61				
GAGING STATION ADDITIONS AND DISCONTINUATIONS	59				
DRAINAGE BASIN INDEX TO DAILY MEAN DISCHARGE TABLES					
SAN JOAQUIN RIVER BASIN					
San Joaquin River					
Daily Inflow Millerton Lake Daily Content Millerton Lake San Joaquin River below Friant Delta-Mendota Canal near Tracy Delta-Mendota Canal to Mendota Pool	61 62 63				
San Joaquin River near Mendota	. 65				
Lewis Fork Fresno River near Oakhurst	67 68				
East Fork Chowchilla River near Ahwahnee	. 71 . 72				
Striped Rock Creek near Raymond	. 74				
Mariposa Creek below Mariposa Reservoir	. 76				
Bear Creek Bear Creek near Catheys Valley					
Burns Creek Burns Creek at Hornitos					
San Joaquin River near Stevinson	. 59				
North Fork Merced River near Coulterville Maxwell Creek at Coulterville Merced River below Snelling Merced River at Cressey	. 84 . 85				
Orestimba Creek near Crows Landing	. 88				
Tuolumne River Tuolumne River at La Grange Bridge Tuolumne River at Roberts Ferry Bridge Tuolumne River at Hickman Bridge Dry Creek near Modesto Tuolumne River at Hickman Bridge	. 90 . 91 . 92				
Tuolumne River at Tuolumne City	. 94				
Stanislaus River at Orange Blossom Bridge	. 96				
TULARE LAKE BASIN					
Kings River South Fork Kings River below Empire Weir #2	. 99				
Kaweah River Cross Creek below Lakeland Canal #2	. 100				
Friant-Kern Canal Delivery to Porter Slough	. 102				
Tule River North Fork Tule River at Springville	. 104				
Tule River Diversions Campbell-Moreland Ditch above Porterville	. 106				
Porter Slough Ditch at Porterville Porter Slough near Porterville Vandalia Ditch near Porterville Poplar Ditch near Porterville	. 109 . 110 . 111				
Hubbs-Miner Ditch at Porterville	. 113				
Kern River near Bakersfield	. 115				

INTRODUCTION

This appendix presents surface water data for the Water Year 1964 which is from October 1, 1963, to September 30, 1964. The data presented in this appendix consists of daily mean discharge, station locations, daily mean gage heights, and diversion quantities.

Stream gaging station descriptions presented show the historic maximum discharge of record and the naximum discharge for the report year. Locations of the gaging stations and other important data on the Length of record and datum of gage are also presented.

Quantities of daily mean discharge for most stations shown are computed by an electronic computer. The gage height data are fed into the computer simultaneously with rating and shift correction data. Daily mean discharge, total monthly acre-feet, and instantaneous maximum and minimum discharge are computed. The gage height data are extracted from the standard recorder chart by a semiautomatic chart-reading machine and out into machine language. The record for those stations affected by backwater conditions is not adaptable computation by machine methods and is computed manually by standard methods.

Daily mean stage tables are presented for key stations on the major streams in the San Joaquin Valley. These daily mean stages are computed by the electronic computer, as mentioned above. The gage leights are computed to the nearest one-hundredth of a foot, and the major crests for the year are shown.

Quantities of water diverted for use are shown as monthly total acre-feet and total acre-feet liverted for a certain reach of a stream.

efinition of Terms

A list of definition of terms as used herein follows:

Second-foot or cubic foot per second is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second.

Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Drainage area</u> of a stream above a specific location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

Unimpaired runoff is the flow that would occur naturally at a point in a stream if there were:

1) no upstream controls such as dams and reservoirs; (2) no artificial diversions or accretions; and (3) to changes in ground water storage resulting from development. Unimpaired flow is computed from measured tunoff by allowing for man-made changes in natural conditions.

Water Year is the 12-month period from October 1 of any year through September 30 of the subsequent year and is designated by the calendar year in which it ends.

urface Water Gaging Station Designation

The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main liver basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the liver basin are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, andicates that the station is a surface gravity diversion station. Each station is listed by name as well as machine index number.

EXPLANATION OF TABULAR DATA

The tabular data presented in this appendix are divided into the general categories of daily mean discharge, daily mean stage, and monthly diversions.

The area to which these data pertain is shown as AreaIV on page iii and on Plate B-1. Table B-1 presents gaging station additions and discontinuations.

Lakes and Reservoirs

Two types of data are presented for lakes and reservoirs. Table B-2 presents inflow to Millerton Lake. Table B-3 presents the daily content of Millerton Lake in thousands of acre-feet.

Daily Mean Discharge

Presented in Table B-4 are records of daily mean discharge, gaging station location, period of record, maximum flow of record, maximum and minimum flow for the season, as well as the total flow in acre-feet for the 1963-64 water year.

The streamflow tables are arranged, for each stream or stream system, in downstream order. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (Merced River at Cressey) or well-known landmark (San Joaquin River at Fremont Ford Bridge).

Each stream gaging station has a stage-discharge relationship or rating developed. The rating gives the flow in second-feet for each gage height at the station. When flows at a single station occur in excess of 140 percent of the highest measurement on the rating, the computed daily mean discharges from the electronic computer are shown as estimated. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed at the channel is of loose shifting sand, or where aquatic growth builds up in the channel changing the flow regimen.

Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge.

All streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. Since the results are affected by inherent inaccuracies in the procedures and equipment used, it becomes necessary to establish limits of accuracy for which the data are reported. The following is a listing of significant figures used in reporting streamflow data;

- 1. Daily flows second-feet
 - 0.0 9.9 Tenths 10 - 99 2 significant figures 100 - up 3 significant figures
- 2. Means second-feet

0.0 - 99.9 Tenths 100 - 999 3 significant figures 1000 - above 4 significant figures

The water year totals are reported to a maximum of four significant figures.

Daily Mean Gage Heights

Presented in Table B-5 are records of daily mean gage heights for key stations on major streams in the San Joaquin Valley for the 1963-64 water year.

At the bottom of the stage tables are shown the major river crests occurring for the 1963-64 water year. The table also shows the location of the station, maximum gage height of record, period of record, and datum of gage. The elevation of water surface at the gaging station is obtained by adding the gage height reading to the elevation of the gage datum presented in each table. Gage height for stage tables are computed from recorder charts and are reported to one-hundredth of a foot.

Of the 26 stations for which daily mean gage heights are presented in this report, 13 have computed daily mean discharge. These data are included in the streamflow tables.

Diversions

Presented in Table B-6 are the amounts of water diverted for irrigation during the period October 1, 1963, through September 30, 1964. The amounts of water diverted by pumping were determined by rating the capacity of each diversion pumping plant and collecting data on hours of operation. The amounts of water diverted by gravity (indicated by "Gravity" in column headed "Number and Size of Pump") were determined either by calibrating suitable measuring devices or by rating canals in a manner similar to that used to rate streamflow stations.

Because of the intermittent operation of most diversion facilities, the monthly diversion values are reported in acre-feet to three significant figures. The totals for individual water users and stream reaches are reported to four significant figures.

Table B-7 shows the amounts of water diverted by east side canals and the several east side irrigation districts that divert water from the San Joaquin, Merced, Tuolumne, and Stanislaus Rivers.

Presented in Table B-8 are the amounts of water imported to the San Joaquin Valley via the Delta-Mendota Canal and the amount of water exported from the San Joaquin Valley via the Hetch Hetchy Aqueduct to the city and county of San Francisco.

Presented in Table B-9 are the deliveries from the Central Valley Project canals.

The data presented in Tables B-7, B-8, and B-9 were supplied by other agencies, are published as received, and are not necessarily rounded to the criteria which are used for data computed by the Department of Water Resources.

TABLE B-1

GAGING STATION ADDITIONS AND DISCONTINUATIONS

ADDITIONAL STATIONS

Panoche Drain near Dos Palos

(Under a cooperative agreement with the Panoche Drainage District this station was reactivated on September 27, 1964.)

DISCONTINUED STATIONS

Panoche Drain near Dos Palos

(Station discontinued July 2, 1963.)

PUBLICATION DISCONTINUED

Burkhardt Drain near Grayson

DAILY INFLOW (IN CUBIC FEET PER SECOND)

(v	WATER YEAR	STATION NO.	STATION NAME
	1964	871121	MILLERTON LAKE AT FRIANT

DAY	ост.	NOV,	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D
,	1656	1226	1456	802	1077	806	1717	1752	2545	1744	1814	1617	T
2	838	1259	2103	900	959	1143	1760	1676	2473	1763	1714	1994	
3	787	1240	1899	820	1094	1115	1789	1719	2324	1778	1603	1979	
4	920	1214	1973	711	973	1056	1751	1673	2393	1757	1874	2053	
5	374	1447	2027	770	1034	995	1360	1781	2423	1767	1812	1982	
6	809	1855	1983	963	836	999	1472	1726	2430	1735	1861	1900	
7	949	1693	1847	657	1010	721	1485	1738	2295	1821	1815	1853	
8	781	1692	1711	850	943	551	1247	1730	2464	1721	1823	1862	
9	827	1694	1765	936	867	1192	1308	1691	2500	1629	1796	1957	
10	780	1697	1703	978	840	1165	1411	1740	2399	1737	1931	1982	
11	1138	1685	1494	488	950	864	1741	1729	2400	1662	1842	1954	١,
12	609	1390	1689	452	908	1266	1735	1690	2461	1852	1881	1964	11
13	694	1102	1667	689	1069	900	1742	1731	2503	1759	1911	1868	
14	831	1615	1484	768	826	695	1703	1716	2417	1796	1992	1793	
15	722	1754	1386	710	808	529	1731	1763	2458	1773	2114	1800	
16	741	1883	1339	735	538	906	1661	1692	2446	1799	1955	1655	
17	942	1921	1526	735	899	839	1758	1700	2349	1811	1971	1620	
18	894	1750	1570	931	1115	1147	1705	1699	2473	1747	2096	1551	
19	804	2045	1543	817	982	1247	1766	1711	2401	1769	2085	1324	
20	865	2034	1629	1343	947	1367	1720	1673	2380	1766	2045	1409	
21	1529	2108	1472	1372	999	1689	1700	1729	2500	1677	1990	1475	
22	1194	1890	1424	1063	936	1719	1726	1675	2466	1777	1903	1439	
23	1484	1966	1528	998	999	1640	1721	1697	2457	1765	2074	1782	
24	1316	1984	1536	1085	940	1797	1667	1729	2538	1744	1825	1612	
25	1222	1994	1097	784	939	1753	1666	1697	2484	1739	2047	1511	
26	1344	2013	1354	585	845	1737	1421 b	1812	2416	1730	2030	1367	
27	745 a	2035	1473	658	927	1109	1723	2740	2494	1802	2070	1452	
28	1302	1979	1501	1051	859	1423	1734	2469	2464	1728	1982	1410	
29	1352	1931	1393	921	504	1383	1704	2749	2076	1781	2037	1320	
30	1352	1071	1023	860		1464	1713	2451	1781	1760	1863	1535	17
31	1421		740	940		1827		2355		1746	1899		3
MEAN	1007	1706	1559	851	918	1195	1645	1853	2407	1756	1931	1707	M
MAX.	1656	2108	2103	1372	1115	1827	1789	2749	2545	1852	2114	2053	N
MIN.	374	1071	740	452	504	529	1247	1673	1781	1629	1714	1320	٨
AC. FT.	61990	101488	95871	52308	52806	73476	97741	113917	143226	107970	116721	101593	A

E - ESTIMATED NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *
a - 25-hour day
b - 23-hour day

MEAN		MAXIMI	J M				MINIM	J M		$\overline{}$
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1545					,)

TOTAL ACRE FEET 1121107

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE		
		1/4 SEC. T. B. R.	SEC. T. B.R. DF RECOR			DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.	
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM	
37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE		1941		0.00	USCGS	

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Inflow to Friant Reservoir takes into account change in storage, release, spill, precipitation, and evaporation, and is representative of the natural flow which would pass the dam site if the dam had not been constructed. Figures shown under total discharge are computed inflow to the reservoir. Period of record for computed inflow is shown under period of record for discharge. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi.

TABLE B-3

DAILY CONTENT

IN THOUSANDS OF ACRE-FEET)

WATER YEAR STATION NO. STATION NAME 1964 B71100 MILLERTON LAKE AT FRIANT

AY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
-						216		212 7		240.3	220.0	127.1	1
11	203.5	157 • 1	239 • 7	330.7	372.2	315+3	283.9	342.7	404.7	368.1	228.0	137.1 137.5	1 1
2	200.6	157.8	243.7	332.4	372.2	313.1	286 • 4	344.7	406.6	364.6	222.9 217.9	138.1	3
3	197.6	158 • 6	247.4	333.9	372.4	310.9	289.1	346.7	408 • 2	361.6		139.1	
4	194.9	159.8	251.2	335.2	372.5	308.3	291.8	348.5	409.9	359.0	213.0	140.2	4
S	190•2	161.7	255.1	336.6	372.5	305 • 4	293.6	350•5	411.7	355.9	207.9	140.2	5
6	186.4	164.4	258•9	338.4	372.0	302.6	295.7	352.7	413.3	352.1	202.8	140.8	6
7	182.8	166.8	262.4	339.6	371.5	299.5	297.7	355.2	414.0	348.0	197.8	141.3	7
8	179.4	169.1	265.7	341.2	370.3	295.9	299.2	357.7	414.5	343.4	193.5	141.5	8
9	176.2	171.4	269.1	342.9	368.7	293.4	300.8	360.2	415.0	338.4	188.8	142.2	9
0	173•2	173.7	272•3	344.7	367.2	290.7	302.6	362.8	414.9	333.8	184.1	143.6	10
11	171.2	176.0	275.2	345.6	366.0	287.4	305.0	365.2	414.4	329.5	179.2	145.1	11
12	168.5	177.6	278.4	346.3	364.5	285.1	307.3	367.4	414.1	325.2	174.3	147.2	12
13	166.2	178.5	281.6	347.6	363.1	282.5	309.4	369.5	414.9	320.3	169.5	149 · I	13
14	164.3	180.3	284.4	349.0	361.3	279.9	311.3	371.5	415.0	315.4	165.2	150.9	14
5	162.3	182.8	287.1	350.3	359.4	277.6	313.0	373.7	414.2	310.3	161.9	152.5	15
	160.5	185.9	289.6	351.6	356.6	275 • 7	314.4	375•7	413.0	305.4	158.9	153.9	16
16	159.7	189.4	292.5	353.0	354.3	273.7	316.0	377.5	411.1	301.1	156.0	155.3	17
7 8	158.9	192.6	295.6	354.7	352.2	272.3	317.6	379.2	408.9	297.1	153.4	156.8	18
9	157.8	196.5	298.5	356.2	349.5	271.0	319.3	380.8	406.3	292.9	150.7	157.9	19
10	156.6	200.5	301.6	358.7	346.5	270.0	321.1	382.3	403.7	288.5	149.2	159.1	20
:0	190.0	200.5	301.0	330•7	340.5	210.0	36141	30243	10501	2000			20
21	156.7	204.5	304.4	361.3	343.7	269.7	323.0	383.9	401+0	283.9	148.0	160.3	21
!2	156.1	208.1	307.1	363.3	340.7	269.4	325.0	385.5	397.9	279.4	147.0	161.4	22
133	156.2	211.9	310.1	365.1	337.7	269.3	326.9	387.0	394.4	274.6	146.1	163.2	23
14	155.8	215.8	313.0	367.2	334.4	270.1	328.9	388.4	390.8	269.9	144.4	164.6	24
5	155.9	219.6	315.0	368.6	331.1	271.6	331.1	389•4	387.0	265.4	143.1	166.1	25
6	156.2	223.5	317.6	369.7	327.8	273.3	332.6	390.5	384.3	260.3	141.7	167.3	26
7	155.3	227.4	320.4	370.9	325.1	274.3	334.7	393.2	381.9	254.9	140.4	168.7	27
8	155.6	231 • 2	323.3	371.6	322.0	276.0	336.7	395.4	379.4	249.2	139.2	169.9	28
9	155.9	234.9	326.0	370.2	318.3	277.7	338.7	398.2	375.9	243.6	138.4	170.9	29
o	156.2	236.9	327.9	369.4	31003	279.4	340.7	400.5	371.9	238.1	137.6	172.3	30
ī	156.7	230 1	329.2	370.8		281.7		402.5	2.00.	232.8	137.3		31
	hly												
nan	ge -48.3	+80.2	+92.3	+41.6	-52.5	-36.6	+59.0	+61.8	-30.6	-139.1	-95.5	+35.0	
(!													

- ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU	M					MINIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MQ.	DAY	TIME	DISCH	IARGE	GAGE HT.	MO.	DAY	TIME

TOTAL ACRE FEET

	LOCATION			MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE				
	TITUOE	LONGITUDE	1/4 SEC. T. & R.	SEC. T. & R. OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LA	THOOL	LONGITUDE	M.D.8.8M,	C.F.S.	GAGE HT.	DATE	o to or mittee	ONLY	FROM	то	GAGE	DATUM
37	00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE		1941		0.00	uscgs

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi.

TABLE B-4

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1964	807885	SAN JOAQUIN RIVER BELOW FRIANT	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D
1	90	62 *	51	51	49	91	76	113	126	151	166	134	
2	90	62	51	51	49	91	70	118	122	151	166	134	
3	88	62	52	51	49	88	73	120	118	151	166	134	
4	68	61	52	51	49	85	78	118	118	151	161	132	
5	88	62	52	50	48	84	78	118	118	149	176	126	
6	88	62	52	50	52	84	75	115	118	151	176	118	
7	85	62	52	50	57	84	70	111	116	146	176	116	
8	84	62	51	50	56	64	70	111	122	151	174	118	
9	82	62	51	51	57	84	76	113	126	157	174	118	
10	82	61	51	51	56	80	84	113	120	164	176	116	
11	78	61	51	51	56	76	66	113	117	169	176	118	1
12	70	61	51	51	56	74	90	113	117	169	178	120	1
13	70	61	51	51	55	70	90	113	115	166	174	120	1
14	70	62	51	50	58	69	91	115	115	166	169	120	
15	69	63	51	50	63	69	96	117	117	166	169	122	1
16	70	62	50	50	64	69	111	120	117	166	169	122	
17	70	62	50	49	67	69	115	120	122	166	169	122 122	
16	69	61	50	52	70	69	115	120	126	162	166 164 *	122	
19	68	61	50	54	73	69	117	122	126	160	164	122	
20	68	60	51	54	73	70	117	122	124	160	164	122	
21	70	54	51	57	73	70	117	122	124	160	164	122	
22	69	54	50	55	73	73	118	124	132	160	164	115	
23	66	54	50	50	73	67	117	124	138	164	164	108	
24	68 *	53	49	51	75	60	113	124	136	171	164 164	108	
25	68	53	49	51	74	56	109	124	140	171	164	106	
26	68	52 *	50	51	73	58	101	124	153	169	164	106	1
27	67	51	50	52	87	61	102	124	153	169	164 *	109	1
26	68	51	50	52	93 *	65	102	126	153	166	146	109	1
29	68	52	51	51	93	67	102	126	153	166	136	109	1
30	68	52	51	51		68	109	126	153	169 *	136	109	*
31	64	2.	51	50		75		126		166	136		-
MEAN	74.6	58.6	50.7	51.3	64.5	73.6	95.7	119	128	161	166	119	M
MAX.	90.0	63.0	52.0	57.0	93.0	91.0	120	126	153	171	181	134	M
MIN.	64.0	51.0	49.0	49.0	48.0	58.0	70.0	111	115	146	136	108	٨
AC. FT.	4590	3490	3120	3150	3710	4520	5700	7330	7610	9920	10190	7070) A

E - ESTIMATED

NR -- NO RECORD

-- DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	м		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
97.0	183	2.62	8	10	0800
	<u></u>				

	MINIM	JM_		$\overline{}$
DISCHARGE	GAGE HT.	MO.	DAY	TIME
48	1.89	2	5	

TOTAL
ACRE FEET
70400

	LOCATION	1	MA	XIMUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAO			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	0	DISCHARGE	GAGE NEIGHT	PERIOD		ZERO	REF.
LATITUDE	LUNGITUDE	M.O.8.&M.	CFS	GAGE HT.	OATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
36 59 04	119 43 24	SW7 11S 21E	77,200	23.8	12/11/37	OCT 07-DATE		1938		294.00	USGS

Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi.

AILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 895925 DELTA-MENDOTA CANAL NEAR TRACY

PAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1666	644	105	141	1004	3291	1795	3302	3071	4353	4622	2285	1
2	1669	645	105	141	1004	2675	1828	3299	3069	4356	4592	2288	2
3	1671	646	105	141	934	2751	1623	3301	3064	4351	4585	2057	3
4	1904	538	106	142	862	2873	1822	3278	3195	4280	4446	2059	4
5	2278	467	106	142	863	2907	1895	2997	3348	4291	4450	1926	5
6	3314	287	106	141	865	2857	1931	2994	3505	4309	4341	1956	6
7	2276	286	105	141	863	2768	2181	2730	3507	4174	4333	1959	7
8	2280	286	105	142	932	2635	2315	2831	3501	4157	4426	1957	8
9	2280	321	105	140	1039	2306	2321	2833	3514	4151	4792	1955	9
10	2281	321	105	140	1040	2214	2320	3061	3414	4143	4394	2020	10
11	2286	322	140	206	1103	2217	2880	3064	3313	4148	4419	2086	11
12	2277	322	104	1218	1335	2128	4025	3068	3313	4152	4416	1925	12
13	3313	429	104	631	1335	1916	3098	3198	3311	4216	4413	1824	13
14	2279	430	140	618	1396	1912	3102	3220	3110	4300	4303	1822	14
15	2281	574	140	635	1473	1913	3365	3225	3372	4338	4309	1820	15
16	2280	681	105	420	1472	1912	3537	3207	3366	4435	4243	2123	16
17	2277	681	105	421	1405	1914	3700	3198	3365	4443	4184	2127	17
118	2279	681	105	422	1782	1908	3700	3203	3611	4532	3867	2124	18
19	2277	646	105	423	1846	1915	3765	2991	3667	4655	3849	2120	19
20	3320	647	105	425	1907	1980	3754	2994	3856	4640	3853	2121	20
21	2276	646	106	497	2105	2197	3822	3062	4016	4653	3958	2122	21
22	2251	608	105	497	2106	2197	3363	3161	3835	4633	3953	2178	22
23	1898	608	121	562	2106	1849	3317	3288	3667	4628	4160	2876	23
24	1557	609	105	639	2111	1508	3343	3292	3833	4641	3691	3121	24
25	1560	608	105	1190	2313	1503	32 93	3262	4221	4601	3906	2991	25
26	1095	572	104	639	2264	1464	3291 b	3146	4319	4605	3709	3003	26
27	1053 a	572	104	1183	2263	1464	3295	2944	4364	4601	3561	2996	27
28	1027	212	104	1167	2264	1395	3172	2862	4442	4686	3411	2995	28
29	928	104	104	1185	2266	1395	3173	2810	4355	4696	3072	2859	29
30	928	105	104	934		1398	3170	2910	4363	4709	2981	2790	30
31	789		105	934		1723		3075		4577	2591		31
AN	1995	483	109	524	1526	2100	2947	3091	3636	4434	4060	2283	MEAN
AX.	3320	681	140	1218	2313	3291	4025	3302	4442	4709	4792	3121	MAX.
UN.	789	104	104	140	862	1395	1795	2730	3064	4143	2591	1820	MIN.
:. FT.	122765	28756	6690	32245	87784	129134	175059	190028	216371	272636	249620	135842	AC.FT

- ESTIMATED

DISCHARGE MEASUREMENT OR
 OBSERVATION OF NO FLOW
 E AND *
 25-hour day
 23-hour day

MEAN 2266

MAXIMUM GAGE HT. MO. DAY TIME DISCHARGE

MINIMUM GAGE HT. MO. DAY TIME DISCHARGE

TOTAL ACRE FEET 1646930

-		LOCATION	v	MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM OF GAGE			
	LATITUDE	LONGITUDE	1/4 SEC. T. B. R.		OF RECORD		DISCHARGE	GAGE HEIGHT		RIOD	ZERO ON	REF. DATUM
			M. D. B. & M.	C.F. S.	GAGE HT.	DATE		ONLY	FROM	70	GAGE	DATOM
	37 47 45	121 35 05	SW31 1S 4E				JUN 51-DATE		1951		0.00	USGS

Station located at Tracy Pumping Plant at intake to canal, 6 mi. SE of Byron, 10 mi. NW of Tracy. Discharge computed from records of operation of pumps. Water is diverted from Sacramento-San Joaquin Delta by way of Old River and a dredged channel to the Tracy Pumping Plant where it is lifted about 200 ft. into canal. Records furn. by U.S.B.R.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 800770 DELTA-MENDOTA CANAL TO MENDOTA POOL

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D/
1	1327	550	0.0	0.0	632	1907	1131	2212	2127	2718	2821	1511	
2	1180	450	0.0	0.0	632	2001	1224	2299	2114	2717	2823	1534	
3	1182	450	0.0	0.0	626	1948	1212	2214	2110	2688	2817	1550	
4	1223	425	0.0	0.0	517	1965	1340	2277	2106	2657	2798	1483	
5	1271	370	0.0	0.0	507	2124	1316	2174	2198	2634	2776	1482	13
6	1344	250	0.0	0.0	472	2136	1311	1936	2354	2683	2737	1459	
7	1374	255	0.0	0.0	471	2068	1537	1820	2319	2675	2696	1472	
8	1359	245	0.0	0.0	471	1864	1692	1890	2345	2637	2739	1465	
, i	1490	225	0.0	0.0	650	1730	1739	1914	2396	2593	2857	1400	100
10	1489	225	0.0	0.0	650	1459	1728	2100	2391	2615	2907	1400	1
,,	1346	225	0.0	0.0	709	1448	2011	2079	2351	2587	2796	1387	1
12	1152	230	0.0	652	912	1406	2388	2119	2279	2616	2811	1294	1
13	1173	350	0.0	508	895	1168	2235	2154	2272	2608	2810	1197	1
14	1065	364	0.0	447	866	1182	2209	2128	2180	2716	2798	1219	1
15	1039	351	0.0	466	1042	1210	2341	2185	2230	2742	2790	1246	1
16	1136	466	0.0	201	1042	1217	2398	2230	2370	2798	2780	1571	1
17	1209	465	0.0	193	1017	1184	2627	2246	2392	2750	2767	1516	1
18	1154	447	0.0	193	1154	1115	2617	2259	2427	2786	2762	1488	1
19	1077	453	0.0	193	1257	1165	2630	2189	2464	2808	2563	1530	1
20	1039	468	0.0	177	1281	1178	2627	2096	2660	2831	2481	1532	2
21	1073	456	0.0	216	1524	1473	2602	2118	2638	2860	2495	1530	2
22	1055	451	0.0	229	1519	1375	2348	2148	2709	2851	2544	1532	2
23	937	383	0.0	352	1496	1275	2185	2282	2648	2866	2687	1685	2
24	815	383	0.0	400	1509	918	2211	2263	2628	2852	2611	1820	2
25	805	375	0.0	575	1617	972	2198 *	2289	2555	2845	2545	1780	2
26	700	387	0.0	575	1635	975	2189	2195	2643	2844	2560	1763	2
27	700 *	357	0.0	744	1624	956	2110	1999	2704	2836	2481	1660	2
28	680	0.0	0.0	719	1624	955	2079	2002	2738	2846	2351	1690	2
29	650	0.0	0.0	732	1655	963	2148	1996	2798	2857	2083	1711	2
30	633	0.0	0.0	593		999	2135	2026	2739	2837	2110	1705	3
31	600		0.0	632		1126		2149		2838	1781		3
MEAN	1073	335	0.0	284	1035	1402	2017	2129	2430	2748	2632	1520	ME
MAX.	1490	550	0.0	744	1655	2136	2630	2299	2798	2866	2907	820	M
MIN.	600	0.0	0.0	0.0	471	918	1131	1820	2106	2587	1781	1197	M
AC. FT.	66062	19946		17449	59516	86206	119854	130885	144565	168974	161806	90470	AC

E - ESTIMATED
NR - NO RECORO
* - DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
- E AHD *

MEAN		MAXIMU	I M		$\overline{}$		MINIM	J M		$\overline{}$
DISCHARGE 1467	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME

TOTAL ACRE FEET 1065733

	LOCATION	v	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	HOD	2ERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
36 47 11	120 23 05	NW19 13S 15E									

Station-located approximately 2 mi. N of Mendota, where DMC crosses the Outside Canal, which is 0.8 mi. NW of Bass Avenue crossing (check No. 21). Flow measured by 3 Sparling meters located at siphon outlet.

Record furnished by U.S.B.R.

AILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 807710 SAN JOAQUIN RIVER NEAR MENDOTA 1964

YAC	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
					93	226		274	392	433	470	219	1
1	166	44	82	4.0		338	154		376	401	474	238	2
2	111	42	84	3.0	96	327	138	280	358	374	456	304	3
3	112	41	84	2.0	90 72	296 264	166 193	288 274	356	346	434	304	4
4	120	43	82	2.0	61	264	196	261	366	346	441	268	5
5	123	45	93	1.0	61	264	196	201	,,,,	340	771	200	'
6	138	36	123	0.0	56	281	231	256	376	351	423	274	6
7	135	36	146	0.0	63	286	268	258	381	364	477	288	7
8	131	36	171	0.0	84	276	328	286	381	386	477	276	8
9	100	45	134	0.0	92	284	328	298	364	416	474	256	9
10	65	51	95	1.0	90	298	324	296	341	421	472	248	10
11	56	58	63	2.0	82	296	336	296	338	431	456	246	11
12	88	65	48	2.0	74	271	341	301	294	444	451	266	12
13	88	63	36	2.0	75	258	354	298	288	441	456	271	13
14	87	55	27	3.0	71	256	361	321	314	421	474	264	14
15	87	36	24	5.0	71	254	364	361	348	408	459	284	15
	7.0	35	24	7.0	71	184	361	376	368	416	441	291	16
16	72 65	25 25	23	8.0	70	114	361	388	381	434	434	271	17
17				10	75	100	361	388	394	448	431	238	18
18	71	31	23	10	108	88	361	381	411	446	462	234	19
19	88	44	23	10	177	95	361	384	411	454	446	234	20
20	90	43	23	10	111	92	361	764	711	7,7	770		10
21	98	43	21	10	264	106	348	376	414	477	416	246	21
22	129	43	20	12	326	121	341	378	426	469	404	271	22
23	123	43	19	32	341	111	314	401	446	451	404	261	23
24	109	43	17	81	341	101	308	418	466	426	384	268	24
25	118	43	16	87	324	111	326	421	487	441	354	254	25
26		43	13	88	306	140	338	404	501	464	306	246	26
27	132 132	43	10	93	306	140	356	398	501	461	328	236	27
27	132	60	9.0	101	321	138	351	364	504	426	346	219	28
29	125	59	7.0	118	338	136	314	391	490	411	334	214	29
30	121	70	7.0	150	,,,,	134	266	398	464	406	338	224	30
31	84	10	5.0	120		148	200	396	, , ,	444	281		31
544			5.0	21	157	201	306	343	398	421	419	258	MEAN
IEAN	106	45	50	31 150	341	338	364	421	504	477	477	304	MAX
AAX.	168	70.0	171		58.0	88.0	138	256	288	346	281	214	MIN.
MIN.	56.0	25.0	5.0	0.0	9010	12330	18190	21080	23680	25910	25790	15350	
C. FT.	6530	2690	3080	1910	9010	12330	10170	21000	2,000	23710	-2170		

- ESTIMATED
R - NO RECORD
* - DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
228		i			

MINIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
l										

TOTAL
ACRE FEET
165550

٢		LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
T		ATITUDE LONGITUDE 1/4 SEC. T.& R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		2ERO ON	REF.
Į	LATITUDE	LONGITUOE	M. D. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	OATUM
	36 48 37	120 22 35	SW 7 13S 15E	8840		6-1-52	OCT 39-DATE		1939		142.53	USBR

Station located 2.5 mi. below Mendota Dam, 4 mi. N. of Mendota. Records furn. by U.S.B.R. Drainage area is 4,310 sq. mi. This station equipped with DWR radio telemeter.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 867920 1964 BIG CREEK DIVERSION NEAR FISH CAMP

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.
1	2.1	3.6	11	7.7	9.6	8.2E	20	27	19	7.9	3.2	4.4
2	2.3*	3.6	11	7.7	8.1	7.7 E	18	24	18	7.7	3.1	2.5
3	2 • 2	4.5	1'2	6.8	8.5	8.2E	18	22	17	8.4*	2 • 8	2.1
4	2.2	5.1	12	6.7	8.1	8.4E	19	22	16 *	7.7	3.0*	1.9*
5	2.3	17	11	6.4	8.6	8 • 2 E	18	20	16	7.5	3.0	1.6
6	2.2	26 *	4.5*	7.1*	8.7	8.4*	17	21	15	7.5	2 • 8	1.5
7	2 • 2	11	4.6	7.2	8 • 4 *]	7.4	18 *	25	17	7.3	2.7	1.5
8	2.0	12	12	6.5	8.5	7 • 8	20	25	20	6.9	2.7	1.4
9	2 • 2	9.7	13	6+2	8.6	8 • 4	23	29	23	6.2	2.5	1.4
10	2 • 1	8.0	12	6.0	8.6	7.9	26	32	21	6.3	2.5	1.5
11	9.0	7.3	11	6.3	8.5	8.0	29	34	23	6.1	2.5	1.4
12	4.7	7.0	12	6.6	7.8	17	32	36	22	5.7	2.2	1.3
13	3.8	6.7	12	10	8 • 1	29	35	36	19	5.4	2.1	1.4
14	3 • 2	11	12	14	8.1	9.1	37	36	17	5 • 2	2+0	1.4
15	2.9	14	11	18	7.9	12	37	35	16	5.0	2.0	1.3
16	3.3	12	9.8	22	7.7	12	38	34	15	5.1	2.0	1.2
17	3.6	12	9.4	21	7.5	14	37	33	15	4.7	1.9	1.1
18	3.4	11	8 • 8	30	7.8	16	33	33	14	4.5	1.9	1.3
19	3.5	11	8 • 8	23	8.2	17	29	32	14	4.5	1.9	1.4
20	3.5	12	8.8	6.6	8.0E	18	27	31	13	4.8	1.8	1.3
21	3.7	12	8 • 6	5.3	8.8E	16	28	28	12	4.5	1.7	1.3
22	2 • 4	12	8.3	22	8.4E	13	29 *	26	11	4.1	1.5	1.3
23	3.9	12	8.5	51	8.4E	12	28	25	11	3.9	1.7	1.3
24	4 • 2 *	12	8.0	56	8 • 4 E	14	24	24	11	3.9	1.5	1.1
25	5.0	12	7.9	54	8 • 2 E	13	23	24	10	3.7	1.5	1.1
26	4.7	12	7.8	48	7.8E	15	24	25	9.2	3.5	1.4	1.4
27	4 • 2	11	8.1	40	7.8E	16	27	27	9•1	3.8	1.4	1.4
28	4 • 2	11	7.7	41	8.CE	17	29	24	9.0	4.0	1.4	1.6
29	3.9	11	7.7	41	8.0E	18	29	23	8.5	3.5	1.4	1.6
30	5.5	11	7.7	35		20	28	22	8.2	3.5	1.3	1.6
31	4.3		7.7	24		21		20		3.3	3.4	
MEAN	3.5	10.7	9.5	20.7	8.2	13.2	26.7	27.6	15.0	5.4	2.2	1.6
MAX.	9.0	26 • 0	13.0	56.0	9•6	29.0	38.0	36.0	23.0	8 • 4	3.4	4.4
MIN.	2.0	3.6	4.5	5.3	7.5	7.4	17.0	20.0	8 • 2	3 • 3	1.3	1.1
AC. FT.	216	636	585	1276	474	809	1587	1696	891	329	132	92

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AHD *

			М	IMU	MAX		MEAN
ME	AY T	DAY	MO.	нт.	GAGE	DISCHARGE	DISCHARGE
20	3 20	13	3	85	1.	66.0	12.0
	3 20	13	3	85	1.	66.0	12.0

MINIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
0.0		10	22	0940						
(النتا							

	TOTAL
Г	ACRE FEET
	8722

	LOCATION		LOCATION MAXIMUM DISCHARGE			PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE LONGITUDE 1/4 SEC. T. & R.		I/4 SEC. T. & R. OF RECORD		DISCHARGE	GAGE HEIGHT	IGHT PERIOO		ZERO	REF.		
LATITUDE	LUNGITUDE	M.O.B.8 M,	C.F.S. GAGE HT. DA		OATE		ONLY	FROM	то	GAGE	OATUM
37 28 10	119 36 52	NE25 5S 21E	150	3.58	1-30-63	DEC 58-DATE		1958		0.00	LOCAL

Station located 195 ft. above road culvert pipe, 1.4 mi. SE of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at times affected by ice and extreme high flows affected by culvert pipe below station.

Maximum discharge determined from slope area survey and maximum capacity of culvert pipe below station.

Altitude of gage is approximately 5,400 ft. (from topographic map.)

IAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 867325 LEWIS FORK FRESNO RIVER NEAR OAKHURST

AY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	6.8	15	35	20	26	26	95	73	52 E	23	9.0	9.6	1
2	5.6*	14	33	20	26	29	75	65	50 E	21	6.3	4.4	2
3	5.2	18	32	18	26	25	62	63	48 E	22 *	4.3	3.5	3
4	5.7	18	30	19	25	29	60	63	45 #	22	2.3#	3.4#	4
5	6.0	28	28	18	26	28 *	59	64	44	22	1.8E	3.0E	5
6	6.9	101 *	27 *	21 *	26	26	52 *	65 *	48	22	3.0E	3.0E	
7	7.1	34	20	20	26	27	49	64	49	21	3.0E	3.1E	
8	6.5	25	29	18	25	26	50	65	54	19	2.5E	3.1E	8
9	8.8	26	36	19	25	28	57	70	79	19	2.5E	3.0E	9
10	7.2	20	27	18	24 *	27	66	79	66	18	2.7E	2.7E	10
hi	24	18	26	19	22	26	70	86	67	16	2 . 7E	2.6E	
12	24	17	26	19	21	36	76	93	68	16	2.7E	2.6	12
13	16	18	28	17	21	34	82	88	60	16	2.5E	2.7	13
14	14	27	26	18	21	32	86	86	53	17	2.5E	2.5*	14
15	13	150	26	16	22	36	87	87	49	16	2•7E	2.4	15
16	13	52	24	18	21	36	87	86	45	14	2.5E	3.0	16
17	14	37	24	19	21	37	84	81	45	12	2.0E	1.8	17
18	14	34 *	24	21	22	41	81	79	43	13 12	1.8E 2.3E	2.0 2.6	18
19	14	45	23	19	22	44	76	83	41	12	2.6#	3.4	19
20	14	137 *	24	18	23	45	67	86	39	12	2.01	2.4	20
21	13	65	21	31	23	46	67 *	84	33	13	1.6E	2.9	21
122	13	45	20	17	25	41	68	79	3 2	10	1.3	2 • 4 2 • 4	22
133	12	59	22	24	25	35	70	78	29	11	1.6	1.9	23
24	14	78	18	27	24	4.3	60	75	28	10 8.7	1.8*	1.8	24
135	14	50	17	28	26	39	60	67 E	25	8.7	1.2	1.0	25
16	14	43	19	29	24	44	58	66 E	24	9.6	1.0	1.6	26
27	13	42	19	27	24	48	63	63 E	23	9.4	1.1	2.3	27
18	12	39	19	27	24	52	76	61 E	22	11	1.1	2.7	28
19	12	37	19	26	24	53	73	58 #	23	8.7	1.4	2.3	29
10	15	36	19	27		55	71	55 E	24	10	1.4	2.0	30
11	16		19	25		56		54 E		9•9	2.4		31
'AN	12.1	44.3	24.5	21.4	23.8	37.1	69.6	73.1	43.6	15.0	2.5	2.9	MEAN
AX.	24.0	150	36.0	31.0	26.0	56.0	95.0	93.0	79.0	23.0	9.0	9.6	MAX
NN.	5.2	14.0	17.0	16.0	21.0	25.0	49.0	54.0E	22.0	8.7	1.0	1.6	MIN.
. FT.	741	2634	1507	1315	1369	2281	4140	4495	2594	921	154	173	AC.FT.

ESTIMATED
 NO RECORD
 DISCHARGE MEASUREMENT OR OBSERVATION OF ND FLOW

OBSERVA

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE			DAY	TIME
30.B	383	2 • 25	11	15	0620
((

MINIMUM GAGE HT. MD. DAY TIME DISCHARGE 9 24 1830 0.3 0.78

TOTAL ACRE FEET 22320

		LOCATION	LOCATION			IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
l		. CHOITHE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	2ERO ON	REF.
ı	LATITUOE	LONGITUOE	M. O. B. & M.	C.F.S. GAGE HT.		DATE		ONLY	FROM	то	GAGE	DATUM
	37 20 44	119 38 20	SE 2 7S 21E	2930E	493	2- 1-63	SEP 61-DATE		1961	DATE	0.00	LOCAL

Station located 1.6 mi. N. of Oakhurst on Highway 41, 500 ft. downstream from White Oaks Motel. Station located on left bank above concrete weir. Altitude of gage is approximately 2,520 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME MIAMI CREEK NEAR OAKHURST 867300 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT. D
1	0.9	1.8	5.0	2.9	4.0	3.7	19	5.1	2.1	0.7	0.8	0.6
2	0.9*	1.8	4.7	2.8	4.0	4.0	13	5.3	2.2	1.0	0.8	0.5
3	1.0	2.1	4.5	2.7	3.9	3.7	11	5.3	2.4	1.6*	0.7	0.5
4	1.0	2.2	4.3	2.7	4.0	3.6	9.8	5.6	2.4*	1.7	0.7*	0.5
S	1.1	4.1	3.9	2.7	4.3	3.7	9.1	5.9	2.5	1.7	0.7	0.5
6	1.1	19 *	4.0*	2.7*	4.3	3.6*	8.5*	6.7*	2.5	1.7	0.6	0.4
7	1.1	6.2	4.2	2.8	4.1*	3.7	8.1	6 • 6	2.7	1.5	0.7	0.4
8	1.1	4.7	4.0	2.8	4.1	4.0	8.3	7.5	3.1	1.5	0.6	0.3
9	1.1	4 . 4	4.8	2.8	4.1	3.5	8.6	8.1	7.2	1.4	0.5	0.3
10	1.1	4.1	4.3	2.7	4.2	3.8	8.4	8.0	5.1	1.4	0.4	0.3
11	4.9	3.7	4.1	3.0	4.2	3.7	8.4	7.3	4.2	1.2	0.4	0.3*
12	3.4	3 • 4	4.1	2.9	4.0	4 • 7	8.4	6.3	3.3	1.2	0.5	0.3
13	2.4	3.2	3.9	3.0	3.9	4.4	8.3	5.7	3.0	1.1	0.5	0.3
14	2.1	5.3	4.0	3.0	4.2	4 . 4	7.9	5.2	2.7	1.1	0.5	0.3
15	2 • 8	32	3.9	2.9	3.7	4.9	7.8	3.9	2.7	1.1	0.5	0.3
16	2 • 2	9.2	3.9	3.3	3.6	5.4	7.3	3.7	2.7	1.1	0.4	0.3
17	2.0	6 • 1	3.6	2.9	3.5	5 • 4	7.0	3.8	2.7	1.1	0.3	
18	1.7	5.0	3.7	4.3	3.5	5 • 8	6-4	3.9	2.5	1.0	0.4	0.3
19	1.7	8 • 1	3 • 6	3.8	3.6	5 • 8	6.4	4.0	2.4	1.5	0.4	0.3
20	1 • 8	33 *	3.8	3.6	3.6	5•9	6.1	3.7	2.4	1.4	0.4	0.3
21	1.8	13	3.6	5.1	3.7	5 . 8	5.9*	3.6	2.3	1.2	0.3	0.3
22	1.7	8.5	3.3	3.1	3.8	5.5	5.7	3.6	2.3	1.1	0.3	0.3
23	1.6	9.8	3.1	4 • 2	3 • 8	5 • 3	5.7	3.4	2.4	1.0	0.3	
24	1.7	15	3.0	4.5	3 . 8	5.3	5 • 8	3.2	2.3	0.9	0 • 3 0 • 3	0.3
25	1.7	8.7	2.9	4.7	3.7	6.4	5.8	3.2	2.2	0.9	0.5	
26	1.8	7.0	2.8	4.3	3.5	6.7	5.5	3.5	2.1	0.9	0.3	0.3
27	1.6	6.3	2.7	4.3	3.4	7.6	5.3	3.6	2.1	0.9	0.3	0.3
28	1.7	6.0	2.7	4.0	3.6	8.8	5.1	3.8	2.1	0.8	0.2	0.3
29	1.6	5.2	2.8	4.0	3.6	9.4	5.1	3.4	2.0	0.9	0.3	0.4
30	1.9	5.2	2.7	4.1		9.3	5.1	3.0	1.8	0 • 8	0.3	0.4
31	1.8	,,,	2.8	4.1		9.7		2.3		0 • 8	0.5	
MEAN	1.8	8.1	3.7	3.4	3.9	5.4	7.8	4 • 8	2.7	1.2	0.5	0.4 N
MAX.	4.9	33.0	5.0	5.1	4.3	9.7	19.0	8.1	7.2	1.7	0.8	0.6
MIN.	0.9	1.8	2.7	2.7	3.4	3.5	5.1	2.3	1.8	0.7	0.2	0.3
AC. FT.	108	484	228	212	222	332	462	294	163	72	28	21

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR
DBSERVATION OF NO FLOW

— E AHD *

MEAN		MAXIMU	М		$\overline{}$
DISCHARGE	DISCHARGE	DADE HT.	MO.	DAY	TIME
3.6	68.0	4.21	11	15	0610
			1	1	

MINIMUM											
DISCHARGE	GAGE HT.										
0.2	2.41	8	17	1640							

\subset	TOTAL
Г	ACRE FEET
ļ	2625

	LOCATION	1	MAXIMUM DISCHARGE		PERIOD O	PERIOD OF RECORD DATE		DATUM	OF GAGE		
1 ATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF.
LATITUDE	LONGITUDE	M.O.B.B.M.		GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
37 23 38	119 39 10	SE22 6S 21E	1140E	9.08	2- 1-63	DEC 59-DATE		1959	Date	0.00	

Station located 150 ft. below bridge, 4.5 mi. N. of Oakhurst. Tributary to Fresno River. Stage-discharge relationship at times affected by ice. Drainage area is 10.6 sq. mi. Recorder installed December 15, 1959. Altitude of gage is approximately 3,500 ft. (from topographic map.)

WATER YEAR STATION NO. STATION NAME													
		DISCHAR PER SECOND)			1964	807610	O SAN JOAQUIN RIVER NEAR OOS PALOS						
DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	11	1,0	0.0	0.0	0.0	0.0	12	0.0	0.0	,
2	0.0	0.0	0.0	11	1.0	0.0	0.0	0.0	9.0	12	0.0	0.0	2
3	0.0	0.0	0.0	11	0.0	0.0	0.0	0.0	12	4.0	0.0	0.0	3
4	0.0	0.0	0.0	11	0.0	0.0	0.0	0.0	12	0.0	0.0	0.0	4
S	0.0	0.0	0.0	11	8.0	0.0	0.0	0.0	12	0.0	0.0	0.0	S
6	0.0	0.0	0.0	11	12	0.0	0.0	8.0	12	0.0	0.0	0.0	6
7	0.0	0.0	0.0	11	12	0.0	0.0	12	4.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	11	12	0.0	0.0	4.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	11	12	0.0	0.0	0.0	0.0	0.0	0.0	8.0	9
10	0.0	0.0	0.0	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	10
11	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	11
12	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	12
13	0.0	0.0	0.0	8.0	0.0	0.0	5.0	6.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	8.0	8.0	0.0	0.0	12	0.0	0.0	0.0	4.0	14
15	0.0	0.0	0.0	8.0	4.0	0.0	0.0	8.0	0.0	9.0	0.0	0.0	15
16	0.0	0.0	0.0	7.0	0.0	0.0	5.0	0.0	0.0	12	0.0	0.0	16
17	0.0	0.0	0.0	11	0.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0	17
18	0.0	0.0	0.0	18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0	0.0	21	4.0	0.0	0.0	0.0	9.0	0.0	9.0	0.0	19
20	0.0	0.0	0.0	18	8.0	3.0	0.0	0.0	10	0.0	12	0.0	20
21	0.0	0.0	0.0	11	0.0	0.0	0.0	0.0	0.0	0.0	12	0.0	21
22	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	22
23	0.0	0.0	0.0	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	1.0	3.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	25
26	0.0	0.0	0.0	1.0	5.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	26
27	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	27
28	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	28
29	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	2.0	9.0	0.0	5.0	29
30	0.0	0.0	0.0	1.0		0.0	0.0	0.0	12	4.0	0.0	4.0	30
31	0.0		0.0	2.0		0.0		0.0		0.0	0.0		31
HEAN	0.0	0.0	0.0	8.8	3.4	0.1	0.5	1.6	3.6	2.5	1.6	0.8	MEAN
MAX.	0.0	0.0	0.0	21.0	12.0	3.0	5.0	12.0	12.0	12.0	12.0	8.0	MAX.
MIN,	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.				540	196	6	28	99	214	155	97	50	AC.FT.

MEAN DISCHARGE 1.9

١.	$\overline{}$	MAXIMU	М		
1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
П					
,	l				

MINIMUM
DISCHARGE GAGE HT. MO. DAY TIME

TOTAL ACRE FEET 1385

1		LOCATION MAXIMUM DISCHARGE				PERIOD O	DATUM OF GAGE					
Ī	LATITUOE	LONGITURE	1/4 SEC, T, & R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOO	ZERO ON	REF	
	LATITUDE	LONGITUDE	M. D. 8. 8 M.	C.F, S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	OATUM
	36 59 3 8	120 30 02		8200		6-5-52	OCT 40-DATE		1940		116.5	USED

Station located 800 ft. below the head of Temple Slough, 6.5 mi. E of Dos Palos. Records furn. by U.S.B.R. Drainage area is approx. 5,630 sq. mi.

E -- ESTIMATED

NR -- NO RECORD

DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

B -- E AND **

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 864400 EAST FORK CHOWCHILLA RIVER NEAR AHWAHNEE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.5	3.7	20	8.2	34	10	74	18	8.9	2.2	0.0	0.0	1
2	0.5	3.4	16	7.7	31	15	65	20	8.3	2.1	0.0	0.0	2
3	0.5	3.7	14	8.2	28	13 *	44 #	19	7.8	1.5	0.0*	0.0	3
4	0.5	4.2	13	8.5	25	11	35	21	7.6	1.5	0.0	0.0	4
5	0.6	4.9	11 *	8.5	25 #	11	32	24	7.1*	1.5	0.0	0.0	5
		40 #	.,	8.2	26 E	11	30	38 *	6.4	1.4	0.0	0.0	6
6	0.7	7, "	11 10	8.5	24 E	12	26	36	6.9	1.2	0.0	0.0	7
7	1.1	23		8.6*	23 E	11	24	32	9.1	1.1*	0.0	0.0	1 (
8	1.2	13	11 15		22 E	10	24	28	19	1.1	0.0	0.0	9
9	1.3	9.5		7.4	20 E	10	23	26	16	1.0	0.0	0.0	10
10	1.3	9.0	16	8.2	20 E	10	23	26	16	1.0	0.0	0.0	10
11	6 • 8	9.0	12	8.2	19 E	10	21	25	11	0.8	0.0	0.0	11
12	10	8.7	11	8.2	19 E 18 E	21	21	23	9.0	0.8	0.0	0.0	12
13	4.3	7.9	11	8.2		24	21	20	7.9	0.6	0.0	0.0	13
14	3 • 2	9.4	11	8.2	17 E	17	21	18	7.0	0.4	0.0	0.0	14
15	2 . 8	132	10	7.7	16 E	16	18	18	5.9	0.3	0.0	0.0	15
16	3 • 2	44	9.3	7.7	16 E	15	18	16	6.3	0.2	0.0	0.0	16
17	3.4	27	9.3	7.7	15 E	14	17	15	5.9	0.3	0.0	0.0	17
18	3.2	22	9.3	13	15 E	13	16	15	5.7	0.2	0.0	0.0	18
19	3.2	28	9.3	15	13 E	13	19	15	5.2	0 • 2	0.0	0.0	19
20	3.2	267 *	8.2	12	12	12	20	14	4 • 8	0.2	0.0	0.0	20
21	3 • 2	87	8 • 2	34	12	12	18	14	4.5	0.3	0.0	0.0	21
22	3.4	49	8.2	69	13	14	18	14	4.3	0.2	0.0	0.0	22
23	3.4*	44	8.5	35	13	32	18	13	3.9	0.2	0.0	0.0	23
24	3.4	. 84	8.7	29	12	39	25	12	3 • 3	0 • 2	0.0	0.0	24
25	3.4	46	8.7	27	12	30	21	11	2.9	0.1	0.0	0.0	25
26	3.4	34	8.7	30	12	40	20	12	2.7	0.1	0.0	0.0	26
27	3.4	28	8.7	35	ii	45	19	12	2.5	0.1	0.0	0.0	27
28	3.2	26	8.5	34	10	40	18	15	2.5	0.1	0.0	0.0	28
29	3.3	23	8.5	36	11	35	18	13	2.3	0.1	0.0	0.0	29
30	3.2	19	8.5	37		29	17	11	2.6	0.0	0.0	0.0	30
31	3.2	* 7	7.9	35		27		9.9		0.0	0.0		31
MEAN	2.0		10.7	70.7	10.3	19.7	25.4	18.6	6.6	0.6	0.0	0.0	MEAN
	2 • 8	37.3	10.7	18.7	18.1	19.7 45.0	74.0		19.0	2.2	0.0	0.0	MAX
MAX.	10.0	267	20.0	69.0	34.0			38.0 9.9	2.3			0.0	MIN.
MIN.	0 • 5	3.4	7.9	7.4	10.0	10.0	16.0			0.0	0.0	0.0	AC.FL
AC. FT.	175	2218	656	1148	1039	1214	1509	1146	391	40		1	AC.FL

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AHD *

MEAN		MAXIMU	Μ.	
DISCHARGE 13 • 1	DISCHARGE 524	GAGE HT. 5 • 82		

		MINIM	J M		
ı	DISCHARGE	GAGE HT.	MO.	DAY	TIME
ı	0.0		7	29	1940
					L

	TO	TAL
	ACRE	FEET
1		9537

	LOCATION	N	MAXI	MAXIMUM DISCHARGE PERIOD OF RECORD				DATUM OF GAGE			
		1/4 SEC. T. 8 R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	2ERO ON	REF.	
LATITUOE	LONGITUOE	M.D.B.B.M,	C.F.S.	GAGE HT.	DATE	0.0000	ONLY	FROM	то	GAGE	DATUM
37 20 09	119 48 59	SE 7 7S 20E	3710E	10.34	1-31-63	NOV 57-DATE		1957	Date	0.00	LOCAL

Station located 1.1 mi. above mouth, 5.5 mi. W of Ahwahnee. Drainage area 57.8 sq. mi. Altitude of gage 980 ft. (from topographic map.)

CULY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 864300 WEST FORK CHOWCHILLA RIVER NEAR MARIPOSA

AY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.0	0.2	3.7	2.8	15	4.8	51	2.7	0.7	0.0	0.0	0.0	1
2	0.0	0.2	3.6	2.9	13	8.5	35	2.9	0.6	0.0	0.0	0.0	2
3	0.0	0.3	3.3	2.7	11	5.8*	21 *	3.5	0.5	0.0	0.0*	0.0	3
6	0.0	0.3	3.4	2.7	9.0	4.7	14	4.3	0.5	0.0	0.0	0.0	4
5	0.0	0.8	3.4*	2.7	8.8*	4.1	12	4.3	0.4*	0.0	0.0	0.0	5
6	0.0	11 *	3.4	2.7	8.3	4.3	10	12 *	0.4	0.0	0.0	0.0	6
7	0.0	4.0	3.5	2.8	7.3	4.7	8.1	7.8	0.6	0.0	0.0	0.0	7
8	0.0	2.1	3.5	2.9*	7.4	4.2	7.6	4.6	0.7	0.0	0.0	0.0*	8
9	0.0	1.6	6.3	2.7	7.3	3.6	6.9	3.7	1.3	0.0	0.0	0.0	9
0	0.0	1.3	6.3	2.7	7.0	3 • 8	6.3	3.2	1.2	0.0	0.0	0.0	10
1	0.3	1.1	4.3	2.7	6.3	3.8	5.8	2.9	0.9	0.0	0.0	0.0	11
2	0.1	1.0	3.6	2.5	6.0	9.6	4.9	2.5	0.7	0.0	0.0	0.0	12
13	0.1	0.9	3.4	2 • 5	5.7	11	4.7	2.3	0.5	0.0	0.0	0.0	13
14	0.0	2 • 2	3.3	2.6	5.5	5.9	4.5	2.0	0.4	0.0	0.0	0.0	14
15	0.0	84	3.3	2.6	5.4	5 • 0	4.2	1.9	0.3	0.0	0.0	0.0	15
6	0.1	7.4	3.1	2.5	5.2	4.4	4.1	1.8	0.3	0.0	0.0	0.0	16
:7	0.1	3 • 2	2.9	2.6	5.0	3.8	3.6	1.6	0.3	0.0	0.0	0.0*	17
8	0.1	2 • 1	2.9	5.0	5.1	3.7	3.8	1.5	0.3	0.0	0.0	0.0	18
19	0.1	5.4	2.9	5.2	5.0	3.3	4.9	1.6	0 • 2	0.0	0.0	0.0	19
10	0+1	126 #	2.9	4.4	5.1	3 • 1	4.6	1.4	0.2	0.0	0.0	0.0	20
n	0.1	29	3.0	15	4.8	2.9	4.0	1.3	0.2	0.0	0.0	0.0	21
!2	0.1	8.0	3.1	66	4.6	4.4	3.7	1.3	0.1	0.0	0.0	0.0	23
13	0.1*	8.9	3.0	31	4.6	17	3.6	1.1	0.1	0.0	0.0	0.0	23
24	0.1	30	2.8	22	4.6	31	3.7	1.0	0.1	0.0	0.0	0.0	24
1:5	0.2	11	2 . 8	18	4.7	28	3.4	1.0	0.1	0.0	0.0	0.0	25
26	0.2	6.9	2.8	22	4.8	34	3.3	1.2	0.0	0.0	0.0	0.0	26
17	0.2	5.5	2.8	28	4.8	38	3.2	1.3	0.0	0.0	0.0	0.0	27
28	0.2	4.7	2 • 8	22	4.9	32	3.0	1.3	0.0	0.0	0.0	0.0	28
19	0 • 2	4.1	2.8	22	4.8	23	2.9	1.1	0.0	0.0	0.0	0.0	29
10	0.2	3.9	2.8	22		16	2.7	0.9	0.0	0.0	0.0	0.0	30
31	0.2		2.8	16		14		0.8		0.0	0.0		31
'AN	0.1	12.2	3.4	11.2	6.6	11.1	8.4	2.6	0.4	0.0	0.0	0.0	MEAN
AX.	0.3	126	6.3	66.0	15.0	38.0	51.0	12.0	1.3	0.0	0.0	0.0	MAX
IN.	0.0	0.2	2.8	2.5	4.6	2.9	2.7	0.8	0.0	0.0	0.0	0.0	MIN.
V. FT.	6	728	207	687	379	680	497	160	23				AC.FT

-- ESTIMATED
-- NO RECORD
-- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW
-- E AND *

MEAN	
DISCNARGE	DISCHA
4.6	27

MAXIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
270	4.97	11	15	0620						
(}							

MINIMUM									
DISCHARGE	GAGE HT.	MO.	DAY	TIME					
0.0		10	1	0000					
(1)					

TOTAL
ACRE FEET
3367

	LOCATIO	V	MAXIMUM DISCHARGE			PERIOD O	PERIOD OF RECORD			DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	OIS CHARGE	CHARGE GAGE HEIGHT PE		OOIS	2ERO ON	REF.		
LATITUDE	LUNGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM		
37 25 14	119 52 25	SE10 6 S 19E	3590E	8.67	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL		

Station located 15 ft. below Indian Peak Road Bridge, 6.7 mi. SE of Mariposa. Drainage area is 33.6 sq. mi. Altitude of gage is 1,680 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME B64360 MIDDLE FORK CHOWCHILLA RIVER NEAR NIPINNAWASEE 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.1	0.3	3.2	1.9	12	3.1	29	2.5	0.7	0.2	0.0	0.0	1
2	0.1	0.3	3 • 2	1.9	10	5.0	20	2.5	0.6	0.1	0.0	0.0	2
3	0.1	0.3	3.1	1.9	8.7	4.0*	12 *	2.6	0.6	0.2	0.0*	0.0	3
4	0.2	0 • 4	2.9	1.9	7.0	3.5	9.0	2.9	0.5	0.1	0.0	0.0	4
S	0.2	0.4	2.8*	1.9	6.5*	3 • 2	7.7	3 • 2	0.5*	0.1	0.0	0.0	5
6	0 • 2	5.4*	2.7	1.9	6.0	3 • 2	7.1	6.2*	0 • 4	0.1	0.0	0.0	6
7	0.2	2 • 8	2.5	1.9	5 • 2	3 • 2	6.2	6.5	0.5	0 • 2	0.0	0.0	7
8	0.2	1.7	2.5	1.9*	4.8	3.0	5.5	4.2	0.5	0.1*	0.0	0.0*	8
9	0.3	1.4	3.7	1.9	4.6	2.7	5 • 2	3.4	0.8	0.1	0.0	0.0	9
10	0.3	1.1	4 • 1	1.8	4.4	2.7	4 • 8	3.0	1.3	0.1	0.0	0.0	10
11	0.7	0.9	3.1	1.7	4.3	2.7	4.5	2.8	1.2	0.1	0.0	0.0	11
12	0.9	0.8	2.9	1.7	4.1	6 • 2	4.7	2.5	1.1	0.0	0.0	0.0	12
13	0.6	0.7	2.5	1.6	3.7	8.5	4.4	2.3	0.8	0.0	0.0	0.0	13
14	0.4	1 • 4	2.3	1.6	3.6	4.6	3.9	1.9	0.7	0.0	0.0	0.0	14
15	0.3	30	2.3	1.6	3.5	3.7	3.7	1.8	0.5	0.0	0.0	0.0	15
16	0.5	5 • 8	2•3	1.6	3 • 6	3.5	3.6	1.7	0.5	0.0	0.0	0.0	16
17	0.5	3.0	2 • 2	1.5	3.5	3 • 1	3.4	1.5	0.5	0.0	0.0	0.0	
18	0.5	2 • 4	2 • 1	2 • 4	3.4	3.1	3.3	1.5	0.6	0.0	0.0	0.0	18
19	0.5	3.0	2.0	3.5	3.3	2.9	3.9	1.4	0.5	0.0	0.0	0.0	19
20	0.5	103 *	1.9	2.8	3.4	2.9	4.0	1.3	0 • 4	0.0	0.0	0.0	20
21	0.5	16	2.0	7.7	3.2	2.7	3.6	1.1	0.4	0.0*	0.0	0.0	21
22	0.5	6.8	2.0	14	3.2	3.6	3.3	1.1	0.3	0.0	0.0	0.0	22
23	0.5*	6 • 4	1.9	9.9	3.1	7.7	3.3	1.2	0.3	0.0	0.0	0.0	23
24	0.4	16	1.9	7 • 8	3.1	10	3.6	1.0	0.2	0.0	0.0	0.0	24
25	0.4	8 • 1	1.9	7.5	3.1	8.7	3,3	0.9	0.2	0.0	0.0	0.0	25
26	0.4	5.7	1.9	9.0	3.1	16	2.9	0.9	0.1	0.0	0.0	0.0	26
27	0.4	4.5	1.9	12	2.9	23	2.8	1.0	0.1	0.0	0.0	0.0	27
28	0.3	4.0	1.9	11	2 • 8	19	2.8	1.2	0.1	0.0	0.0	0.0	28
29	0.3	3.6	1.9	12	3.0	12	2.7	1.1	0.1	0.0	0.0	0.0	29
30	0.3	3.3	1.9	13		8.5	2.6	0.9	0.1	0.0	0.0	0.0	30
31	0.3		1.9	12		7 • 2		0.8		0.0	0.0		31
MEAN	0.4	8.0	2.4	5.0	4.6	6.2	5.9	2.2	0.5	0.0	0.0	0.0	MEAN
MAX.	0.9	103	4.1	14.0	12.0	23.0	29.0	6.5	1.3	0.2	0.0	0.0	MAX
MIN.	0.1	0.3	1.9	1.5	2.8	2.7	2.6	0.8	0.1	0.0	0.0	0.0	MIN.
AC. FT.	23	475	150	307	264	383	351	133	30	3			AC.FT.

E -- ESTIMATED

NR -- NO RECORD

* -- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M	
DISCHARGE 2 • 9	DISCHARGE 217	GAGE HT.		TIME 0510

MINIMUM									
DISCHARGE	GAGE HT.								
0.0		7	12	2400					

_	
\sim	TOTAL
	ACRE FEET
	2118

	LOCATION	٧	MAXIMUM DISCHARGE		PERIOD O	F RECORD	DATUM OF GAGE				
LATITUDE	LONGITUDE 1/4 SEC. T. & R.		& R. OF RECOR)	DISCHARGE	GAGE HEIGHT	PE	DOIP	ZERD	REF.
LATTIODE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	70	GAGE	0ATUM
37 22 56	119 50 11	NE25 6S 19E	1280	10.10	2- 1-63	MAR 58-DATE		1958	Date	0.00	LOCAL

Station located 6 mi. W of Nipinnawasee, 10 mi. SE of Mariposa. Tributary to East Fork Chowchilla River. Drainage area is 12.3 sq. mi. Altitude of gage is 1,520 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 864260 STRIPED ROCK CREEK NEAR RAYMOND

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0 • 2	1.4	0.7	1.9	0.9	8.6	1.0	0.1	0.0	0.0	0.0	1
2	0.0	0.2	i.i	0.7	1.8	1.9	5.5	1.3	0.0	0.0	0.0	0.0	2
3	0.0	0.2	1.2	0.6	1.6	1.0#	3.9*	1.5	0+1	0.0	0.0*	0.0	3
4	0.0*	0.2	1.0	0.5	1.5	0.7	2.8	1.9	0.0	0.0	0.0	0.0	4
5	0.0	0.3	1.0#	0.6	1.5*	0.6	3.1	2.3	0.1*	0.0	0.0	0.0	5
6	0.0	1.1*	0.8	0.5	1.4	0.7	2.7	3.9*	0.0	0.0	0.0	0.0	6
7	0.0	0.5	0.7	0.5	1.3	0.8	2.3	2 • 2	0.1	0.0	0.0	0.0	7
8	0.0	0.3	0.9	0.5*	1.2	0.7	2.3	1.4	0 • 1	0.0	0.0	0.0	_
9	0.0	0.3	1.6	0.4	1.2	0.7	2.5	1.2	0.3	0.0	0.0	0.0	9
10	0.0	0.3	1.6	0.4	1.1	0.6	2.2	1.0	0.2	0.0	0.0	0.0	10
11	0.7	0 • 2	0.9	0.5	1.1	0.6	2 • 2	0.8	0.1	0.0	0.0	0.0	11
12	0.2	0 • 2	0 • 8	0.4	1.1	2.0	2.0	0.7	0.1	0.0	0.0	0.0	12
13	0.1	0 • 3	0 • 8	0.4	1.2	1.9	1.9	0.6	0.0	0.0	0.0	0.0	13
14	0.1	0 • 8	0.7	0.3	1.2	1.0	1.9	0.5	0.0	0.0	0.0	0.0	14
15	0.1	6 • 6	0.7	0.4	1.2	0.8	1.8	0.4	0.0	0.0	0.0	0.0	15
16	0.4	1.0	0 • 8	0.4	1.2	0.8	1.7	0.3	0.0	0.0	0.0	0.0	16
17	0 • 2	0.5	0.8	0 • 8	1.0	0.8	1.5	0.3	0.0	0.0	0.0		1
18	0 • 2	0 • 4	0 • 8	1 • 4'	1.0	8 • 0	1.4	0.3	0.0	0.0	0.0	0.0	18
19	0.1	0.8	0.7	1.0	0.9	0.7	2.0	0.2	0.0	0.0	0.0	0.0	19
20	0.1	24	0.8	0.7	1.0	0.7	2 • 2	0.2	0.0	0.0*	0.0	0.0	20
21	0.1	6.4	0.8	2.3	0.9	0.8	1.8	0.2	0.0	0.0	0.0	0.0	21
22	0.1	2.5	0.7	21	0.8	1 • 4	1.6	0.2	0.0	0.0	0.0	0.0	22
23	0.1	3.0	0.7	9.4	0.8	6.0	1.5	0.2	0.0	0.0	0.0	0.0	22
24	0.1	5.9	0.6	5.3	0.8	13	1.4	0.1	0.0	0.0	0.0	0.0	24
25	0 • 1	3.1	0.6	3.6	0.9	6.6	1.3	0.1	0.0	0.0	0.0		25
26	0.1	2.4	0.6	3.1	0.9	3.8	1.3	0.2	0.0	0.0	0.0	0.0	26
27	0.1	1.9	0.6	2.9	0.8	3.1	1.2	0.2	0.0	0.0	0.0	0.0	27
28	0.2	1.7	0.6	2.4	0.8	2.7	1.2	0.2	0.0	0.0	0.0	0.0	28
29	0.1	1.6	0.7	2.3	0.8	2 • 4	1.0	0.1	0.0	0.0	0.0	0.0	29
30	0.2	1.3	0.7	2 • 2		2.4	0.9	0.1	0.0	0.0	0.0	0.0	30
31	0 • 2		0.7	2.0		2.5		0 • 1		0.0	0.0		31
MEAN	0.1	2.3	0.9	2.2	1.1	2.0	2.3	0.8	0.0	0.0	0.0	0.0	MEAN
MAX.	0.7	24.0	1.6	21.0	1.9	13.0	8.6	3.9	0.3	0.0	0.0	0.0	MAX
MIN.	0.0	0 • 2	0.6	0.3	0.8	0.6	0.9	0.1	0.0	0.0	0.0	0.0	MIN.
AC. FT.	7	135	52	135	65	126	134	47	2			1	AC.FT

E - ESTIMATEO
NR - NO RECORD

• OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND •

MEAN		MAXIMU	Μ		
DISCHARGE	DISCHARGE	GAGE HT.			
1.0	45.0	3.11	11	20	0330
(/ (l /

MINIMUM									
DISCHARGE	GAGE HT.	MO.	DAY	TIME					
0.0		10	1	0000					

	TOTAL						
Г	ACRE	FEET					
		705					
(

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE		
		1/4 SEC. T. 8 R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.	
LATITUDE	LONGITUDE	M. D. B. & M.	C.F,S,	GAGE HT.	DATE	CIBBINANCE	ONLY	FROM	TO	GAGE	DATUM	
37 20 27	119 53 35	NE 9 7 S 19E	1180E	8.87	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL	

Station located 8.7 mi. N of Raymond, 11 mi. SE of Mariposa. Tributary to Chowchilla River. Drainage area is 17.1 sq. mi. Altitude of gage is approximately 1090 ft. (from USGS topographic maps.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B62400 MARIPOSA CREEK NEAR CATHEYS VALLEY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.0	0.3	5.1	3.3	12	4.3	38	4.6	1.0	0.0	0.0	0.0	1
2	0.0	0.3	5.1	3.3	10	7.1	47	4.6	0.7	0.0	0.0	0.0	2
3	0.0*	0.5	5.1	3.1	9.0	5.8*	26	4.9	0.5	0.0*	0.0	0.0	3
4	0.0	0.8	4.5*	3.1	8.1	4.4	19	6.3	0.4#	0.0	0.0*	0.0	4
5	0.0	1.2*	4.3	3.3	7.4	4.0	16	6.1	0.4	0.0	0.0	0.0	5
6	0.0	5.0	4.3	3.3	7.0*	3.5	14 *	11 *	0.3	0.0	0.0	0.0	6
7	0.0	3.3	3.9	3 • 1	6.8	3 • 8	11	8.9	0.3	0.0	0.0	0.0	7
8	0.0	1.6	3.8	3.1*	6.3	3 • 2	10	6.4	0.4	0.0	0.0	0.0*	
9	0.0	1.1	4.9	3.1	6.3	3.0	9.2	5.3	0.7	0.0	0.0	0.0	9
10	0.0	0.9	5.3	3.0	6.2	2 • 6	8.2	4.8	1.1	0.0	0.0	0.0	10
11	0.0	0.9	4.4	2.9	5.8	2.5	7.4	4.2	1.1	0.0	0.0	0.0	11
12	0.0	0.7	4.3	3.0	5.5	4.1	6.4	3.9	1.0	0.0	0.0	0.0	12
13	0.0	0.8	4.2	2.9	5.3	5 • 7	6.1	3.5	0.7	0.0	0.0	0.0	13
14	0.0	1.6	3.8	2 • 8	5.0	3 • 5	5.8	3.1	0.6	0.0	0.0	0.0	14
15	0.0	60	3 • 4	2•9	5•1	2.7	5•7	2.9	0.5	0.0	0.0	0.0	15
16	0.0	7.2	3.2	3.1	5.1	2.7	5.5	2.7	0.4	0.0	0.0	0.0	16
17	0.0*	3.1	3.3	3.2	4.8	2.2	5.0	2.4	0.3	0.0	0.0	0.0*	17
18	0.0	2.2	3.1	4.2	4.8	2 • 1	4.8	2.4	0.3	0.0	0.0	0.0	18
19	0.0	3.0	3.6	5.1	4.6	1.9	5.0	2.2	0.3	0.0	0.0	0.0	19
20	0.0	161 *	3.3	4.6	4.1	1.8	6.0	2.0	0.2	0.0*	0.0	0.0	20
21	0.0	42	3.0	11	4.0	1.9	5.4	1.9	0.1	0.0	0.0	0.0	21
22	0.0	11	2.9	218	4.0	3.8	5.2	1.8	0.1	0.0	0.0	0.0*	22
23	0.0	10	2.9	70	4.0	48	5.5	1.6	0.0	0.0	0.0	0.0	23
24	0.0	53	2.7	50	3.9	107 *	5.3	1.4	0.0	0.0	0.0	0.0	24
25	0.0	17	2.7	30	4.5	65	5.4	1.3	0.0	0.0	0.0	0.0	25
26	0.0	9.0	2.9	23	5.1	58	5.0	1.5	0.0	0.0	0.0	0.0	26
27	0.0	7.0	3.1	24	4.8	65	4.7	1.7	0.0	0.0	0.0	0.0	27
28	0.1	6.5	3.1	18	4.6	45	4.6	1.6	0.0	0.0	0.0	0.0	28
29	0.2	5.5	3.2	18	4.2	23	4.6	1.4	0.0	0.0	0.0	0.0	29
30	0.2	5•4	3.2	15		15	4.5	1.3	0.0	0.0	0.0	0.0	30
31	0.2		3.1	14		13		1.2		0.0	0.0		31
MEAN	0.0	14.1	3.7	18.0	5.8	16.6	10.2	3.5	0.4	0.0	0.0	0.0	MEAN
MAX.	0.2	161	5.3	218	12.0	107	47.0	11.0	1.1	0.0	0.0	0.0	MAX
MIN.	0.0	0.3	2.7	2.8	3.9	1.8	4.5	1.2	0.0	0.0	0.0	0.0	MIN.
AC. FT.	1	837	229	1106	334	1023	608	216	23				AC.FT.

E - ESTIMATED

NR - NO RECORD

* DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

	MEAN		MAXIMU	M		
	DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
l	6.0	529	6.11	1	22	0540
		(,

MUNIMUM										
DISCHARGE	GAGE HT.	MO.								
0.0		10	1	0000						
		ļ								

TOTAL
ACRE FEET
4376

	LOCATIO	н	MA	XIMUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	ONGITUDE 1/4 SEC. T. & R. M.D. 8.&M.		OF RECORD			GAGE HEIGHT	PERIOD		ZERO	REF.
LATITODE	LUNGITUDE			GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 23 55	120 00 10	NE21 6S 18	E 7180E	11.62	4- 3 - 58	NOV 57-DATE		1957		0.00	LOCAL

Station located at Co. Rd. bridge, 5.6 mi. E. of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 66.0 sq. mi. Altitude of gage is 1100 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

1	WATER YEAR	STATION NO.	STATION NAME	
-	1964	862100	MARIPOSA CREEK BELOW MARIPOSA RESERVOIR	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	8.0	6.0	17	7.0	20	5.0	0.5	0.0	0.0	0.0	1
2	0.0	0.0	8.0	6.0	16	8.0	34	5.0	0.5	0.0	0.0	0.0	2
3	0.0	0.0	7.0	5.0	14	8.0	38	5.0	0.5	0.0	0.0	0.0	3
4	0.0	0.0	7.0	5.0	13	9.0	26	5.0	0.5	0.0	0.0	0.0	4
5	0.0	0.0	7.0	5.0	12	9.0	21	5.0	0.5	0.0	0.0	0.0	5
6	0.0	0.0	6.0	5.0	11	8.0	18	5.0	0.1	0.0	0.0	0.0	6
7	0.0	0.0	6.0	5.0	11	8.0	16	7.0	0.0	0.0	0.0	0.0	1 7 1
8	0.0	0.0	6.0	5.0	10	7.0	15	10	0.0	0.0	0.0	0.0	8
9	0.0	0.0	6.0	5.0	10	7.0	14	8.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	7.0	5.0	10	7.0	12	6.0	0.0	0.0	0.0	0.0	10
11	0.0	0.0	7.0	5.0	10	7.0	12	5.0	0.0	0.0	0.0	0.0	111
12	0.0	0.0	8.0	5.0	9.0	7.0	10	4.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	8.0	5.0	9.0	7.0	10	4.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	7.0	5.0	8.0	9.0	9.0	3.0	0.0	0.0	0.0	0.0	14
15	0.0	0.0	7.0	5.0	8.0	10	8.0	3.0	0.0	0.0	0.0	0.0	15
16	0.0	0.0	7.0	5.0	8.0	9.0	8.0	2.0	0.0	0.0	0.0	0.0	16
	0.0	0.0	6.0	5.0	8.0	8.0	7.0	2.0	0.0	0.0	0.0	0.0	17
17	0.0	0.0	6.0	6.0	8.0	8.0	7.0	2.0	0.0	0.0	0.0	0.0	18
18	0.0	0.0	6.0	6.0	8.0	7.0	6.0	2.0	0.0	0.0	0.0	0.0	19
19	0.0	0.0	6.0	6.0	8.0	6.0	7.0	2.0	0.0	0.0	0.0	0.0	20
20	0.0	0.0	0.0	0.0	0.0	0.0	'.0	1					10
21	0.0	60	6.0	6.0	7.0	5.0	7.0	1.0	0.0	0.0	0.0	0.0	21
22	0.0	26	6.0	68 #	7.0	6.0	7.0	1.0	0.0	0.0	0.0	0.0	22
23	0.0	17	6.0	114	7.0	8.0	7.0	1.0	0.0	0.0	0.0	0.0	23
24	0.0	13	6.0	50	7.0	56	7.0	1.0	0.0	0.0	0.0	0.0	24
25	0.0	31	6.0	32	7.0	93	6.0	1.0	0.0	0.0	0.0	0.0	25
26	0.0	20	6.0	25	7.0	56	6.0	1.0	0.0	0.0	0.0	0.0	26
27	0.0	14	6.0	21	6.0	54	6.0	1.0	0.0	0.0	0.0	0.0	27
28	0.0	11	6.0	20	7.0	48	6.0	1.0	0.0	0.0	0.0	0.0	28
29	0.0	10	6.0	20	8.0	38	5.0	1.0	0.0	0.0	0.0	0.0	29
30	0.0	9.0	6.0	20	- • •	28	5.0	1.0	0.0	0.0	0.0	0.0	30
31	0.0	,.0	6.0	18		21		1.0		0.0	0.0		31
MEAN	0.0	7.0	6.5	16.1	9.3	18.4	12.0	3.3	0.1	0.0	0.0	0.0	MEAN
MAX.	0.0	60.0	8.0	114	17.0	93.0	38.0	10.0	0.5	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	6.0	5.0	6.0	5.0	5.0	1.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.		419	401	990	538	1129	714	200	5				AC.FT.

E - ESTIMATED

NR - NO RECORD

* OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AHD *

MEAN	. /	MAXIMUM						MINIMUM						
DISCHARGE		DISCHARGE	GAGE HT.	MO.	DAY	TIME		DISCHARGE	GAGE HT.	MO.	DAY	TIME		
6.1	Н						J							
	١.				(. /	1	(1	1 1			

TOTAL ACRE FEET 4396

1		LOCATION	N	MAXII	AUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
ı	LATITUDE	LONGITUOE	1/4 SEC, T, & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
-	LATITUDE	LONGITUDE	M.O.B.8 M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 16 52	120 09 45	NE36 7S 16E	6020		12-24-55	NOV 52-DATE		1952		337.63	USCGS

Station located 1.5 mi. below Mariposa Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Mariposa Reservoir. Records furn. by U.S.C.E. Drainage area is 108 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	B00420	MARIPOSA BYPASS NEAR CRANE RANCH

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1													1
3													3
4 5													4 5
6 7													7
8 9													8 9
10													10
11													11
12 13													12
14													14
15					INSU	JFFICIENT D	PATA TO PUI	LISH					15
16													16
1 <i>7</i>					1								17
19													19
20													20
21													21
22 23													22
24 25													24
25				1									25
26 27													26 27
28		[]											28
29 30													29 30
31													31
MEAN													MEAI
MAX. MIN.													MAX
AC. FT.												-	MIN AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AHD *

MEAN		MAXIMU	J M	_		MINIM	J M	_
DISCHARGE	DISCHARGE		MO. DAY	TIME	DISCHARGE		MO. DAY	TIME

	TOTAL	7
	ACRE FEET	
١.		

	LOCATION		MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUOE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.	
LATITUDE	LONGITUDE	M, D, 8, 8, M,	C.F.S.	GAGE HT.	DATE	5.5 3.1711.02	ONLY	FROM	TO	GAGE	DATUM
37 12 00	130 41 50	NW 31 8S 11E						1962		0.00	usces

This station was installed in January 1962 for the Lower San Joaquin Flood Control Project for the purpose of recording flows diverted into Mariposa bypass by float activated electrically operated gates. No continuous water stage recorder is installed to date. Miscellaneous measurements of instantaneous discharge will be presented when appropriate.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	1
1964	B06170	OWENS CREEK BELOW OWENS RESERVOIR	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.5	0.5	0.9	0.7	1.7	0.5	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.5	0.5	0.9	1.1	2.0	0.5	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.5	0.5	0.8	1.0	2.0	0.5	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.5	0.5	0.8	0.8	1.0	0.5	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.5	0.5	0.7	8 • 0	1.0	0.5	0.0	0.0	0.0	0.0	5
6	0.0	0.4	0.5	0.5	0.7	0.7	1.0	0.5	0.0	0.0	0.0	0.0	6
7	0.0	0 • 4	0.5	0.5	0.6	0.7	1.0	0.8	0.0	0.0	0.0	0.0	7
8	0.0	0.4	0.5	0.6	0.6	0.8	0.9	0.8	0.0	0.0	0.0	0.0	8
9	0.0	0 • 4	0.5	0.6	0.6	0.8	0.8	0.6	0.0	0.0	0.0	0.0	9
10	0.0	0 • 4	0.5	0.6	0.6	8•0	0 • 8	0.5	0.0	0.0	0.0	0.0	10
11	0.0	0 • 4	0.5	0.6	0.6	0.7	0.7	0.5	0.0	0.0	0.0	0.0	111
12	0.0	0.4	0.5	0.6	0.5	0.8	0.6	0.4	0.0	0.0	0.0	0.0	12
13	0.0	0.4	0.5	0.6	0.5	1.0	0.6	0.4	0.0	0.0	0.0	0.0	13
14	0.0	0.4	0 • 5	0.6	0.5	1.0	0.6	0.4	0.0	0.0	0.0	0.0	14
15	0.0	0.5	0.5	0.6	0.5	0 • 8	0.5	0.3	0.0	0.0	0.0	0.0	15
16	0.0	0.5	0.5	0.6	0.7	0.7	0.5	0.2	0.0	0.0	0.0	0.0	16
17	0.0	0 • 4	0.5	0.6	0.7	0.6	0.5	0.1	0.0	0.0	0.0	0.0	17
18	0.0	0 • 4	0.5	0.8	0.6	0.6	0.5	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0 • 5	0.5	0.8	0.6	0.6	0.5	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.5	0.5	0.8	0.5	0.6	0.6	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.5	0.5	1.1	0.5	0.6	0.6	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.5	0.5	9.0*	0.5	1.0	0.7	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0.5	0.5	4.0	0.5	3.0	0.7	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0.5	0.5	2.0	0.5	4.0	0.6	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0 • 5	0 • 5	1.8	0.5	3.0	0.5	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.5	0.5	1.5	0.5	2.0	0.5	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.5	0.5	1.2	0.5	1.7	0.5	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.5	0.5	1.1	0.5	1.4	0.5	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.5	0.5	1.0	0.6	1.2	0.5	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.5	0.5	1.0		1.0	0.5	0.0	0.0	0.0	0.0	0.0	3D
31	0.0		0 • 5	0.9		1.1	_	0.0		0.0	0.0		31
MEAN	0.0	0 • 4	0.5	1.2	0.6	1.1	0.8	0.3	0.0	0.0	0.0	0.0	MEAN
MAX.	0.0	0.5	0.5	9.0	0.9	4.0	2.0	0.8	0.0	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	0.5	0.5	0.5	0.6	0.5	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.		23	31	72	35	71	46	16					AC.FT.

E — ESTIMATED
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
085ERVATION OF NO FLOW
— E AHD *

MEAN		MAXIMU	M					MINIMI	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1 [DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.4						П					
,	/ (1		l /	/ 1					

TOTAL ACRE FEET 293

	LOCATION	٠	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM OF GAG		
LATITUDE LONGITUDE	LONGITUDE	1/4 SEC. T, & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOO		ZERO	REF.
LATITUDE	LONGITUDE	M. D. 8. 8 M.	C.F.S.	GAGE HT.	DATE	DIS GITARGE	ONLY	FROM	то	GAGE	DATUM
37 18 28	120 11 35	SW23 7S 16E	590		12-24-55	FEB 50-DATE		1950		338.22	usces

Station located 0.25 mi. below Owens Dam. Tributary to San Joaquin River, via Eastside Bypass. Flow regulated by Owens Reservoir. Records furn. by U.S.C.E. Drainage area is 25.6 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME SEAR CREEK NEAR CATHEYS VALLEY 1964 B55400

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	0.0	0.0	1.2	0.6	4.0	0 • 8	6.9	0.8	0.3	0.0	0.0	0.0	1
2	0.0	0.0	1.1	0.6	3.2	1.1	17	0.7	0.3	0.0	0.0	0.0	2
3	0.0*	0.0	1.2	0.5	2.8	1.2*	9.0	0.9	0.3	0.0*	0.0	0.0	3
4	0.0	0.0	1.0*	0.5	2.4	1.0	5.8	1.1	0.2	0.0	0.0*	0.0	4
s	0.0	0.0 *	1.0	0.5	2.0	0•9	4.3	1.2	0.2	0.0	0.0	0.0	5
6	0.0	0.0	0.9	0.5	1.7*	0.8	3.4*	2.8*	0 • 2	0.0	0.0	0.0	6
7	0.0	0.0	0.8	0.5	1.5	0.9	2.8	2.5	0.2	0.0	0.0	0.0	7
8	0.0	0.0	0.7	0.5*	1.4	0.9	2 • 3	1.6	0 • 1	0.0	0.0	0.0	8
9	0.0	0.0	1.0	0.4	1.3	0.8	2.0	1.4	0.1	0.0	0.0	0.0	9
10	0.0	0.0	1.0	0.4	1.2	0.8	1.8	1.2	0.1	0.0	0.0	0.0	10
11	0.0	0.0	0.9	0.4	1.1	0.8	1.6	1.1	0.1	0.0	0.0	0.0	11
12	0.0	0.0	0.9	0.4	1.1	1.0	1.5	1.0	0.1	0.0	0.0	0.0	12
13	0.0	0.0	0.9	0.4	1.1	1.7	1.3	1.0	0.1	0.0	0.0	0.0	12
14	0.0	0.0	0 • 8	0 • 4	1.1	1.4	1.2	0.9	0.1	0.0	0.0	0.0	14
15	0.0	0.0	0.8	0 • 4	1.0	1.2	1.2	8•0	0.1	0.0	0.0	0.0	15
16	0.0	0.0	0.8	0.4	1.0	1.0	1.1	0.7	0.1	0.0	0.0	0.0	16
17	0.0	0.0	0.7	0.5	1.0	0.9	1.1	0.8	0.1	0.0	0.0	0.0,	
18	0.0	0.0	0.7	0.6	1.0	0.9	1.0	0.7	0.1	0.0	0.0	0.0	18
19	0.0	0.0*	0.7	0.7	1.0	8•0	1.1	0.7	0.1	0.0	0.0	0.0	19
20	0.0	11 *	0.7	0.8	0.9	0.9	1.1	0.7	0.0	0.0*	0.0	0.0	20
21	0.0	9.3	0.7	2.7	0.9	1.0	1.1	0.7	0.0	0.0	0.0	0.0	
22	0.0	3.1	0.6	144	0.9	1.7	1.0	0.7	0.0	0.0	0.0	0.0	22
23	0.0	3 • 1	0.5	55	0.9	12	1.1	0.7	0.0	0.0	0.0	0.0	23
24	0.0*	21	0.6	37	0.8	39 *	1.6	0.6	0.0	0.0	0.0	0.0	24
25	0.0	7.7	0.6	28	0.8	31	1.5	0.5	0.0	0.0	0.0	0.0	25
26	0.0	3 • 6	0.5	22	0.8	22	1.1	0.6	0.0	0.0	0.0	0.0	26
27	0.0	2.3	0.5	18	0.8	14	1.0	0.5	0.0	0.0	0.0	0.0	27
28	0.0	1.7	0.5	12	0.8	9.4	0.9	0.4	0.0	0.0	0.0	0.0	28
29	0.0	1.6	0.5	8.6	0.8	5.7	0.8	0.4	0.0	0.0	0.0	0.0	29
30	0.0	1.4	0.5	6.4		4 • 2	0.8	0.3	0.0	0.0	0.0	0.0	30
31	0.0		0.6	5.2		3.4		0.3		0.0	0.0		31
MEAN	0.0	2.2	0.8	11.3	1.4	5 • 3	2.6	0.9	0.1	0.0	0.0	0.0	MEA
MAX.	0.0	21.0	1.2	144	4.0	39.0	17.0	2 • 8	0.3	0.0	0.0	0.0	KAM
MIN.	0.0	0.0	0.5	0.4	0.8	0.8	0.8	0.3	0.0	0.0	0.0	0.0	MIN
AC. FT.		131	47	692	78	324	156	56	6				AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M	_	_		M I
DISCHARGE 2 • 1	DISCHARGE 427	GAGE HT. 5 • 81			11ME 0530	DISCHARGE 0 • 0	GA

AGE HT. MO. DAY TIME

TOTAL ACRE FEET 1489

	LOCATIO	н	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD	RECORD			
LATITUDE LONG!	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
	CONGITODE	M.D.8.&M.	CFS	GAGE HT.	DATE	VISCHARGE	OHLY	FROM	TO	GAGE	DATUM
37 28 38	120 06 43	SW21 5S 17E	3850E	9.98	2- 1-63	DEC 57-DATE		1957		0.00	LOCAL

Station located at Co. Rd. bridge, 3.7 mi. N. of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 24.6 sq. mi. Altitude of gage is approx. 1,210 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	B05570	BEAR CREEK BELOW BEAR RESERVOIR

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	4.0	3.0	8.0	3.0	7.0	2.0	1.0	0.0	0.0	0.0	1
2	0.0	0.0	3.0	3.0	7.0	3.0	8.0	2.0	1.0	0.0	0.0	0.0	2
3	0.0	0.0	3.0	3.0	6.0	3.0	14	2.0	1.0	0.0	0.0	0.0	3
4	0.0	0.0	3.0	3.0	6.0	3.0	10	2.0	1.0	0.0	0.0	0.0	4
5	0.0	0.0	3.0	3.0	6.0	3.0	8.0	3.0	1.0	0.0	0.0	0.0	5
6	0.0	0.0	3.0	3.0	6.0	3.0	7.0	3.0	1.0	0.0	0.0	0.0	6
7	0.0	0.0	3.0	3.0	5.0	3.0	6.0	4.0	1.0	0.0	0.0	0.0	7
8	0.0	0.0	3.0	3.0	5.0	3.0	6.0	5.0	1.0	0.0	0.0	0.0	8
9	0.0	0.0	3.0	3.0	4.0	3.0	5.0	5.0	1.0	0.0	0.0	0.0	9
10	0.0	0.0	3.0	3.0	4.0	3.0	5.0	4.0	1.0	0.0	0.0	0.0	10
11	0.0	0.0	3.0	3.0	4.0	3.0	4.0	3.0	1.0	0.0	0.0	0.0	11
12	0.0	0.0	4.0	3.0	4.0	3.0	4.0	3.0	1.0	0.0	0.0	0.0	12
13	0.0	0.0	3.0	3.0	3.0	3.0	4.0	3.0	0.5	0.0	0.0	0.0	13
14	0.0	0.0	3.0	3.0	3.0	3.0	3.0	2.0	0.5	0.0	0.0	0.0	14
15	0.0	0.0	3.0	3.0	3.0	3.0	3,0	2.0	0.5	0.0	0.0	0.0	15
16	0.0	0.0	3.0	3.0	3.0	3.0	3.0	2.0	0.5	0.0	0.0	0.0	16
17	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.5	0.0	0.0	0.0	17
18	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.5	0.0	0.0	0.0	18
19	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.5	0.0	0.0	0.0	19
20	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	4.0	4.0	3.0	3.0	2.0	1.0	0.0	0.0	0.0	0.0	21
22	0.0	0.0	3.0	121 *	3.0	3.0	2.0	1.0	0.0	0.0	0.0	0.0	22
23	0.0	0.0	3.0	93	3.0	4.0	2.0	1.0	0.0	0.0	0.0	0.0	23
24	0.0	0.0	3.0	63	3.0	16	2.0	1.0	0.0	0.0	0.0	0.0	24
25	0.0	5.0	3.0	42	3.0	40	2,0	1.0	0.0	0.0	0.0	0.0	25
26	0.0	9.0	3.0	31	3.0	27	3.0	1.0	0.0	0.0	0.0	0.0	26
27	0.0	7.0	3.0	25	3.0	18	3.0	1.0	0.0	0.0	0.0	0.0	27
28	0.0	6.0	3.0	19	3.0	14	3.0	1.0	0.0	0.0	0.0	0.0	28
29	0.0	5.0	3.0	13	3.0	10	2.0	1.0	0.0	0.0	0.0	0.0	29
30	0.0	4.0	3.0 3.0	11 8.0		7.0 7.0	2.0	1.0	0.0	0.0	0.0	0.0	30
31	0.0		3.0	8.0		7.0		1.0		0.0	0.0		31
MEAN	0.0	1.2	3.1	15.8	4.0	6.7	4.4	2.0	0.5	0.0	0.0	0.0	MEAN
MAX.	0.0	9.0	4.0	121	8.0	40	14	5.0	1.0	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	3.0	3.0	3.0	3.0	2.0	1.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.		71	190	972	230	415	262	123	31				AC.FT.

E — ESTIMATED
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- EAND .

MEAN		MAXIM	J M				MINIM	J M		
DISCHARGE 3 • 2	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
					ノ					

TOTAL ACRE FEET 2294

		LOCATION	N	MAXII	NUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
Γ	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF.
	LATTIOUE	CONGITODE	M.D.B.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
	37 21 27	120 14 05	NE 5 7S 16E	4460		12-24-55	JAN 55-DATE		1955		320.50	USCGS

Station located approx. 0.75 mi. below Bear Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Bear Reservoir. Records furn. by U.S.C.E. Drainage area is 72 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 856400 BURNS CREEK AT HORNITOS

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.1	0.2	1.1	0.4	0.7	0.1	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.1	0.1	1.0	0.5	0.6	0.1	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.1	0.1	1.0	0.4#	0.4	0.2	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.1#	0.1	0.9	0.4	0.4	0.2	0.0	0.0	0.0*	0.0	4
5	0.0	0.0	0.1	0.1	0.8	0.3	0.4	0.2	0.0	0.0	0.0	0.0	5
6	0.0	0.1	0.1	0.1	0.7*	0.3	0.3*	0.3#	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.1	0.2	0.7	0 • 4	0.3	0.2	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.1	0.2*	0.6	0.3	0.3	0.2	0.0	0.0	0.0	0.0	
9	0.0	0.0	0.2	0.1	0.6	0.3	0.3	0.2	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0 • 1	0.1	0.6	0.3	0.2	0.2	0.0	0.0	0.0	0.0	10
- 11	0.2	0.0	0.1	0.2	0.6	0.3	0.2	0.1	0.0	0.0	0.0	0.0	11
12	0 • 1	0.0	0 • 1	0.2	0.6	0.3	0.2	0.1	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.1	0.2	0.5	0.3	0.2	0.1	0.0	0.0	0.0	0.0	13
14	0.0	0.1	0.1	0.1	0.5	0.3	0.2	0.1	0.0	0.0	0.0	0.0	14
15	0.0	0 • 2	0.1	0.1	0.5	0 • 2	0.2	0.1	0.0	0.0	0.0	0.0	15
16	0.0	0.1	0.1	0.1	0.5	0.3	0.2	0.1	0.0	0.0	0.0	0.0	16
17	0.0	0.1	0.1	0.2	0.5	0.3	0.2E	0.1	0.0	0.0	0.0	0.07	
18	0.0	0.0	0.1	0.2	0.4	0.3	0.2E	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0+2*	0 • 2	0.2	0.4	0.3	0.2E	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0 • 4	0.2	0.2	0.5	0.3	0.2E	0.0	0.0	0.0*	0.0	0.0	20
21	0.0	0.1	0.1	14 *	0.5	0.2	0.2E	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.1	0.1	95	0.4	0.4	0.2E	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0 • 2	0.2	21	0.4	0.8	0.lE	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0 • 2	0.2	7.5	0.4	1.0	0.1E	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0 • 2	0.2	4.2	0.4	0.7	0.1E	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.1	0.2	2.9	0.4	0.6	0.1E	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.1	0.1	2.0	0.3	0.6	0.1E	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.1	0.1	1.7	0.4	0.6	0.1	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.1	0.2	1.5	0.4	0.5	0.1	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.1	0.2	1.2		0.5	0.1	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0 • 2	1.2		0.5		0.0	1	0.0	0.0		31
MEAN	0.0	0.1	0.1	5.0	0.6	0 • 4	0.2	0.1	0.0	0.0	0.0	0.0	MEA
MAX.	0.2	0.4	0.2	95.0	1.1	1.0	0.7	0.3	0.0	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.1	0.1	0.3	0.2	0.1	0.0	0.0	0.0	0.0	0.0	MIN
AC. FT.	1	5	8	308	33	26	14	5					AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AHD *

MEAN		MAXIMU	м		\rightarrow
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.5	222	4.25	1	22	0443
					/

MINIMUM GAGE HT. MO. DAY TIME DISCHARGE 10 1 0000 0.0

TOTAL ACRE FEET 399

	LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR)	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
LATITODE	LONGFIODE	M.D.B.&M.	CFS	GAGE HT.	DATE	Dischange	OHLY	FROM	то	GAGE	DATUM
37 29 42	120 14 17	SE17 5S 16E	4340E	10.66	2-15-62	DEC 58-DATE		1958		0.00	LOCAL

Station located 130 ft. S of Stockton-Mariposa Road, 0.2 mi. SW of Hornitos. Tributary of San Joaquin River via Bear Creek. Drainage area is 26.7 sq. mi. Maximum discharge from slope-area measurement. Altitude of gage is approx. 780 ft. (From U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME BURNS CREEK BELOW BURNS RESERVOIR B56100 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
16	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0 • 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0 • 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.5	0.0	2.8*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0.3	0.0	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	1.2	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	1.2	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.6	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.4	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0.0	0.3		0.0		0.0		0.0	0.0		31
MEAN	0.0	0 • 2	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	0.0	1.2	0.0	3.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN. AC.FT.
AC. FT.		14		22	1								

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN	. /		MAXIMU	M					MINIM	JM		
O • 0	$\left \right $	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHA	RGE	GAGE HT.	MO.	DAY	TIME

TOTAL ACRE FEET 37

1		LOCATION	١			MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
1			1/4 S	EC. T.	8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF.
ı	LATITUDE	LONGITUDE	M.	D.B.8	M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
	37 22-27	120 16 35	NE36	6 S	15E	2590		12-24-55	APR 50- DATE		1950		260.60	usces

Station located 0.5 mi. below Burns Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Burns Reservoir. Records furn. by U.S.C.E. Drainage area is 73.8 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B07400 SAN JOAQUIN RIVER NEAR STEVINSON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	63	21	21	27	33	25	46	49	100	42	42	55	1
2	59	19	18	29	33	25 *	49 #	47	100	30	42	52	2
3	53	18	18	37 *	30	24	48	46	81	34 *	49	50	3
4	51	16	19 *	45	31	22	51	48 #	53 +	33	55 +		
5	55	16	18	80	26 *	22	43	51	41	31	54	41	5
6	56	17	17	81	26	25	37	59	41	28	49	36	6
7	55	16	20	115	25	25	38	59	38	26	44	36	7
8	62	15 *	22	75 52	19	26	40	52	38	29 32	36 35	39 34	8
9	69	14	21	52	19	29	37	55	43	34	36	32	9
10	63	12	21	49	19	31	32	54	58	34	36	32	10
111	53	14	20	47	15	30	31	53	83	32	35	30	11
12	62	20	14	44	14	32	28	61	125	32	34	28	12
13	65	20	13	55	14	35	32	63	148	37	36	27	13
14	65	16	13	54	15	38	37	62	119	36	35	27	14
15	81	18	16	54	33	42	39	53	86	42	36	25	15
16	83 *	25	21	49	44	44	37	51	67	44	39	25	16
17	61	26	21	42	25	43	40	49	57	38	40	24	17
18	60	28	21	36	26	38	41	48	53	34	37	24	18
19	67	28	21	34	22	45	44	50	46	36	33	22	19
20	68	37	26	32	23	37	56	62	40	38	40	23	20
21	62	42	27	31	23	33	76	76	38	40	41	22	21
22	62	43	24	61	22	34	53	74	40	44	44	26	22
23	52	45	22	103	22	35	43	75	48	44	47	29	23
24	47	42	23	112	22	37	46	83	55	44	48	25	24
25	47	39	24	111	20	47	50	91	52	44	51	25	25
26	51	35	2 7	96	21	48	51	89	44	42	58	26	26
27	46	30	26	81	26	45	51	89	38	39	57	26	27
28	43	28	25	53	27	46	50	88	41	36	53	29	28
29	40	26	23	33	24	46	50	89	40	38	50	31	29
30	32	24	25	25		42	48	88	43	42	51	32	30
31	25		24	30		42		86		41	52		31
MEAN	56.7	25.0	21.0	57.2	24.1	35.3	44.1	64.5	61.9	36.8	43.9	31.6	
MAX.	83.0	45.0	27.0	115	44.0	48.0	76.0	91.0	148	44.0	58.0	55.0	
MIN.	25.0	12.0	13.0	25.0	14.0	22.0	28.0	46 • 0	38.0	26 • 0	33.0	22.0	
AC. FT.	3487	1488	1291	3517	1386	2168	2626	3967	3681	2265	2700	1882	AC.FT.

E - ESTIMATED

NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSENVATION OF NO FLOW

- E AND *

MEAN		MAXIMU			
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
42.0	152	62.48	6	12	2100
,	(

MINIMUM GAGE HT. MO. DAY TIME DISCHARGE 11 10 1220 12.0 60.6

TOTAL ACRE FEET 30460

	LOCATION	V	MAXII	NUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. B. R.		OF RECORE		DISCHARGE	GAGE HEIGHT	PER	100	2ERO ON	REF.
LATITUOE	LONGITUOE	M, O, B, & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	OATUM
37 17 42	120 51 00	26 7 S 10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-SEP 61	1961		0.00	USCGS

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	852600	NORTH FORK MERCEO RIVER NEAR COULTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
3	2 • 4	7.8	4.5	1.5	13	3.7	16	3.5	2.4	0.6	0.2	0.9	7
2	2.0	8 • 2	4.9	1.5	11	5.4	18	3.6	2.5	0.5	0.1	0.8	2
3	1.3	8.8	4.7	1.4	9.9	3.7*	13	4.6	2.3	0.3*	0.1	0.5	3
4	0.7	8.5	3.4*	1.4	8.5	3 • 1	11	5.0	2.1*	0.3	0.1*	0.3*	4
5	0.7	6.1*	3 • 1	1.5	8.0*	2 • 8	8.6	5+1	1.9	0 • 4	0.3	0.4	5
6	0•8	7.5	3.5	1.3	8.0	2.8	7.6*	8.2*	2.2	0.4	0.3	0.4	6
7	1.0	2.7	3.4	1.3	6.4	3.0	6.3	7.9	2.4	0.4	0.4	0.3	7
8	1.0	2.0	3.3	1.3*	6.0	2 • 4	6.2	7.3	2.4	0.2	0.3	0.3	8
9	1.3	1.8	5 • 2	1.6	6.3	2.4	5.8	7.1	3.7	0.3	0.3	0.4	9
10	1•5	1 • 8	3.9	1.8	6.3	2 • 5	5.4	6.5	2.4	0.3	0.3	0.4	ID
11	2•7	1.4	3.6	1.6	5.7	2.7	4.7	5.0	2.1	0.3	0.5	0.6	11
12	0.8	1.5	3 • 2	1.8	4.9	5.9	4.1	4.7	2.1	0.3	0.5	0.6	12
13	0.7	1.4	2 • 8	2 • 2	4.7	5.5	3.6	4 • 6	1.9	0.3	0.5	0.5	13
14	1.0	4.8	2.7	2 • 2	4.3	5 • 2	3.7	4.3	1.6	0.2	0.4	0.5	14
15	1.0	7.3*	2.7	2.1	4.5	4.3	3.8	4.0	1.3	0.3	0.5	0.6	15
16	1.0	2.5	2.4	2.3	4.4	3 . 8	3.6	3.8	1.3	0.5	0.3	0.5	16
17	0.5*	2.4	2 • 2	2.5	4.0	3.6	3.3	3.6	1.3	0.3	0.6	0.5	17
18	0.8	2.6	2.2	4.3	3.4	3.7	2.7	3 • 2	1.1	0.1	0.5	0.4	18
19	1.2	8.0	2.1	3.8	2 • 6	3.1	4.7	3 • 2	0.9	0.1	0.6	0.6	19
20	1.8	30 *	2.1	4 • 2	3.1	3.0	3.7	2.9	0•9	0 • 2	0.8	0.6	20
21	2.5	11	2.1	18 *	2.9	3.1	4.0	3.1	0.7	0.1	0.6	0.6	21
22	3.1	5+5	2 • 1	16	3.1	4.7	3.8	3 • 2	0.7	0.2	0.7	0.6	22
23	4.9	12	2.1	11	2.9	8.0	4+1	3.1	0.7	0 • 2	0.8	0.6	23
24	6+2	18	2 • 1	9.2	2.9	10 *	4.1	3.1	0.6	0.2	1.1	0.5	24
25	6.3	9•2	1.8	9•1	3.1	9.3	4.0	2 • 8	0.6	0 • 2	0.8	0.6	25
26	5.7	6.6	1.8	8.8	3.2	11	3.8	3.1	0.6	0 • 2	0.9	0.5	26
27	6.2	5+3	1.8	9.4	3.1	16	3.7	3.8	0.6	0.1	0.8	0.5	27
28	5.5	5.6	1.8	10	3.1	19	3.5	3.2	0.8	0.3	0.6	0.5	28
29	3.7	4.8	1.8	12	3.1	18	3 • 1	3.1	0.8	0 • 4	0.6	0.3	29
30	7.5	4.5	1.8	15		12	3.1	2.9	0.6	0.4	0.5	0.3	3D
31	7.8		1.5	14		11		2.7		0 • 4	0.7		31
MEAN	2.7	6.7	2.8	5.6	5.3	6.3	5.8	4.3	1.5	0.3	0.5	0.5	MEAN
MAX.	7.8	30.0	5 • 2	18.0	13.0	19.0	18.0	8 • 2	3.7	0.6	1.1	0.9	MAX.
MIN.	0.5	1.4	1.5	1.3	2.6	2.4	2.7	2.7	0.6	0.1	0.1	0.3	MIN.
AC. FT.	166	396	172	345	302	386	343	262	90	18	31	30	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M		$\overline{}$
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
3.5	43.0	3.72	11	20	0210

·	MINIMU			
DISCHARGE	GAGE NT.	МО	DAY	TIME
0.0		7	17	1500
			L	

	TOTAL	•
Г	ACRE FEET	I
	2542	

	LOCATION			MAXIMUM DISCHARGE PERIOD OF RECORD			DATUM OF GAGE					
ſ	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	001	2ERO ON	REF.
L	LATITODE	LONGITODE	M, O, B, & M,	C.F.S.	GAGE HT.	DATE	- CONTACT	ONLY	FROM	ТО	GAGE	DATUM
1	37 44 51	120 02 12	NW19 25 18E	3440	7.83	1-31-63	DEC 58-DATE		1958		0.00	LOCAL

Station located 40 ft. above Greeley Hill Road Bridge, 9 mi. NE of Coulterville. Drainage area is 30.3 sq. mi. Altitude of gage is 2,360 ft. (from U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 851250 MAXWELL CREEK AT COULTERVILLE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.6	0.5	3.6	1.1	14	0.7	0 • 2	0.0	0.0	0.0	1
2	0.0	0.0	0.6	0.5	3.1	2.1	12	0.6	0.2	0.0	0.0	0.0	2
3	0.0*	0.0	0.5	0 • 4	2.1	1.4*	5.9	1.5	0.2	0.0*	0.0	0.0	3
4	0.0	0.1	0.8*	0.4	1.8	1.2	4.0	1.4	0.2*	0.0	0.0 *	0.0*	4
5	0.0	0 • 2 *	0.8	0.4	1.7	1.0	3.1	1.2	0 • 2	0.0	0.0	0.0	5
6	0.0	1.2	0.8	0 • 4	1.5*	1.2	2.5*	4.9*	0 • 2	0.0	0.0	0.0	6
7	0.0	0.4	0.8	0.4	1.1	1.4	2.0	3.7	0 • 2	0.0	0.0	0.0	7
8	0.0	0.3	0.8	0.5*	1.1	1 • 2	1.8	2.1	0.2	0.0	0.0	0.0	8
9	0.0	0.3	1.6	0.5	1.1	1.1	1.6	1.6	0.3	0.0	0.0	0.0	9
10	0.0	0 • 4	1.3	0.5	1.3	1.0	1.5	1.6	0.2	0.0	0.0	0.0	10
11	0.8	0.4	1.0	0.6	1.3	0 • 8	1.3	1.3	0 • 2	0.0	0.0	0.0	11
12	0.3	0.6	0.8	0.6	1.1	3 • 8	1.2	1.2	0.1	0.0	0.0	0.0	12
13	0.2	0.8	0.6	0.5	1.1	3.9	1.1	1.1	0.1	0.0	0.0	0.0	13
14	0-1	1.9	0.6	0.5	1.1	2.2	1.0	0.9	0.1	0.0	0.0	0.0	14
15	0 • 1	10 *	0.7	0.4	1.0	1.7	1.0	8.0	0.1	0.0	0.0	0.0	15
16	0.1	1.3	0.6	0.4	1.1	1.5	0.9	0.8	0.2	0.0	0.0	0.0	16
17	0.0*	0.6	0.5	0.5	1.4	1.4	0.9	0.8	0.1	0.0	0.0	0.0	17
18	0.0	0.3	0.4	1.4	1.3	1.1	8.0	0.7	0.1	0.0	0.0	0.0*	18
19	0.0	2.8	0.5	1.4	1.0	1.0	1.4	0.6	0.1	0.0	0.0	0.0	19
20	0 • 1	17 *	0 • 4	1•4	1.4	1.0	1.2	0.5	0.1	0.0	0.0	0.0	20
21	0.1	2 • 1	0 • 4	19 *	1.4	1.1	1.0	0.5	0.1	0.0	0.0	0.0	21
22	0.1	0 - 4	0.4	46	1.2	1.7	0.8	0.4	0.1	0.0	0.0	0.0	22
23	0.1	3.7	0.4	9.9	1.2	3.9	0.9	0.4	0.1	0.0	0.0	0.0	23
24	0.0	6.0	0.4	5.8	1.3	18 *	1.2	0.4	0.0	0.0	0.0	0.0	24
25	0.0	1.4	0 • 4	4.5	1.2	12	0.9	0.3	0.0	0.0	0.0	0.0	25
26	0.0	0.7	0 • 4	4.3	1.1	18	0.7	0.4	0.0	0.0	0.0	0.0	26
27	0.0	0 • 5	0.4	4.3	1.0	15	0.7	0 • 4	0.0	0.0	0.0	0.0	27
28	0.0	0.5	0.4	3.7	0.9	8.7	0.6	0.3	0.0	0.0	0.0	0.0	28
29	0.0	0.5	0.5	4.3	0.9	4.6	0.6	0.3	0.0	0.0	0.0	0.0	29
30	0.0	0.5	0.5	6.3		3.0	0.5	0.2	0.0	0.0	0.0	0.0	30
31	0.1		0 - 4	4.9		2 • 6		0.2		0.0	0.0		31
MEAN	0.1	1.8	0.6	4.0	1.4	3.9	2.2	1.0	0.1	0.0	0.0	0.0	MEAN
MAX.	0.8	17.0	1.6	46.0	3.6	18.0	14.0	4.9	0.3	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.4	0.4	0.9	0.8	0.5	0.2	0.0	0.0	0.0	0.0	MIN.
AC. FT.	4	109	38	248	80	237	133	63	7 .				AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

,	MEAN		MAXIMU	M		
ľ	DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
Į	1.3	135	4.28	1	22	0330

MINIMUM
DISCHARGE GAGE HT. MO. DAY TIME 10 0.0 1 2000 TOTAL ACRE FEET 921

	LOCATION			MUM DISCH	HARGE	GE PERIOD OF RECORD			DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE GAGE HEI	DISCHARGE GAGE HEIGHT		PEF	PERIOO ZERO		REF.
CATTIONE	LONGITODE	M.D.8.8.M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM	
37 42 58	120 11 20	SE34 2S 16E	1720E	5.73	2- 8-60	DEC 58-DATE		1958		0,00	LOCAL	

\$tation located below Dogtown Road Bridge, 0.5 mi. NE of Coulterville. Tributary to Merced River. Drainage area is 17.0 sq. mi. Altitude of gage is 1740 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 805170 MERCED RIVER BELOW SNELLING

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	34	19	21	17	20	19	28 *	63 *	48	67	77	70	1
2	45	19	21	17	20	18 *	26	67	47	63	76	69	2
3	84	20	21	17	20 #	17	26	79	50 *	66 *	76	69	3
4	26	21	21 *	18	20	18	23	82	4.9	71	76 *	61 *	_
S	20	24 *	22	21	19	17	18	91	46	68	75	62	S
6	14	28	21	22 *	19	19	16	94	50	67	68	50	6
7	13	24	21	22	19	19	18	94	53	69	69	50	7
8	9.5	23	21	22	22	19	13	77	55	70	66	43	8
9	8.4	22	21	21	22	16	14	73	74	68	69 71	28	9
10	8.6	23	21	22	26	18	18	68	94	70	71	19	10
11	19	23	20	22	26	19	29	59	82	76	72	9.0	11
12	15	23	19	21	26	23	28	56	79	79	75	19	12
13	12	22	18	21	26	21	26	55	73	79	73	17	13
14	11	25	18	21	25	20	23	71	60	320	72	8 · 4 7 · 3	14
15	11	33	19	21	22	19	38	70	57	70	75	7.3	15
16	13 *	26	19	20	23	19	54	60	69	61	73	5.0	16
17	15	25	18	20	22	19	62	59	71	58	79	3.4	17
18	15	25	18	21	23	20	53	58	51	53	79	3.0	18
19	14	30	19	21	22	20	61	56	59	56	73 82	2.7	19
20	14	41	19	21	22	19	70	51	66	54	8.2	2.5	20
21	14	33	18	29	22	17	70	52	67	52	101	2.2	21
22	13	29	18	38	21	18	70	57	73	51	76	2.1	22
23	14	31	18	36	21	20	75	57	71	59	53	2.1	23
24	14	32	18	27	21	23	80	60	67	62	19	1.9	24
25	15	28	19	24	21	22	69	64	68	73	44	1.7	25
26	15	27	18	24	17	22	67	68	74	68	55	1.5	26
27	15	27	18	23	17	21	68	72	72	65	57	1.5	27
28	15	22	19	21	17	19	68	63	66	75	64	1.5	28
29	17	21	18	21	18	16	64	60	70	75	63	1.5	29
30	20	21	18	21		16	62	49	69	79	63	1.3	30
31	17		18	22		15		47		81	65		31
MEAN	18.4	25 • 6	19.3	22.4	21.3	19.1	44.6	65.5	64.3	75.6	68.9	20.5	MEAN
MAX.	84.0	41.0	22.0	38.0	26.0	23.0	80.0	94.0	94.0	320	101	70.0	MAX.
MIN.	8.4	19.0	18.0	17.0	17.0	15.0	13.0	47.0	46.0	51.0	19.0	1.3	MIN.
AC. FT.	1132	1521	1186	1377	1228	1174	2652	4030	3828	4651	4237	1221	AC.FT.

E - ESTIMATED

NR - NO RECORD

* - DISCNARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M	
DISCHARGE	DISCHARGE	GAGE HT.	MD.	DAY
38 • 9	1530	9 • 35	7	14

	MINIMUM											
DISCHARGE	GAGE HT.	MO.	DAY	TIME								
1.3	4.73	9	27	1630								

TOTAL ACRE FEET 28240

	LOCATION MAXIMUM DISCHARGE PERIOD OF RECORD			F RECORD	DATUM OF GAGE						
LATITUDE LONGITUDE		1/4 SEC. T. & R.		OF RECORD	RD DISCHARGE		GAGE HEIGHT	PERIOD		ZERO	REF.
LATITUDE	LONGITUOE	M.O.B.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 5S 14E	4910	12.51	5-10-63	NOV 58-DATE		1958		0.00	LOCAL

TIME 1440

Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream. Altitude of gage is 221 feet, USGS datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 805155 MERCED RIVER AT CRESSEY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	107	75	8.8	86	104	75	71 *	64	86	72	73	93	,
2	106	76	86	88	102	78 *	70	65	91	71	86	86	2
3	113	76	83	89 *	101 #	81	69	77	76	61	88	97	3
4	145	77	83 *	90	100	81	66	85 *	78 *	63	91 *		4
S	137	76 *	85	90	100	81	61	93	74	71	75	97	5
6	109	76	85	90	97	84	63	105	70	89 *	89	92	6
7	101	84	86	91	96	92	60	123	76	95	88	85	7
8	89	85	86	92	95	90	57	140	86	88	87	64	8
9	83	82	86	91	94	86	56	125	96	87	82	88	9
10	77	79	86	92	97	82	52	120	122	84	89	85	10
11	94	79	85	91	95	84	53	115	136	88	82	74	11
12	106	78	86	90	92	91	53	103	135	71	72	66	12
13	109	78	85	89	91	92	56	87	126	73	70	60	13
14	101	81	85	92	90	92	64	75	109	69	94	61	14
15	95	91	84	95	90	92	64	65	108	311	98	52	15
16	98 *	100	82	93	95	8.6	64	57	95	178	99	55	16
17	99	100	85	93	94	82	83	54	95	111	105	58	17
18	102	96	86	95	92	81	91	61	94	93	103	62	18
19	101	97	84	96	93	82	106	57	87	78	100	67	19
20	98	107	84	95	92	82	127	48	75	63	110	65	20
21	94	111	86	103	93	78	122	48	66	63	110	56	21
22	91	111	86	136	93	75	127	58	64	64	120	51	22
23	89	105	83	343	92	79	124	67	67	67	151	44	23
24	86	103	85	215	96	81	114	71	70	59	142	49	24
25	86	104	87	158	87 *	80	113	70	75	58	118	53	25
26	83	101	86	132	86	80	109	75	72	68	81	49	26
27	84	97	89	116	83	80	104	85	63	73	82	45	27
28	85	95	88	112	81	79	89	83	58	69	100	40	28
29	82	94	87	107	80	76	72	96	59	64	99	27	29
30	76	91	86	103		75	70	93	62	59	111	33	30
31	74		86	105		72		90		63	112		31
MEAN	96.8	90.2	85.5	112	93.1	82.3	81.0	82.4	85.7	84.6	97.0	65.6	MEAN
MAX.	145	111	89.0	343	104	92.0	127	140	136	311	151	97.0	MAX.
MIN.	74.0	75.0	82.0	86.0	80.0	72.0	52.0	48.0	58.0	58.0	70.0	27.0	MIN.
AC. FT.	5950	5365	5254	6859	5357	5060	4820	5068	5100	5203	5964	3901	AC.FT.

E — ESTIMATEO
NR — NO RECORO
* — OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AND *

	MEAN
П	DISCHARGE
l	88.0

M A X I M U M

GAGE HT. MO. DAY TIME DISCHARGE 7 15 1220 523 12.40

MINIMUM DISCHARGE GAGE HT. MO MO. DAY TIME 25.0 10.35 9 29 1850 TOTAL ACRE FEET 63900

	LOCATION			MUM DISCH	IARGE	PERIOD (F RECORD	DATUM OF GAGE			
1.07/7/105	LATITUDE LONGITUDE 1/4 SEC. T.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOO		ZERO ON	REF.
LATITODE	LONGITODE	M, D, B, & M,	C.F.S.	GAGE HT.	DATE	5.00////102	ONLY	FROM	TO	GAGE	DATUM
37 25 28	120 39 47	SW 9 6S 12E	34400	22.67	12- 4-50	JUL 41-DATE	APR 41-JUL 41	1950		96.24	USCGS

Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. Altitude of gage is approximately B5 ft. (USC & GS datum)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME ORESTIMBA CREEK NEAR CROWS LANDING B08720 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	6.0	0.8	0.0	0.0	0.0	1.8	5.4	3.5	46	3.3	6.9	31	1
2	6.8	4.3	0.0	0.0*	0.0	2.1*	19 *	12	27	4.4	8.2	25	2
3	5.5	13	0.0	0.0	0.0	1.7	6.2	9.3	10	4.1*	11	6.5*	3
4	5.3	23	0.0*	0.0	0.0*	2.3	3.4	14	8.8	4.9	11 *	7.8	4
5	3.9	27	0.0	0.2	0.0	2.9	6.1	18 *	7.9	5.1	13	17	5
6	9.1	21	0.0	0.6	0.0	3 • 2	8.0	4.9	7.4	4.5	16	11	6
7	12	20	0.0	0.6	0.0	3.8	7.1	3.2	5.9	6.7	25	4.0	7
8	2 • 6	22 *	0.0	0.5	0.0	2 • C	7.4	3.7	7.8*	11	20	28 4.8	8
9	2 • 0	17	0.0	0.4	0.0	2 • 2	7.3	2.3	18	10	22	4 • 8	9
10	2.9	6.5	0.0	0.8	0.0	1.5	6.8	1.1	11	11	27	7.7	10
11	3.5	0.6	0.0	0.6	3.3	2.9	7.6	7.6	62	9.9	14	8.2	11
12	6.2	0.4	0.0	9.0	4.6	2.1	6.8	4.8	46	6.7	13	23	12
13	1.9	16	0.0	0.7	4.4	8.7	8.7	4.4	20	6.2	14	4.0	13
14	1.3	9.7	0.0	0.9	4.9	2 • 5	6.5	2.5	11	5 • 8	13	4.3	14
15	0.8	4.4	0.0	1.1	4.0	5 • 0	6.3	6.3	7.4*	6.8	7.3	6.5	15
16	5.2*	1.2	0.0	2 • 3	5.9	7 . 2	6.2	1.9	4.3	7.6	7.3	6.2	16
17	2 • 3	0.2	0.0	1.3*	6.5*	11	6.4	4.8	6.7	8.2	23	6.7	17
18	0.8	0.0	0.0*	0.3	4.7	6.7	5.5	23	24	7.5	16	11	18
19	0.5	0.0	0.0	0.2	3.6	5 • 2	6.4	27	5.7	7.8	14	7.5	19
20	0 • 4	0.0	0.0	0.6	4 • 6	5.5	26	8.0	3.8	25	12	2.6	20
21	0.3	0.0*	0.0	1.1	2.2	6.2	26	16	12	11	12	52	21
22	0.3	0.0	0.0	0.7	3.2	7.5	24	17	21	8.3	9.7	28 5•6	22
23	0.3	0.0	0.0	0.2	4.9	22	3 . 8	5.0	13	8.3	19	5.6	23
24	0 • 4	0.0	0.0	0.0	4.3	72	21	7.2	7.7	9.5	49	5.4	24
25	0.4	0.0	0.0	0.0	3.5	93	13	32	4 • 3	12	20	6.3	25
26	0 • 4	0.0	0.0	0.0	4.3	101	7.5	21	5.4	14	6.9	15	26
27	0.5	0.0	0.0	0.0	3.3	110	5.6	20	4 • 2	15	22	1.2	27
28	0.6	0.0	0.0	0.0	2.7	57	4.5	20	6.1	21	12	19	28
29	0.6	0.0	0.0	0.0	2.2	36	7.9	17	5.0	6.5	19	6.6	29
30	0.7	0.0	0.0	0.0		2.8	9.3	11	2.4	5.5	4.3	1.8	30
31	0.7		0.0	0.0		12		18		6 • 2	6.7		31
MEAN	2.7	6.2	0.0	0.4	2.7	20.2	9.5	11.2	14.1	8.8	15.3	12.1	MEAN
MAX.	12.0	27.0	0.0	2.3	6.5	110	26.0	32.0	62.0	25.0	49.0	52.0	MAX
MIN.	0.3	0.0	0.0	0.0	0.0	1.5	3.4	1.1	2.4	3.3	4.3	1.2	MIN.
AC. FT.	167	371		28	153	1240	567	687	837	543	941	721	AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

MEAN		MAXIMU	M.	_	
DISCHARGE	DISCHARGE				TIME
8 • 6	122	2.96	3	27	1150
	(/

	MINIM	J M			
DISCHARGE	GAGE HT.				
0.0		11	18	0000	
					4

_	
\subset	TOTAL
Г	ACRE FEET
	6254
1	

	LOCATION	٧	MAXIMUM DISCHARGE			PERIOD C	F RECORD	DATUM OF GAGE			
I ATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. & F		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITUDE	LONGITUDE	M.D.B.8.M.	C.F.S.	GAGE HT.	DATE	OIS OIL MOE	ONLY	FROM	то	GAGE	DATUM
37 24 59	121 00 45	SW 8 6S 9E	2650E	12.08	2- 1-63	DEC 57-DATE		1957		0.00	LOCAL

Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of crows Landing. This includes drainage returned to San Joaquin River. Daily flows are estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B07080 SAN JOAQUIN RIVER AT GRAYSON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	695	545	705	570	620	380	500	380	475	320	245	435	1
2	635	525	705	570	605	365	555	385	465	330	235	470	2
3	600	535	705	580	605	350	510	395	490	335	280	480	3
4	645	535	765	570	800	360	510	460	465	320	275	440	4
5	755	555	765	575	600	335	445	480	440	345	280	425	5
6	850	570	765	600	580	330	450	490	425	350	265	455	6
7	1000	550	765	655	570	350	415	495	420	305	250	465	7
8	1300	545	765	740	555	345	400	510	420	310	250	420	8
9	940	555	765	785	535	355	365	510	490	285	270	375	9
10	870	540	765	760	510	355	330	455	540	270	275	360	10
11	910	525	765	745	500	330	315	480	610	260	240	330	11
12	1020	510	725	725	500	365	290	460	625	255	250	345	12
13	1260	510	725	710	490	455	290	425	610	250	240	370	13
14	1700	520	730	705	480	440	290	430	630	245	250	360	14
15	1600	540	715	700	475	415	310	400	610	230	250	330	15
16	1560	555	700	685	460	430	335	360	555	245	260	355	16
17	1010	570	700	680	480	410	330	385	490	285	300	360	17
18	1080	600	695	655	460	395	335	390	470	315	350	345	18
19	1030	640	680	635	445	370	405	430	425	320	330	350	19
20	1060	720	665	630	435	360	470	455	420	315	280	360	20
21	1480	760	655	655	425	305	485	460	440	305	290	365	21
22	1510	755	840	695	410	325	495	455	445	290	275	405	22
23	1260	805	625	715	410	490	470	430	390	260	345	410	23
24	1070	865	625	740	400	535	440	440	335	220	410	535	24
25	925	860	670	775	405	595	485	470	330	230	405	705	25
26	770	860	680	775	395	570	480	470	330	245	365	725	26
27	670	860	695	725	375	550	480	480	320	290	345	765	27
28	615	860	610	695	360	560	455	490	305	290	350	750	28
29	585	880	595	665	355	525	415	550	365	280	335	735	29
30	580	885	570	630		570	390	510	340	230	385	735	30
31	580		570	630		525		490		235	390		31
MEAN	986	651	694	677	484	421	418	452	456	283	299	465	MEAN
MAX.	1700	885	765	785	620	595	555	550	630	350	410	765	MAX.
MIN.	580	510	570	570	355	305	290	360	305	220	235	330	MIN.
AC. FT.	60625	38747	42655	41603	27848	25874	24883	27808	27124	17385	18387	27689	AC.FT.

E — ESTIMATED
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AND *

MEAN		MAXIMU	M		_		MINIM	J M	_	$\overline{}$
DISCHARGE 524	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
324)					

TOTAL ACRE FEET 380628

	LOCATION			MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
	ATITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			OIS CHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITOOE	LUNGITUUE	M.D.B.B.M.	C.F.S. GAGE HT.		DATE		ONLY	FROM	то	GAGE	DATUM
37 33 47	121 09 06	NW25 4S 7E	23900	45.15	3- 8-41	JUL 28-DATE		1960 1960	1959	0.00	USED USCGS USED

Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 804175 TUOLUMNE RIVER AT LAGRANGE BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	175	1400	2800	1590	616	27	13	13	3.1	1.6	1.1	4.7	1
2	184	1440	2750	1660	530	23 *	16 #	12	3.3	2.7*	8.9	4.4*	2
2	192	1420	2410 *	1190	580 *	17	16	13	2.9*	2.7	8.3*	4.7	3
4	192	1460 *	2400	1400	645	16	9.8	13 *	3.5	1.7	11	4.0	4
5	193	1470	2420	1430	637	16	9.5	11	3.5	6.7	11	4.7	5
6	8.5	1460	2460	1480 #	656	15	9.8	12	4.0	5.5	12	4.2	6
7	187	1460	2400	1400	656	16	9.8	11	2.0	2.1	11	4.2	7
8	190	1470	2410	957	646	13	9.7	7.1	2.6	2.3	11	4.8	8
9	190	1490	2400	735	457	13	11	3.8	2.9	4.5	11	12	9
10	191	1480	2220	728	565	15	14	3.0	1.9	4.1	11	16	10
11	194	1510	2260	528	649	14	11	1.3	1.4	3.5	12	4.4	31
12	195	1540	2240	505	671	16	11	1.2	17	2.7	12	2.8	12
13	6.9	1560	2310	649	807	15	10	1.8	14	1.2	12	2.0	13
14	184	1580	2050	647	678	15	11	1.4	7.6	1.1	12	1.7	14
15	265	1670	2070	684	649	15	16	1.7	2 • 1	6.6	12	3.8	15
16	741	1860	2200	597	470	14	13	2.4	1.1	9.8	16	5.6	16
17	869	1860	2110	605	579	15	12	2 • 6	35	2.4	14	4.5	17
18	881	2030	2010	546	536	18	26	2.2	4 . 8	2.6	14	2.0	18
19	1230	2200	1870	540	348	14	13	16	1.9	0 • 2	13	1.6	19
20	1350	2280	1890	509	347	15	11	4.5	2 • 3	0.1	47	1.4	20
21	1710	2170	1860	787	354	16	16	2.7	1.7	0.0	13	1.2	21
22	1730 *	2340	1870	719	351	18	15	2.0	1.6	0.4	7.6	1.7	22
23	1720	2410	2090	618	305	16	12	2.0	3.3	1.3	3.9	4.1	23
24	1570	2400	2430	583	362	17	12	2.0	7.3	6.4	3.5	9.3	24
25	1120	2380	2370	576	443	16	12	2.3	3.7	10	24	5.5	25
26	1130	2440	2380	502	179	27	12	3.6	1.8	0.4	6.8	1.9	26
27	980	2540	1660	546	33	17	12	3.5	1.5	0.0	3.7	1.8	27
28	1170	2720	1640	616	54	24	12	3.2	1.4	0.0	3.4	1.1	28
29	1200	2710	1550	624	36	17	12	3.0	1.5	0.3	3.5	1.3	29
30	1210	2780	1470	779		15	13	3.3	1.5	1.1	3.4	0.6	30
31	1210		1730	632		18		3.5		0.0	3.6		31
MEAN	722	1918	2153	818	477	16.9	12.7	5.3	4.7	2.7	10.9	4.1	MEAN
MAX.	1730	2780	2800	1660	807	27.0	26.0	16.0	35.0	10.0	47.0	16.0	MAX
MIN.	6.9	1400	1470	502	33.0	13.0	9.5	1.2	1.1	0.0	1.1	0.6	MIN.
AC. FT.	44370	114100	132400	50310	27450	1037	755	327	282	167	668	242	AC.FT

E - ESTIMATED

NR - NO RECORD

* DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M		_
DISCHARGE	DISCHARGE	GAGE HT.			
512	2920	72.31	12	11	2020

MINIMUM										
DISCHARGE GAGE HT. MO. DAY TIME										
0.0		7	20	2400						

	TOTAL
	ACRE FEET
	372100
(

ſ		LOCATION	N .	MAXIMUM DISCHARGE		PERIOD O	DATUM OF GAGE					
ľ			1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	DISCHARGE GAGE HEIGHT		PERIOD		REF.
١	LATITUDE	LONGITUOE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	ON GAGE	DATUM
	37 39 59	120 27 40	NW20 3S 14E	48200	188.0	12- 8-50	OCT 36-SEP 60 OCT 61-DATE		1937		0.00	USGS

Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. Drainage area is 1,540 sq. mi. Altitude of gage is approximately 175 feet (from USGS topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE 1964 B04165

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 1	61	1490	3040	1810	779	75	62	45	29	31	26	36	1
2	208	1590	3070	1840	701	67 *	58 *	46	36	30 *	27		2
3	233	1600	2690 *	1410	681 *	58	53	49	34 *	29	27 *	31	3
4	233	1610 *	2650	1570	774	51	57	52 *	37	29	27	33	4
5	231	1640	2670	1480	771	51	55	50	40	32	27	31	5
6	140	1660	2700	1480 *	774	52	51	55	39	33	29	34	6
7	94	1650	2660	1430	785	52	45	51	40	33	35	35	7
8	219	1660	2650	1290	770	48	45	50	42	31	36	32	8
9	225	1670	2650	845	636	46	44	50	46	31	37	30	9
10	Ž30	1680	2420	845	613	46	45	45	42	31	35	28	10
11	251	1720	2410	755	733	45	46	43	43	28	35	29	11
12	232	1760	2430	622	728	52	49	39	47	27	33	29	12
13	139	1770	2510	626	815	53	50	36	45	27	33	30	13
14	98	1800	2250	775	850	49	51	31	44	30	38	30	14
15	249	1880	2260	780	765	49	45	32	46	30	41	26	15
16	642	2110	2330	744	599	48	49	33	46	29	43	27	16
17	1050	2110	2290	721	610	46	47	34	42	27	43	27	17
18	1050	2180	2180	720	668	45	49	33	4.4	25	39	31	18
19	1230	2430	2070	650	444	46	59	31	46	26	41	32	19
20	1470	2560	2080	635	409	46	51	31	44	29	46	31	20
21	1790	2410	2090	701	412	46	43	33	43	29	68	28	21
22	1860 *	2610	2060	948	404	50	43	36	36	28	49	29	22
23	1870	2680	2170	823	364	56	43	39	35	27	46	28	23
24	1840	2670	2570	750	350	53	43	36	37	28	42	28	24
25	1300	2650	2510	718	468	53	40	36	33	29	39	30	25
26	1320	2700	2630	686	426	54	38	36	32	30	37	35	26
27	1170	2770	1840	602	113	59	38	34	33	29	36	33	27
28	1290	2980	1810	723	84	56	42	34	34	28	37	32	28
29	1370	2960	1730	761	110	59	36	31	32	27	36	31	29
30	1360	3040	1650	819		56	39	30	32	28	35	28	30
31	1370		1830	872		54		32		27	38		31
MEAN	801	2135	2352	949	574	52.3	47.2	39.1	39.3	29.0	37.5	30.5	MEAN
MAX.	1870	3040	3070	1840	850	75.0	62.0	55.0	47.0	33.0	68.0	36.0	MAX
MIN.	61.0	1490	1650	602	84.0	45.0	36.0	30.0	29.0	25.0	26.0	26.0	MIN.
AC. FT.	49240	127000	144600	58380	33000	3215	2809	2406	2339	1781	2303	1815	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN	MAXIMUM									
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME					
590	3080	13.12	12	2	2030					
				i I						

MINIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
03.0	8.58	10	1	1640						

	TOTAL
	ACRE FEET
	428900
(,

LOCATION				MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE				
LATITUDE		1/4 SEC.	. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	HOD	OD ZERO	
	LONGITUDE	M. D. B. & M.		C.F,S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 38 08	120 37 03	NW35 3	3S 12E	49800	128.2	12- 8-50	JUL 28-OCT 36 JAN 37-FEB 38 JUN 38-DATE		1930 1940		0.00	USCGS USCGS

Station located at highway bridge, 7.5 mi. E of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 110 feet (from USGS topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME TUOLUMNE RIVER AT HICKMAN BRIDGE 1964 804150

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	83	1600	2770	1780	718	160	117	101	67	74	70	97	1
2	317	1710	2810	1830	653	149 *	114 *	108	69	77 *	69	92 *	2
3	370	1710	2480 *	1450	610 *	141	112	113	77 *	79	65 *	93	3
4	382	1700 *	2430	1630	724	130	119	111 *	75	75	53	99	4
5	399	1720	2450	1500	725	126	115	109	77	80	55	93	5
6	363	1740	2510	1490 *	725	128	110	120	78	82	56	94	6
7	158	1700	2490	1520	739	126	101	122	77	78	63	101	7
8	361	1710	2480	1460	731	123	98	118	84	77	68	101	8
9	388	1700	2490	941	668	118	99	118	102	80	62	94	9
10	385	1680	2280	917	539	115	94	114	88	80	55	98	10
111	586	1690	2240	856	710	118	95	112	84	77	51	97	11
12	594	1730	2280	697	714	121	96	100	86	72	50	101	12
13	532	1740	2350	680	771	122	102	98	84	72	50	99	13
14	208	1740	2150	847	862	120	99	92	82	69	55	101	14
15	417	1810	2110	826	758	116	92	85	84	75	58	96	15
16	653	1970	2200	802	645	113	91	90	89	78	65	94	16
17	1150	1980	2150	767	590	115	94	89	92	74	70	94	17
18	1190	2000	2080	761	701	108	93	82	93	70	62	93	18
19	1300	2310	1920	692	502	112	108	80	104	65	55	100	19
20	1610	2450	1930	682	442	111	107	79	95	74	62 E	100	20
21	1880	2300	1960	711	441	114	98	84	95	78	63 E	93	21
22	2000 -	2480	1930	988	441	119	94	86	88	69	69 E	90	22
23	1950	2540	2020	850	415	123	97	87	79	66	74 E	91	23
24	1960	2550	2480	762	388	119	94	92	72	72	81 E	85	24
25	1480	2510	2450	718	505	117	95	99	76	67	97 E	87	25
26	1480	2530	2600	694	530	117	92	100	70	71	8.8	94	26
27	1350	2550	1810	584	260	120	92	94	69	76	88	96	27
28	1360	2750	1790	705	278	115	92	93	70	73	95	97	28
29	1500	2730	1650	727	249	112	91	95	73	67	93	94	29
30	1480	2780	1590	729		110	94	83	76	69	92	91	30
31	1490		1770	834		107		69		73	98		31
MEAN	948	2070	2215	982	587	121	99.8	97.5	81.8	73.8	68.8	95.2	MEAN
MAX.	2000	2780	2810	1830	862	160	119	122	104	82.0	98.0	101	MAX
MIN.	83.0	1600	1590	584	249	107	91.0	69.0	67.0	65.0	50.0	85.0	MIN.
AC. FT.	58270	123200	136200	60360	33790	7428	5940	5996	4869	4540	4229	5663	AC.FT

E — ESTIMATED

NR — NO RECORD

* — OISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	м		_
DISCHARGE	DISCHARGE	GAGE HT.			
620	2870	76 • 12	12	26	1340
. ,	(

MINIMUM

DISCHARGE GAGE HT. MO DAY TIME
42.0 71.36 8 12 2150

TOTAL ACRE FEET 450400

	LOCATION			MAXI	MUM DISCH	ARGE	PERIOD OF RECORD DATUM OF			OF GAGE	AGE	
	LATITUDE LONGITUDE 1/4 SEC. T. & R. M. D. B. & M.			OF RECORD		DISCHARGE GAGE HEIGHT		PERIOD		ZERO ON	REF.	
			M. D. B. & M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
	37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12- 8-50	JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38		1932		0.00	USCGS
							JUL 38-DEC 38					

Station located at Hickman-Waterford Road Bridge, immediately S of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 80 feet, USC&GS Datum. In August 1964 this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford Road Bridge.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

STATION NAME WATER YEAR STATION NO. B04130 DRY CREEK NEAR MODESTO 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 1	59	20	20	16	33	13	53	78	46	40	30	61	1
2	60	20	20	16	29	14 *	67 *	83	51	39 +	31	57	2
3	62	19	19 *	16	25	16	53	85	48	33	34 *	52	3
4	66	19 #	19	16	23	15	34	92	47	29	28	53 *	4
5	77	20	19	16	20 *	19	32	82 *	46	29	28	42	5
6	80	21	19	16 *	19	31	29	89	5 3	35	28	44	6
7	75	21	19	16	18	51	30	86	51	32	25	43	7
8	69	21	19	17	17	50	32	61	52 *	24	27	47	8
9	69	21	19	16	18	59	44	49	58	26	33	50	9
10	78	21	19	16	17	59	43	43	71	26	38	51	10
111	110	20	19	15	16	51	46	44	53	33	33	53	11
12	236	20	19	16	15	50	50	44	43	30	30	51	12
13	124	20	18	16	15	46	49	45	47	29	27	43	13
14	74	22	18	17	15	35	48	53	46	27	30	47	14
15	58	29	19	16	16	29	61	47	46	27	30	42	15
16	54 *	30	18	16	16	20	63	39	53	24	27	47	16
17	51	30	18	17	16	27	54	36	54	30	36	43	17
18	42	29	18	17	17	26	60	41	55	30 28	38	42	18
19	37	30	18	16	16	27	62	42	5.5	28	33	47	19
20	32	34	18	20	16	29	75	44	62	33	38	45	20
21	28	45	17	30	15	37	68	44	57	30	43	43	21
22	25	42	17	213	16	54	71	44	51	36	38	45	22
23	24	31	17	779	16	89	73	46	43	29	39	43	23
24	23	32	17	227 *	15	59	76	49	41	29	40	47	24
25	23	38	17	128	14	42	78	48	43	30	31	47	25
26	21	30	17	88	13	31	81	47	38	29	28	46	26
27	20	25	17	68	12	27	8.8	46	37	30	34	43	27
28	20	22	17	56	12	26	72	51	31	35	37	50	28
29	20	20	17	47	14	25	59	49	35	33 37	37	57	29
30	21	20	17	42		23	60	51	36	37	44	57	30
31	20		17	38		27		50		33	52		31
MEAN	56.7	25.7	18.1	65.9	17.4	35.7	57.0	55 • 1	48.3	30.8	33.8	47.9	MEAN
MAX.	236	45 • 0	20.0	779	33.0	89.0	88.0	92.0	71.0	40.0	52.0	61.0	MAX.
MIN.	20.0	19.0	17.0	15.0	12.0	13.0	29.0	36.0	31.0	24.0	25.0	42.0	MIN.
AC. FT.	3487	1531	1115	4052	1000	2196	3394	3388	2874	1894	2077	2852	AC.FT.

E — ESTIMATED

NR — NO RECORO

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M	_	_	MINIMUM					
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	ı	DISCHARGE	GAGE HT.	MO.	DAY	TIME
41.1	1060	75.53	1	23	0700	l	10.0	67.55	2	28	0650

TOTAL ACRE FEET 29860

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE			
LATITUDE	LONGITUOE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF.		
LATITUDE	LONGITODE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FRDM	TO	GAGE	DATUM		
37 39 26	120 55 19	SE24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE		1941		0.00	USCGS		

Station located 0.1 mi. below Claus Road Bridge, 4 mi. E of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. This is a Department of Water Resources-Modesto Irrigation District cooperative station. Altitude of gage is approximately 80 feet. USC & GS datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	804105	TUOLUMNE RIVER AT TUOLUMNE CITY

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	370	1700	2850	1930	645	345	300	270	240	230	200	260	1
2	370	1800	2860	1900	770	335	320	280	230	230	200	255	2
3	460	1860	2870	1930	720	330	305	285	235	230	195	240	3
4	530	1880	2650	1640	700	325	300	295	230	230	190	235	4
5	555	1890	2610	1720	755	315	300	290	225	225	195	240	5
6	595	1910	2630	1670	755	310	300	300	230	225	185	240	6
7	555	1910	2650	1720	755	325	290	300	245	230	180	230	7
8	435	1900	2620	1640	760	325	285	290	250	220	190	225	8
9	545	1900	2620	1470	745	325	275	270	265	200	205	230	9
10	585	1910	2600	1180	760	330	270	260	260	205	200	235	10
111	715	1900	2470	1110	660	325	265	255	255	205	200	240	111
12	970	1910	2440	1000	735	340	270	250	240	205	200	240	12
13	1010	1940	2440	905	745	340	265	245	240	200	200	245	13
14	855	1960	2480	915	805	315	265	235	245	200	200	235	14
15	645	2010	2320	970	815	315	260	235	240	190	215	245	15
16	725	2050	2280	970	760	300	265	240	250	185	225	255	1,,
17	915	2170	2350	935	670	290	260	245	250	185	205	250	16
18	1280	2190	2290	905	670	290	260	245	250	190	200	245	
19	1320	2270	2230	870	695	295	260	240	245	200	200	240	18
20	1510	2500	2150	830	540	295	265	240	245	200	200	250	19
20	1310	2500	2150	050	340	2,72	207	240	243	200	200	2,50	20
21	1750	2560	2140	880	535	290	275	235	250	200	210	240	21
22	2030	2480	2140	1000	530	310	275	230	245	195	220	235	22
23	2130	2620	2120	1530	520	330	275	235	230	205	225	235	23
24	2130	2660	2240	1350	490	330	275	235	225	200	220	230	24
25	2080	2650	2510	1010	485	320	265	235	225	195	210	235	25
26	1700	2630	2530	900	545	310	265	230	225	200	205	240	26
27	1660	2650	2510	810	530	305	280	225	230	195	210	240	27
28	1550	2680	2040	745	390	300	275	230	230	185	215	235	28
29	1610	2800	1960	795	350	300	270	230	225	180	210	255	29
30	1680	2800	1860	800		295	265	240	235	185	220	285	30
31	1690		1810	825		285		240		190	240		31
MEAN	1128	2203	2396	1189	657	314	277	253	240	204	205	242	MEAN
MAX.	2130	2800	2870	1930	845	345	320	300	265	230	240	285	MAX.
MIN.	370	1700	1810	745	350	285	260	225	225	180	180	225	MIN.
AC. FT.	69332	131088	147312	73101	37795	19329	16463	15540	14261	12526	12635	14410	

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMI	J M		$\overline{}$
DISCHARGE 776	DISCHARGE	GAGE HT.	MO.	DAY	TIME

MINIMUM												
DISCHARGE	GAGE HT.	MO.	DAY	TIME								

TOTAL
ACRE FEET
563792

	LOCATION	N	MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE				
LATITUOE		1/4 SEC. T. & R.	OF RECORD			OISCHARGE	GAGE HEIGHT	PERIO0		ZERÓ ON	REF.
LATITUDE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT. DATE		OID CHARGE	ONLY	FROM	то	GAGE	DATUM
37 36 12	121 07 50	NW 7 4S 8E				30-DATE		1960	1959	0.00	USED USCGS
1	1	•	1	•	1	l		1960	f i	3.50	USED

Station located at highway bridge, 3.35 mi. above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Records furn. by City of San Francisco.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	1
1964	B07060	SAN JOAQUIN RIVER AT HETCH HETCHY AQUEDUCT CROSSING	,

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
3	1070	2155	3285	2385	1665	615	765	615	630	480	335	799	
2	1025	2130	3295	2415	1595	615	810	660	570	480	345	790	2
3	1050	2200	3275	2430	1545	575	775	685	565	490	390	770	3
4	1160	2220	3115	2280	1500	560	700	740	525	485	370	706	4
5	1310	2245	3000	2250	1535	525	700	765	520	485	340	657	5
6	1575	2285	2975	2245	1540	505	665	810	495	525	325	690	6
7	1865	2275	2975	2285	1530	570	590	780	505	480	305	719	7
8	2035	2260	2955	2350	1505	570	595	745	555	440	310	667	8
9	1785	2275	2955	2335	1435	570	575	685	695	410	340	626	9
10	1680	2275	2965	2080	1375	580	520	640	785	395	380	581	10
111	1790	2250	2880	1975	1260	560	515	630	790	385	330	575	11
12	2175	2245	2820	1905	1295	585	540	580	805	390	340	598	12
13	2490	2260	2825	1780	1315	690	520	530	740	395	345	623	13
14	2755	2275	2835	1740	1320	670	500	510	725	365	335	633	14
15	2840	2315	2760	1790	1360	640	500	495	720	325	370	579	15
16	2445	2360	2685	1775	1290	625	530	485	640	295	410	582	16
17	2330	2345	2700	1760	1255	575	540	495	580	345	505	567	17
18	2485	3140	2710	1660	1185	585	540	520	530	380	525	582	18
19	2520	2565	2650	1570	1205	630	565	575	510	420	538 a		19
20	2515	2820	2586	1570	1090	650	665	585	480	420	493	616	20
21	2965	2950	2595	1640	990	610	660	630	490	405	462	632	21
22	3340	2910	2630	1700	945	630	660	625	520	390	476	702	22
23	3850	3005	2620	2145	935	855	660	590	480	390	540	772	23
24	3000	3115	2635	2300	895	890	630	575	435	345	611	913	24
25	2950	3125	2885	2000	840	900	640	635	435	325	607	1070	25
26	2580	3115	3030	1875	860	875	685	650	420	365	574	1100	26
27	2325	3125	3040	1780	860	840	705	640	435	385	545	1170	27
28	2165	3140	2680	1655	725	805	690	620	480	360	592	1200	28
29	2140	3225	2515	1655	605	775	630	645	485	330	582	1100	29
30	2195	3855	2410	1650		780	605	680	505	295	625	1110	30
31	2200		2355	1620		740		650		280	707		31
MEAN	2213	2615	2827	1955	1223	664	623	628	550	396	450	757	MEAN
MAX.	3850	3855	3295	2430	1665	900	810	810	805	525	707	1200	MAX.
MIN.	1025	2130	2355	1570	605	505	500	485	420	280	305	567	MIN.
AC. FT.	136086	155623	173821	120198	70324	40850	37041	38618	33818	24357	27670	45040	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *
a - See note (a) below.

MEAN		MAXIMU	JM					MINIM	J M		
1242	DISCHARGE	GAGE HT.	MO.	DAY	TIME)	DISCHARGE	GAGE HT.	MO.	DAY	TIME

TOTAL ACRE FEET 903446

	TUDE LONGITUDE 1/4 SEC. T. & R. M. D. B. B.M. C.F.S. GAGE HT. D							PERIOD C	F RECORD	l	DATUM	OF GAGE	
LATITUDE	TITUDE LONGITUDE							DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	ATITUDE LONGITUDE M. D. B. B. M.			C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM	
37 38 10 1	.21 12 54	NE32	3\$	7E	38400	38.43	4- 2-40	MAR 33-DATE		1960	1959	0.00	USED

Station located 2.9 mi. above the mouth of the Stanislaus River. Records furn.by City of San Francisco.

(a) Daily mean discharge from August 19 through September 30, 1964, computed from San Joaquin River at Maze Road Bridge gage height record by Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 803175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	94	146	170	770	854	85	182	34	30	23	24	31	1
2	92	144	269	770	853	71	168 *	33	30	21 *	25	28 *	ا 2 ا
3	92	139	181 *	779	850	70 *	121	36	32	20	27 *	29	3
4	93	144 #	183	779	855 *	71	116	36 *	29 *	22	27	23	4
5	95	153	185	775	858	73	113	31	26	30	30	26	5
6	91	154	183	781	852	79	117	37	26	26	32	21	6
7	91	165	181	773 *	642	85	126	36	31	22	39	18	7
8	97	171	184	779	197	85	147	28	32	22	30	18	8
9	95	159	194	778	188	83	123	28	36	20	28	19	9
10	93	164	182	781	168	86	75	28	31	20	27	20	10
11	149	156	174	776	162	86	68	24	27	23	29	21	111
12	683	159	161	781	177	83	79	30	25	25	30	20	12
13	633	158	175	780	163	81	83	25	26	22	32	23	13
14	601	161	180	771	131	75	60	27	31	21	35	20	14
15	617	164	156	777	97	74	40	28	28	23	32	20	15
16	606	183	167	657	90	77	41	25	27	30	30	28	16
17	610	159	176	354	86	80	35	27	26	25	30	21	17
18	199	182	157	544	84	80	39	23	28	25	33	19	18
19	94	166	560	539	84	78	39	23	31	23	28	19	19
20	115	230	777	542	83	78	35	24	29	26	27	21	20
21	125 *	178	775	757	82	80	36	27	29	23	26	21	21
22	141	208	775	1210	81	81	39	27	29	22	28	23	22
23	149	194	775	871	81	78	35	29	30	24	30	25	23
24	145	210	777	849	83	76	37	27	33	22	31	20	24
25	142	189	775	848	80	76	38	24	28	25	28	18	25
26	153	186	776	840	80	75	35	27	25	24	25	21	26
27	152	161	764	836	76	77	36	35	24	29	27	22	27
28	132	172	746	837	80	78	41	33	25	27	26	23	28
29	135	176	773	838	80	82	39	29	22	26	29	25	29
30	146	178	777	837		82	34	28	25	26	26	21	30
31	142		734	845		97		27		24	27		31
MEAN	219	170	421	770	283	79.4	72.6	28.9	28.4	23.9	29.0	22.1	MEAN
MAX.	683	230	777	1210	858	97.0	182	37.0	36.0	30.0	39.0	31.0	MAX.
MIN.	91.0	139	156	354	76.D	70.0	34.0	23.0	22.0	20.0	24.0	18.0	MIN.
AC. FT.	13490	10130	25870	47310	16260	4883	4318	1777	1688	1470	1781	1317	AC.FT.

E — ESTIMATED

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND •

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
179	1640	5 • 28	1	22	0650
	(l 1

MINIMUM GAGE HT. MO. DAY TIME 1-31 9 7 1740 DISCHARGE 17.0

TOTAL ACRE FEET 130300

ſ	<u> </u>	LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
Ī	LATITUOE	ITUDE LONGITUDE 1/4 SEC. T. 8. M. O. B. 8 M.	1/4 SEC. T. & R.	OF RECORO			DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
	LATITUDE	LONGITODE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
	37 47 18	120 45 41	SW 4 2S 11E	52000	52000 30.05 1		JUN 28-DEC 39 APR 40-DATE				0.00	LOCAL

Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. Drainage area, 1,020 sq. mi. Altitude of gage is approximately 70 feet (from U.S.G.S. topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 803145 STANISLAUS RIVER AT RIVERBANK

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	170	207	211	809	904	128	188	72	45	62	74	80	1
2	167	211	215	848	900	128	153 *	71	47	59 #	67		* 2
3	162	211	310 #	853	904	119 *	108	71	41	62	73 *	73	3
4	165	209 #	224	849	903 *	116	96	71 *	41 #	61	63	76	4
5	169	217	226	840	906	124	96	71	39	67	65	72	5
6	163	222	226	840	898	131	94	73	36	70	65	75	6
7	168	219	219	846 #	880	144	98	73	41	67	66	72	7
8	166	229	222	845	391	140	103	67	46	73	75	63	8
9	170	225	230	850	259	133	105	56	54	66	70	67	9
10	173	224	245	853	244	136	100	53	56	63	71	62	10
11	234	221	231	850	2 2 6	146	83	52	48	64	68	64	11
12	579	216	216	849	224	173	83	52	48	72	74	66	12
13	772	215	211	856	230	122	91	52	48	71	80	68	13
14	728	216	224	854	200	113	83	49	52	72	82	75	14
15	727	225	217	855	177	114	67	47	55	69	80	71	15
16	738	225	197	846	152	123	61	47	58	70	77	69	16
17	735	231	217	488	146	114	61	50	57	72	80	75	17
18	559	218	216	559	144	115	62	46	57	71	78	73	18
19	199	230	320	596	143	109	62	45	56	67	78	68	19
20	164	263	818	596	141	115	62	43	52	77	69	69	20
21	177 *	290	853	686	139	114	62	42	57	78	67	72	21
22	189	245	853	1220	139	125	61	43	60	65	70	77	22
23	207	249	853	1020	136	159	63	52	51	67	78	82	23
24	204	259	852	933	132	118	60	50	59	68	77	79	24
25	199	247	847	917	130	112	59	45	62	63	75	75	25
26	207	231	846	907	125	109	68	42	5.4	74	69	75	26
27	211	223	853	903	125	103	73	44	48	72	66	73	27
28	201	205	811	902	124	105	74	47	62	69	74	77	28
29	185	217	847	897	128	112	81	41	59	74	75	79	29
30	203	216	845	902		120	74	43	58	72	77	77	30
31	205		837	901		116		44		71	69		31
MEAN	300	227	468	838	350	124	84.4	53.4	51.6	68.6	72.6	72.7	
MAX.	772	290	853	1220	906	173	188	73.0	62.0	78.0	82.0	82.0	MAX.
MIN.	162	205	197	488	124	103	59.0	41.0	36.0	59.0	63.0	62.0	MIN.
AC. FT.	18440	13520	28740	51510	20130	7609	5020	3261	3068	4221	4467	4326	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — OISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AHD *

,	MEAN	_		MAX	IMU	M			١.	$\overline{}$	MINIM	J M		
	DISCHARGE		DISCHARGE	GAGE	HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
	226		1520	77.	47	1	122	1500	1	34.0	72.4	6	6	1520
ľ		1							"					

TOTAL ACRE FEET 164300

	LOCATION	4	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T, & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF.
LATITODE	CONGITODE	M.D.8.8 M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
34 44 31	120 56 21	SW24 2S 9E	85800	103.18	12-23-55	JUL 40-DATE		194D		0.00	USCGS

Station located at Burneyville Bridge, immediately N of Riverbank. Drainage area 1,055 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	803115	STANISLAUS RIVER AT KOETITZ RANCH

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	324	281	303	858	922	185	258	120	131	95	106	151	* ,
2	327	278	296	868	917	167	315 *	110	122	98	112	152	2
3	363	279	311 *	883	915	182 *	269	117	136	108	91 *	160	3
1 4	343	280 *	348	887	913 *	170	217	137 *	120 *	124	102	154	4
5	319	281	311	889	916	157	225	140	124	145	116	134	5
6	302	290	304	889	918	160	212	162	118	132 *	108	128	6
1 7	321	290	300	888 *	915	171	178	139	126	132	95	127	7
8	324	289	298	889	824	191	169	149	138	149	96	123	8
9	307	293	298	889	501	201	179	134	192	139	117	121	9
10	313	291	303	890	400	186	193	129	180	125	153	127	10
11	440	288	310	890	359	189	187	111	198	106	149	120	11
12	552	288	300	890	330	210	189	107	175	117	144	110	12
13	742	286	291	887	321	215	178	113	148	124	122	108	13
14	816	287	285	890	314	184	174	106	137	126	116	119	14
15	832	291	292	885	287	175	171	110	134	131	108	134	15
16	823	289	284	883	262	171	155	92	134	125	126	140	16
17	784	295	273	823	242	172	137	96	136	123	109	136	17
18	753	295	280	579	229	243	156	121	131	111	112	147	18
19	563	293	277	633	218	233	156	111	122	118	125	150	19
20	365	313	401	645	211	209	153	105	131	116	109	147	20
21	308 *	348	708	660	207	233	143	110	143	120	114	169	21
22	290	350	796	798	204	225	135	106	133	119	118	178	22
23	291	329	826	1120	197	303	134	108	128	108	134	175	23
24	293	340	846	1020	196	250	122	118	109	112	134	171	24
25	289	349	849	951	194	227	122	127	109	112	109	168	25
26	285	329	848	932	186	218	130	120	115	118	108	183	26
27	291	312	856	926	179	217	143	126	108	115	93	189	27
28	291	300	862	919	184	204	134	120	107	100	91	182	28
29	280	290	847	919	182	214	118	119	112	98	105	153	29
30	274	294	869	919		212	116	131	124	94	119	158	30
31	281		877	921		213		135		107	128		31
MEAN	422	301	492	868	436	204	172	120	134	118	115	147	MEAN
MAX.	832	350	877	1120	922	303	315	162	198	149	153	189	MAX.
MIN.	274	278	273	579	179	157	116	92.0	107	94.0	91.0	108	MIN.
AC. FT.	25960	17890	30250	53400	25080	12510	10250	7396	7976	7234	7079	8755	AC.FT.

E - ESTIMATED

NR - NO RECORD

* OISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
294	1170	33.09	1	23	1440

MINIMUM											
DISCHARGE	GAGE HT.	MO.	DAY	TIME							
79.0	26.53	7	1	2400							
(l /							

TOTAL
ACRE FEET
213800

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE		
	1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITUDE	LONGITUDE	M. O. B. & M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	70	GAGE	DATUM	
37 41 57	121 10 08	SW 2 3S 7E				OCT 62-DATE	MAR 50-SEP 62	1950 1951 1951	1951	0.00 0.00 3.60	USED USCGS USED	

Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 807020 SAN JOAQUIN RIVER NEAR VERNALIS

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	1440 E	2550	3900	3300	2600	800 E	1120	672	690	493	274	911	1
2	1420 E	2480	3920 #	3330	2530	760 E	1200 #	704	601	461	320	930	2
3	1400 E	2570	3910	3350	2500	720 E	1170	736	589	457	340	898	3
4	1440 E	2600	3810	3250	2450 #	695 #	925	785	569 *	465	334 #	880	4
s	1630 E	2610	3620	3190	2480	695	862	834 *	557	517	320	834	5
6	1920	2660	3560	3180	2480	722	844	888	537	557	320	821	6
7	2190	2660	3550	3200	2470	785	740	935	569	513 *	267	857	7
8	2470	2640	3530	3280 *	2440	826	686	898	628	437	274	821	8
9	2220	2640	3540	3290	2000 E	839	677	850 E	848	445	306	780	9
10	2050	2650	3540	3050	1800 E	816	659	800 E	1060	393	373	718	10
11	2230 *	2640	3490	2910	1600 E	776	659	700 E	1080	397	344	704	11
12	2720	2630 *	3400	2840	1600 E	821	672	632	1060	377	316	708	12
13	3140	2630	3400	2710	1650 E	970	636	581	960	405	330	704	13
14	3470	2640	3410	2650	1650 E	960	589	561	852	337	302	749	14
15	3660	2690	3370	2700	1700 E	880	561	501	848	288	330	740	15
16	3310	2740	3260	2680	1600 E	830	614	505	776	253	377	704	16
17	3120	2800	3260	2680	1500 E	767	593 *	505	708	306	501	700	17
18	3200	2920	3280	2450	1400 E	762	589	561	614	340	489	700	18
19	3210	2980	3230	2360	1500 E	902	597	654	577 *	397	521	704	19
20	3040	3220	3150	2350	1400 E	893	749	650	521	409	485	722	20
21	3290	3420	3350	2410	1200 E	888	780	672	541	369	429	776	21
22	3680	3430	3490	2510	1200 E	898	767	672	593	358	457	790	22
23	3670	3530	3510	3110	1150 E	1240	776	664	533	373	537	816	23
24	3540	3690	3540	3360	1150 E	1330	785	668	441	344	654	1040	24
25	3370	3740	3790	3000	1100 E	1290	772	722	425	298	650	1220	25
26	3090	3740	3910	2840	1100 E	1260	785	726	409	351	589	1290	26
27	2790	3720	3980	2730	1150 E	1220	808	722	429	369	56.5	1390	27
28	2650	3740	3700	2600	1000 E	1160	821	944	489	358	581	1490	28
29	2520	3820	3460	2590	820 E	1120	776	740	481	320	589	1290	29
30	2550	3860	3360	2580		1100	713	780	517	250	677	1300	30
31	2570		3300	2550		1070		740		236	790		31
MEAN	2677	3021	3533	2872	1697	929	764	703	650	383	440	900	MEAN
MAX.	3680	3860	3980	3360	2600	1330	1200	935	1080	557	790	1490	MAX.
MIN.	1400 E	2480	3150	2350	820 E	695	561	501	409	236	267	700	MIN.
AC. FT.	164600	179800	217200	176600	97630	57100	45470	43240	38680	23550	27060	53530	AC.FT.

E - ESTIMATED

NR - NO RECORD

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1547	4020	15.58	12	27	1400
)	(ر

MINIMUM													
DISCHARGE	GAGE HT.												
213	8 . 86	7	31										
	1	1	l										

TOTAL	
ACRE FEET	
1124000	

LOCATION			MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	2100	ZERO	REF.
LATITODE	LONGITODE	M.O.B.&M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	OATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23 JAN 24-FEB 25		1931			USED
•		'		'	'	JUN 25-OCT 28 MAY 29-DATE		1959	1959		USCGS USCGS

Station located on left bank 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River 3.4 mi. NE of Vernalis. Drainage area is approx. 14,010 sq. mi. Natural flow of stream affected by storage reservoirs, power development, ground water withdrawals and diversions for irrigation. Low flows consist mainly of return flow from irrigation. This station is operated under the Federal-State Cooperative Program. The records are furnished by the U.S.G.S.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1964	C01120	SOUTH FORK KINGS RIVER BELOW EMPIRE WEIR #2	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 1	110	0.0	0.0	18.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	1
2	99	0.0	0.0	21.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	2
3	100	0.0	0.0	21.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	3
4	130	0.0	0.0	24.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	4
5	114	0.0	0.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	5
6	94	0.0	0.0	45.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.8	6
7	34	0.0	0.0	57.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	7
8	6.0	0.0	0.0	62.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	8
9	5.0	0.0	0.0	34 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	9
10	5.0	0.0	0.0	45.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	10
111	4.0	0 • 0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	111
12	4.0	0.0	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	12
13	3.0	0.0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	13
14	0.0	0.0	0.0	42.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	14
15	0.0	0.0	0.0	36.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	15
16	0.0	0.0	0.0	37.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	16
17	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	7.9	29.4	17
18	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	7.9	29.4	18
19	0.0	0.0	0.0	28.0	0.0	0.0	0.0	0.0	0.0	0.0	7.9	29.4	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.1	29.4	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.4	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	25
26	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	26
27	0.0	0.0	0.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	27
28	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	28
29	0.0	0.0	0.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	29
30	0.0	0.0	8.0	20.0		0.0	0.0	0.0	0.0	0.0	10.4	28.0	30
31	0.0		13	19.0		0.0		0.0		0.0	10.4		31
MEAN	22	0.0	0.0	26.0	2.0	0.0	0.0	0.0	0.0	0.0	5.0	26.0	MEAN
MAX.	130	0.0	13.0	62.0	19.0	0.0	0.0	0.0	0.0	0.0	10.4	29.4	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	1404		42	1587	131						292	1543	AC.FT.

E — ESTIMATEO
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
005ERVATION OF NO FLOW
— E AHD *

MEAN		MAXIMU	M		_		MINIM	U M		$\overline{}$
DISCHARGE 6 • 8	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO,	DAY	TIME

TO	TAL
ACRE	FEET
	4999
	,

	LOCATION	ı	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORO		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF
LATITODE	LONGITODE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 10	119 50	20S 19E									

Station located 1.0 mi. SW of Stratford. So. Fork Kings River, composed of Kings River water, is a tributary to the Tulare Lake area. Records furn. by Kings River Water Association.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 C02602 CROSS CREEK BELOW LAKELAND CANAL #2

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5													1 2 3 4 5
6 7 8 9				;									6 7 8 9
11 12 13 14 15						NO i	FLOW						11 12 13 14 15
16 17 18 19 20													16 17 18 19 20
21 22 23 24 25						i							21 22 23 24 25
26 27 28 29 30 31													26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.													MEAN MAX. MIN. AC.FT.

E -- ESTIMATED

NR -- NO RECORD

* DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

-- E AND *

MEAN		MAXIMU	J M		$\overline{}$	MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME			
0.0)	0.0		10	1	0000			
				L				<u> </u>		<u> </u>			

6	TOTAL	$\overline{}$
Г	ACRE FEET	

	LOCATIO	V	MAXI	MUM DISCH	ARGE	PERIOD 0	F RECORD	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.		
LATITODE	LONGITODE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM TO		GAGE	DATUM	
36 12 42	119 34 05	NE10 20S 22E				21-DATE						

Station located below Cross Creek Weir, 4 mi. E of Guernsey. Tributary to Tulare Lake area. At times the flow is a combination of water from Kaweah River, Kings River, and Cottonwood Creek. Records furn. by the Kaweah River Watermaster.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03130 ELK BAYOU NEAR TULARE a

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 1	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	1 2
3	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0*	0.0	3
4	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	111
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0*	0.0	0.0*	17
18	0.0*	0.0	0.0*	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	19
20	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0.0	0.0		0.0		0.0		0.0	0.0		31
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MAX
MIN. AC. FT.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN. AC.FT

E - ESTIMATED

NR - NO RECORD

* OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

a - See note (a) below.

MEAN		MAXIMU	M			1		MINIM	J M			1
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	lí	DISCHARGE	GAGE HT.	MO.	DAY	TIME	l
0.0						Н	0.0		10	1	0000	ı
	' (ı		1 /	' (ì			,

TOTAL ACRE FEET

	LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM OF GAGE			
LATITUDE	LATITUDE LONGITUDE 1/4 SEC. T. & F			OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.	
LATITODE	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE	5.00.111.102	ONLY	FROM	TO	GAGE	DATUM	
36 08 37	119 19 48	SW36 20S 24E	261	2.35	2- 5-63	OCT 58-DATE	MAR 57-SEP 58	1959		0.00	LOCAL	

Station located 1.8 mi. W of U.S. Highway 99, 5.8 mi. S of Tulare. Prior to Mar. 4, 1960, station located 700 feet W of U.S. Highway 99, 4.5 mi. S of Tulare. Tributary to Tule River. Prior records, 1942 to July 1953, available at a site 1 mi. E of Elk Bayou Ave. 3.6 mi. below Old Highway 99 Bridge. Recorder installed March 6, 1957. Altitude of gage is approximately 250 ft. (from U.S.G.S. topographic map.)

(a) A partially opened gate in the control created a condition making it impossible to record low flows if such flow did occur.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

4	WATER YEAR	STATION NO.	STATION NAME
	1964	C03913	FRIANT-KERN CANAL DELIVERY TO PORTER SLOUGH

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	10	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	1
2	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
1 4	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
s	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	s
6	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
11	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
16	0.0	9.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	6.7	2 • 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22
23	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	10	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	27
28	10	0.0	0.0	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	28
29	10	0.0	0.0	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	29
30	10	0.0	0.0	0.0		10	0.0	0.0	0.0	0.0	0.0	0.0	30
31	10		0.0	0.0		10		0.0		0.0	0.0		31
MEAN	4.7	5 • 4	0.0	0.0	0.0	1.5	0.1	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	10.0	10.0	0.0	0.0	0.0	10.0	3.3	0.0	0.0	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	291	322				93	7						AC.FT.

E — ESTIMATEO

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		UMIXAM	M		$\overline{}$. 4		MINIMU	JM		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	I	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1.0						Ш					
/	(,	ı۷					

TOTAL ACRE FEET 712

	LOCATION	٧	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
L ATITUE	LONGITUDE	1/4 SEC. T. & R.		OF RECORO		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
LATITUDE	LONGITUDE	М.О.В.В.М.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 05 00	119 04 50	SW20 21S 27E									

These flows are deliveries from Friant-Kern Canal into Porter Slough under contract agreement with the U.S.B.R. Delivery is at the intersection of Porter Slough with the Friant-Kern Canal approx. 4 mi. W of Porterville. Records furn. by U.S.B.R.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 C03923 FRIANT-KERN CANAL DELIVERY TO TULE RIVER

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	169	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	53	0.0	0.0	0.0	0.0	0.C	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,,
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
13	0.0	0.0										-	13
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0	0.00	0.0	0.0		0.0		0.0		0.0	0.0		31
MEAN	7.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	169	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	840	0.0	0.0	0.0	0.0								AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

085ERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	J M		7		MINIM	J M		
DISCHARGE 0 • 6	DISCHARGE	GAGE HT.	MO. D	AY TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
)					

TOTAL ACRE FEET 440

	LOCATIO	V	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUOS	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 04 25	119 05 15	NW29 21S 27E									

These flows are deliveries from Friant-Kern Canal into Tule River under contract agreements with the U.S.B.R. Delivery is located on the Tule River approximately 4 mi. W of Porterville. Record furnished by U.S.B.R.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME
	1964	C32100	NORTH FORK TULE RIVER AT SPRINGVILLE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.7	1.9	17	9.8	18	5.8	185	47	27	1.4	0 • 2	0.4	1
2	0.3	2.3	16	8.8	17	20	168	46	26	1.3	0 • 2	0.4*	2
3	0 • 4	2 • 2	15	8.6	17	13	97	42	25	1.0	0.2*	0.4	3
4	0.5	2.0	14	8.6	17	12	77	40	22	1.0	0.3	0 • 4	4
5	0.5	2 • 5	13	8.6	16	11	72	43	21	1.1	0 • 4	0 • 4	5
6	0.5	9•2	12	8.8	15	11	67	64	19	1.3	0.4	0.3	6
7	1.1	15	12	8 • 8	15	14	56	56	20	0.8	0.6	0.4	7
8	0.7	10	11	8.6	14	14	53 *	51	23	0.7	0.4	0 • 4	8
9	0.7	9.7	16	8 • 5	13	13 13	57	55 58	30 28	0.6	0.3	0.6 0.4	9
10	0.7	10	15	8.6	12	13	68	20	28	0 • 6	0.2	0.4	10
1 11	0.9	9.1	12	8.7	12	12	76	65	26	0.6	0.3	0.2	111
12	0.5	7.6	13	8.0	12	18	77	70	21	0.7	0 • 4	0.1	12
13	0.9	6.5	12	8.0	12	26	83	76	18	0.6	0.4	0.1	13
14	0.9	5.9	12	7.9	11	19	88	74	15	0+7	0 • 4	0.1	14
15	0.9	36	12	7.7	10	19	93	73	13	2 • 1	0.1	0.0	15
16	1.3	46	12	7.6	10	20	91	70	13	0.3	0.1	0.0	16
17	2 • 1	25	12	7.6	9.9	20	84	65	12 #	0.3	0.1	0.1	17
18	1.4	19	12 *	8.1	9.3*	24	73	62	12	0 • 4	0.0	0.5	18
19	1.2	15 *	12	9.2	9.3	28 *	75	58 *	9.5	0.7	0.1	0.5	19
20	1.9	40	11	8 • 6	7•6	28	64	57	8 • 2	1.2	0 • 2	0.5	20
21	2.4	58	11	15	6 • 6	28	57	56	7.7	0.4	0.2	0.4	21
22	2.7	31	11	29	6.6	37	53 *	52	6.9	0.3	0 • 2	0.3	22
23	2.7	26	10	21	6.8	55	51	47	5.6	0.5	0.1	0.3	23
24	3.1	30	10	17	7.0	57	48	44	6.0	0.6	0.1	0.2	24
25	3 • 2	30	9.6	16	6.6	47	44	42	4.3	0.7	0.1	0.2	25
26	3.1	25	9.4	16	5.6	50	41	48	2 • 3	0.4	0 • 2	0.2	26
27	2.6	23	9.4	15	4 • 8	50	40	45	2.7	0.9	0.3	0.4	27
28	2 • 4	21	9.0	15	3.6	68	43	41	2.8	1.0	0.4	0.4	28
29	2.5	21	9.0	14	5.1	80	47	37	2.1	0.3	0.4	0.2	29
30	2 • 0	19	8.7	15		85	46 *	33	1.8	0.3	0.2	0.2	30
31	1.5		8 • 5	16 *		92		30		0.3	0.4		31
MEAN	1.5	18.6	11.8	11.6	10.7	31.9	72.5	53.1	14.4	0.7	0.3		MEAN
MAX.	3 • 2	58.0	17.0	29.0	18.0	92.0	185	76.0	30.0	2 • 1	0.6		MAX.
MIN.	0.3	1.9	8.5	7.6	3.6	5 • 8	40.0	30.0	1.8	0.3	0.0	0.0	MIN.
AC. FT.	92	1109	727	710	614	1963	4316	3267	855	46	16	18	AC.FT.

E — ESTIMATED

NR — NO RECORO

* — DISCHARGE MEASUREMENT OR
DBSERVATION OF NO FLOW

— E AND *

	MEAN	$\Delta \subset$		MAX	IMU	M					MIN	IMI	JM	
	DISCHARGE	DIS	CHARGE	GAGE	HT.	MD.	DAY	TIME	П	DISCHARGE	GAGE	HT.	MO.	DAY
ļ	18.9	Ц	313	6.	62	4	1	2200	ĮĮ	0.0			8	16
		/ (' '					

TOTAL ACRE FEET 13730

Y TIME 1710

	LOCATIO	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF.
CATTIONE	LONGITODE	M, D, B, & M,	C.F.S.	GAGE HT.	DATE	DIO GITATIOE	ONLY	FROM	то	GAGE	DATUM
36 08 23	118 48 16	SE35 20S 29E	4600E	10.29	1-31-63	FEB 57-DATE		1957		0.00	LOCAL

Station located at State Highway 190 Bridge, 0.8 mi. NE of Springville. Drainage area is 97.9 sq. mi. Altitude of gage is approx. 990 ft. (from U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03169 TULE RIVER BELOW PORTERVILLE

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	152	0.0*	0.0	0.0	0.0	0.0E	45	0.0*	0.0	0.0	0.0	0.0	1
2	52	199	0.0	0.0	0.0	0.0E	37	0.0	0.0	0.0	0.0	0.0	2
3	0.0	267	0.0	0.0*	0.0	0.0E	36	0.0	0.0	0.0*	0.0	0.0	3
4	0.0	263 *	0.0*	0.0	0.0	0.0*	32	0.0	0.0*	0.0	0.0	0.0	4
5	0.0	202	0.0	0.0	0.0*	0.0	33	0.0	0.0	0.0	0.0	0.0	5
6	0.0	2 0 2	0.0	0.0	0.0	0.0	31	0.0	0.0	0.0	0.0	0.0	6
7	0.0	163	0.0	0.0	0.0	0.0	39	0.0	0.0	0.0	0.0	0.0	7
8	0.0*	84	0.0	0.0	0.0	0.0	41 #	0.0	0.0	0.0	0.0	0.0	8
9	0.0	50	2.9	0.0	0.0	0.0	36	0.0	0.0	0.0	0.0	0.0	9
10	0.0	39	11	0.0	0.0	0.0	33	0.0	0.0	0.0	0.0	0.0	10
11	0.0	36	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	11
12	0.0	25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	21	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	18	5.4	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	15
16	0.0	67	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	65	2.1	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	17
18	0.0*	3.1	9.2*	0.0	0.0#	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	31 *	0.0	0.0	0.0E	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	28	0.0	0.0*	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	71	0.0	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	86	0.0	0.0	0.0E	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	22
23	0.0	29	0.0	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	28	0.0	0.0	0.0E	2.8*	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	26	0.0	0.0	0.0E	18	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	26	0.0	0.0	0.0E	30	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	19	0.0	0.0	0.0E	34	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	8.2	0.0	0.0	0.0E	36	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	1.2	0.0	0.0	0.0E	38	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.0		42	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0.0	0.0		45		0.0		0.0	0.0		31
MEAN	6.6	69.3	1.1	0.0	0.0	7.9	12.1	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	152	267	11.0	0.0	0.0	45.0	45.0	0.0	0.0	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	405	4121	70			488	720						AC.FT.

E — ESTIMATED

NR — NO RECORO

* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AHD *

MEAN		MAXIMU	J M				MINIM	J M		
DISCHARGE 8 • 1	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME

TOTAL ACRE FEET 5804

	LOCATIO	N	MAXII	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	1100	ZERO	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 04 40	119 06 22	NW30 21S 27E	5170	8.17	5-19-57	FEB 57-DATE		1957 1959	1959	0.00 -3.48	LOCAL

Station located 330 ft. above Rockford Road Bridge, 5.1 mi. W of Porterville. Flows regulated by Success Reservoir and spill from Friant-Kern Canal. Altitude of gage is approx. 400 ft. (from U.S.G.S. topographic map). Flows include C.V.P. releases from Friant-Kern Canal to Tule River. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	C03970	CAMPBELL MORELAND DITCH ABOVE PORTERVILLE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	20	6.1	0.0	9.6	12	0.0	0.0*	9.4	29 #	7.8	15	24	1
2	20	6.1	0.0#	9.7*	7.8	0.5*	0.0	10	29	7.8	15	24	2
3	20	6.7	0.0	9.6	6.0	0.0	0.0	10	28	7.8	15	23	3
4	20	7.0	0.0	9.6	2.1*	0.0	0.0	9.8	15	8.7	14	22	4
5	20	7.2	0.0	9.6	1.5	0.1	0.0	9.7	7.7	9•6	14 *	25	5
6	20	7.4	0.0	9 • 6	1.1	0.3	0.0	10	8 • 4	9.6	14	30	6
7	19	7.2	0.0	9.6	0.9	0.5	0.0	19 *	9.0	9.6	14	30	7
8	16	6.5	0.0	9•6	0.8	0.2	0.0	25	9.9	9.6	14	32	8
9	14	6.1	0.0	9•6	0.7	0.2	0.0	24	8 • 7	9.6*	14	34	9
10	15	5.6	0.0	9•6	0.3	0.1	0.0	24	8.3	9•6	14	34	10
11	16	5.3	- 0.0	9.3	0.0	2.5	0.0	23	7.7	9.3	14	33	11
12	16	4.9	0.0	9.3	0.0	5.7	0.0	23	8 • 4	9.6	18	32	12
13	15	2 • 7	0.0	9.3	0.0	0.0	0.0	25	7.8	9.3	21 *	33	13
14	15	0.0	0.0	15	0.1	0.0	0.0	27	7.6	9.6	18	23	14
15	15 E	0.0*	0.0	19	0.3	0.0	0.0	28 *	7.0	13	15	16	15
16	15 E	0.0	0.0	20	0.4	0.0	0.0*	28	6.7*	14	13	17	16
17	15 E	0.0	0.0*	19 #	0.4	0.0*	0.0	28	8.0	13	10	16	17
18	15 #	0.0	0.0	19	0.4*	0.0	0.0	28	10	13	7.2*	16	18
19	15	0.0	0.0	20	0.3	0.0	0.0	28	9.7	13	6.7	16	19
20	15	0.0	0.0	20	0.3	0.0	0.0	29	9•3	13	6.7	21	20
21	13	0.0	1.9	21	0.2	0.0	0.0	30	9•6	12 *	6.7	23	21
22	6 • 8	0.0	6.2	22	0.2	0.0	0.0	30	9.7	13	6.2	21	22
23	6.4	0.0	8.6	22	0.0	0.0	0.0	31	9.7	13	6.7	22	23
24	6.8	0.0	8.7	20	0.0	0.0	0.0	31	16	13	8.1	21	24
25	7.4	0.0	8.7	19	0.0	0.0	0.0	30	19	12	7.4*	20	25
26	7.8	0.0	8.7	19	0.1	0.0	0.0	29	17	12	16	21	26
27	8.6	0.0	9.0	19	0.0	0.0	0.0	31	16	13	22	22	27
28	7.8	0.0	9.0	20	0.0	0.0	7.3*	31	15	13	24	21	28
29	6.3	0.0	9.0	20	0.0	0.0	11	30	15	14	26	21	29
30	6.1	0.0	9.3	19		0.0	9.6*	29	11	15	26	19	30
31	6.3*		9.6	19		0.0		29		15	26		31
MEAN	13.5	2.6	2.9	15.4	1.2	0.3	0.9	24.2	12.4	11.3	14.5	23.7	MEAN
MAX.	20.0	7.4	9.6	22.0	12.0	5.7	11.0	31.0	29.0	15.0	26.0	34.0	MAX.
MIN.	6.1	0.0	0.0	9.3	0.0	0.0	0.0	9.4	6.7	7.8	6.2	16.0	MIN.
AC. FT.	832	156	176	944	71	20	55	1485	740	697	888	1412	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	J.M.	$\overline{}$		MINIM	J M		$\overline{}$
SCHARGE 10.2	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
				l /					

	TOTAL
	ACRE FEET
	7476
1	,

	LOCATION	1	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	0018	ZERO ON	REF.
CATTIONE	LUNGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	OATUM
36 02 48	118 56 54	NW 4 22S 28E				AUG 42-DATE		Oct 62	Oct 62	0.00	LOCAL

Station located 3.9 mi. SE of Porterville approximately 2600ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DI

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03182 PORTER SLOUGH AT PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	40 *	6.6	20	0.0E	0.0	0.0	0.0*	0.0*	36	31	17	0.0	1
2	40	49	20	0.0#	0.0	0.0*	0.0	0.0	42	26	1.2	0.0	2
3	39	57	20	0.0	0.0	0.0	0.0	0.0	33	27 *	0 • 2	0.0	3
4	38	60	18 *	0.0	0.0	0.0*	0.0	0.0	30 *	26	0.0	0.0	4
5	39	72	11	0.0	0.0	0.0	0.0	0.0	32	24 *	0.0	0.0	5
6	40	64	2.5	0.0	0.0	0.0	0.0	0.0	16	23	11	0.0	6
7	38	56	0.8	0.0	0.0	0.0	0.0	0.0	0.0	23	35	0.0	7
8	24	44	0.5	0.0	0.0	0.0	0.0*	0.0	0.0	23	30	0.0	8
9	2.3	3.8	0.3	0.0	0.0	0.0	0.0	0.0	0.0	23	22	0.0	9
10	0.3	1.1	5.4	0.0	0.0	0.0	0.0	0.0	0.0	22	22	0.0	10
11	0.1	0 • 4	27	0.0	0.0	0.0	0.0	0.0	0.0	12	22	0.0	11
12	0.0	0.1	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.7	23	0.0	12
13	0.0	0.0	20	0.0	0.0	0.0	0.0	0.0	17	0.0	23 *	0.0	13
14	0.0	0.0	2 • 3	0.0	0.0	0.0	0.0	0.0	41	17	24	0.0	14
15	0.0	3.3	0.6	0.0	0.0	0.0	0.0	0.0*	38	31	13	0.0	15
16	0.0	77	0.3	0.0	0.0	0.0	0.0	0.0	30	20	0.6	0.0	16
17	0.0	76	0.0	0.0	0.0	0.0	0.0	0.0	30 *	8.8*	0.0	0.0	17
18	0.0*	43	1.3	0.0	0.0*	0.0	0.0	0.0	27	0.4	0.0	0.0	18
19	0.0	4.2*	19	0.0	0.0	0.0	0.0	0.0	2 4	0.0	0.0	0.0	19
20	0.0	1.6	13	0.0*	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	20
21	0.0	14	1.6	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	21
22	0.0	59	0.3	0.0	0.0	0.0	0.0*	0.0	25	6.7	0.0	0.0	22
23	0.0	35	0.0	0.0	0.0	0.0	0.0	0.0	24	27	0.0	0.0	23
24	0.0	26	0.0	0.0	0.0	0.0	0.0	0.0	23	30 *	0.0	0.0	24
25	0.0	27	0.0	0.0	0.0	0.0	0.0	0.0	12	28	0.0	0.0	25
26	0.0	26	0.0	0.0	0.0	0.0	0.0	0.0	0.4	25	0.0	0.0	26
27	0.0	25	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	23	0.0	0.0	27
28	0.0	23	0.0E	0.0	0.0	0.0	0.0	3.5	0.0	24	0.0	0.0	28
29	0.0	23	0.0E	0.0	0.0	0.0	0.0	18	8.5	25	0.0	0.0	29
30	0.0	20	0.0E	0.0		0.0	0.0	25	33	25	0.0	0.0	30
31	0.0*		0.0E	0.0		0.0		27		25	0.0		31
MEAN	9.7	30.0	6.8	0.0	0.0	0.0	0.0	2.4	19.0	18.6	7.9	0.0	MEAN
MAX.	40.0	77.0	28.0	0.0	0.0	0.0	0.0	27.0	42.0	31.0	35.0	0.0	
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
AC. FT.	596	1783	420					146	1130	1144	484		AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

DBSERVATION OF NO FLOW

MEAN	1		MAX	I M U	M			١		MINIM	U M			۷
DISCHARGE	Γ	DISCHARGE	GAGE	нт.	MO.	DAY	TIME		DISCHARGE	GAGE HT.	MO.	DAY	TIME	1
7.9							,		(J

TOTAL ACRE FEET 5703

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		OIS CHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF
LATITUDE	LONGITUOE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	OATUM
36 03 29	118 59 08	SE31 21S 28E				JAN 42-DATE		1957		0.00	LOCAL

Station located at "B" Lane Bridge, immediately E of Porterville. This is regulated diversion from Tule River. Altitude of gage is approx.465 ft. (from U.S.G.S. topographic map). Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 C03984 PORTER SLOUGH DITCH AT PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	11	0.0*	0.0	0.0	0.0	0.0	0.0*	0.0*	4.1*	13 *	15	0.0	
2	12	5.1	0.0*	0.0*	0.0	0.0*	0.0	0.0	11 *	11	0.2	0.0	2
3	12	12	0.0	0.0	0.0	0.0	0.0	0.0	12	12 *	0.0	0.0	3
4	12	13	0.0	0.0	0.0	0.0	0.0	0.0	12 *	12	0.0	0.0	4
5	12	15	0.0	0.0	0.0*	0.0	0.0	0.0	12 *	11 *	0.0	0.0	5
6	12	14	0.0	0.0	0.0	0.0	0.0	0.0	6.4	11 *	0.2	0.0	6
7	7.2	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	14 *	0.0	7
8	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	15 *	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12 *	15 *	0.0	9
10	0.0	0.0	0•0	0.0	0.0	0.0	0.0	0.0	0.0	12	15	0.0	10
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	15	0.0	11
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15 *	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	1.6	17	0.0	14
15	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	11	9.0*	11	0.0	15
16	0.0	0 • 1	0.0	0.0	0.0	0.0	0.0*	0.0	12 *	8 • 5	0.0	0.0	16
17	0.0	9.0	0.0*	0.0*	0.0	0.0*	0.0	0.0	13	4.7*	0.0	0.0	17
18	0.0	7.1	0.0	0.0	0.0*	0.0	0.0	0.0	13	0.0	0.0	0.0	18
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14 * 14	0.0	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	0.0	0.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14 15 *	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	6.4	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13	13 * 14	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.5	14	0.0	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13	0.0	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	0.0	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16 *	0.0	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	10	16	0.0	0.0	30
31	0.0*		0.0	0.0		0.0		0.0		13	0.0		31
MEAN	2.5	3.2	0.0	0.0	0.0	0.0	0.0	0.0	7.0	8 • 6	4 • 8	0.0	MEAN
MAX.	12.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	15.0	16.0	17.0	0.0	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	155	191							417	531	292		AC.FT.

E — ESTIMATED

NR — NO RECORO

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AHD *

MEAN	1 6		MAXIMU	J M			. /	<u> </u>	MINIM	U M		
DISCHARGE	Π	DISCHARGE	GAGE HT.	MO.	DAY	TIME	П	DISCHARGE	GAGE HT.	MO.	DAY	TIME
2 • 2	П						IJ					
,	/ \					/						

TOTAL ACRE FEET 1586

	LOCATIO	N	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.8.6M.	C.F.S.	GAGE HT.	DATE	3.00	ONLY	FROM	то	GAGE	DATUM
36 04 06	119 01 06	SE26 21S 27E				JAN 43-DATE		1943		0.00	LOCAL

Station located in Porterville 0.5 mi. W of Porterville Post Office, approximately 150 ft. below head. This is regulated diversion from Tule River via Porter Slough. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME
	1964	C03187	PORTER SLOUGH NEAR PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.0	0.0*	7.8	0.0	0.0	0.0	0.1	0.0*	0.0	0.0	0.0	0.0	1
2	2.4	0.1	7.6	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	2
3	2 . 8	9.3	7.6	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	3
4	3.7	13	6.9*	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	0.0	0.0	4
5	4.0	25	3.0	0.0	0.0*	0.0	0.0	0.1	0.0	0.0	0.0	0.0	5
6	5 • 2	26	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	6
7	7.8*	18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	10	27	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
011	0.1	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0	0.0	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	14
15	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0*	2.4	0.1	0.0	0.0	15
16	0.4	47 E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	66 E	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	17
18	0.0*	26	0.0*	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.6	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.6	5.3	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	41	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	22
23	0.0	21	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	9.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	8.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0*		0.0	0.0		0.0		0.0		0.0	0.0		31
WEAN .	1.2	13.2	2.3	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	MEAN
MAX.	10.0	66.0E	12.0	0.2	0.0	0.2	0.1	0.1	2.4	0.1	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	74	787	139			1			5				AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

— E AND *

MEAN	1		MAXIM	U M				MINIM	JM			١
ISCHARGE 1 • 4		DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME	į

101	TAL	
ACRE	FEET	Ī
	1006	

		LOCATION			NUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
Ì	LATITUOE	LONGITUOE	1/4 SEC. T, & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD .		ZERO ON	REF.
l	LATITU0E	LONGITUDE	M.O.8.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
I	36 04 00	119 03 08	NE28 21S 27E	364	5.14	4- 3-58	JAN 57-DATE		1957		0.00	LOCAL

Station located at Newcomb Drive Bridge, 2.0 mi. W of Porterville. Tributary to Tulare Lake Basin via Tule River. Altitude of gage is approx. 425 ft. (from U.S.G.S. topographic map). Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECONO)

1	WATER YEAR	STATION NO.	STATION NAME
	1964	C03965	VANDALIA DITCH NEAR PORTERVILLE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	4.0	0.0*	0.0	0.0	0.0	0.0	0.0*	0.0*	3.6*	0.0*	3.9	3.1	1
2	4.0	0.0	0.0*	0.0*	0.0	0.0*	0.0	0.0	3.5	0.0	3.8	2.9	2
3	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 • 4	0.0	3.8	2.9	3
4	4.3	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	3.3	0.0	3.8	2.9	4
5	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	3.7*	2.8	5
6	4.1	0.0	0.0	0.0	0.0	0.0	0.0	2.5	3.6	0.0	3.7	2.8	6
7	3.9	0.0	0.0	0.0	0.0	0.0	0.0	4.1*	3.9	0.0	3.7	2.9	7
8	3.6	0.0	0.0	0.0	0.0	0.0	0.0	4.3	4 • 2	0.0	3 . 8	15	8
9	4.1	0.0	0.0	0.0	0.0	0.0	0.0	4.1	4.5	0.0	3.8	0.5	9
10	4 • 2	0.0	0.0	0.0	0.0	0.0	0.0	4.1	4.4	0.0	3.8	0.0	10
11	4.2	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.4	0.0	3 . 8	0.0	11
12	4.2	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.4	0.0	3 . 8	0.0	12
13	4 • 2	0.0	0.0	0.0	0.0	0.0	0.0	4.1	3.9	0.0	3.8*	0.0	13
14	4.4	0.0	0.0	0.0	0.0	0.0	0.0	4.1	3.6	0.0	3.3	0.0	14
15	4.4	0.0*	0.0	0.0	0.0	0.0	0.0	4.1*	3.6	2.4	3.2	0.0	15
16	4.5	0.0	0.0	0.0	0.0	0.0	0.0*	4-1	3.6*	4.1	3.2	0.0	16
17	4.2	0.0	0.0*	0.0*	0.0	0.0*	0.0	4.1	3.7	4.1	3.1	0.0	17
18	3.7*	0.0	0.0	0.0	0.0*	0.0	0.0	4.0	4.0	4.1	3.0*	0.0	18
19	3.5	0.0	0.0	0.0	0.0	0.0	0.0	4.0	2.0	4.2	3.0	0.0	19
20	3.4	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.4	4.2	3.0	0.0	20
21	2.1	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.3	4.1* 4.1	3.0 3.1	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.2	4.1	3.2	0.0	22
23	0.0	0.0	0.0	0.0	0.0						3.2	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	0.1	4.1 4.1	3.2*	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.0	4.1		0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.0	4.1	3.1	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	0.0	4.1	3.2	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4 • 2	0.0	3.4	3.3	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	3.1	3.4	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	3.9	0.0	4.1	3.4	0.0	30
31	0.0*		0.0	0.0		0.0		3.7		4.1	3.4		31
MEAN	2.7	0.0	0.0	0.0	0.0	0.0	0.0	3.4	2.4	2.1	3.4	0.7	MEAI
MAX.	4.5	0.0	0.0	0.0	0.0	0.0	0.0	4.3	4.5	4.2	3.9	3.1	MA
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	MIN
AC. FT.	165							209	143	132	211	44	AC.FI

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	М	$\overline{}$	MINIMUM							
DISCHARGE 1 • 2	DISCHARGE	GAGE HT.	MO. DA	TIME	DISCHARGE	GAGE HT.	MO. D	AY TIME				
				\perp		<u> </u>						

\subset	TOTAL
Г	ACRE FEET
1	904
į.	

	LOCATION			MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC, T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITODE	LONGITODE	M. D. B. B.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
36 03 00	118 58 18	NE 5 225 28E				1948-DATE		1948		0.00	LOCAL

Station located 2.8 mi. SE of Porterville approximately 1000 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME POPLAR OITCH NEAR PORTERVILLE C03960

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	12	3.2	37	0.3	30	3.4	0.0*	0.0*	0.0*	0.0	89 *	18	1
2	12	47	38 *	0.5*	9.9	3.8*	0.0	0.0	0.0	0.0	87	18	2
3	13	60	38	0.5	8.1	2 • 8	0.0	0.0	0.0	0.0	86	16	3
4	13	59 #	37	0.5	7.3*	0.8	0.0	0.0	0.0	8.9	85	8.9	4
5	6 • 1	57	38	0.4	6.9	0.0	0.0	0.0	0.0	46 *	84 *	0.0	5
6	0.2	13	30	0.3	6.3	0.0	0.0	0.0	19	88	85	0.0	6
7	0.1	0 • 2	27	0.1	6.0	0.0	0.0	0.0	61	114	8.5	0.0	7
8	0.1	0.0	27	0.1	5.8	0.0	0.0	0.0	87 *	122	86	0.0	8
9	0.2	0.0	27	0.0	5.6	0.0	0.0	0.0	98 *	122 *	86	0.0	9
10	0 • 2	0.0	27	0.0	5.4	0.0	0.0	0.0	103	121	85	0.0	10
11	0.2	0.0	26	0.0	5.4	0.0	0.0	0.0	104	119	85	0.0	11
12	0.2	0.0	26	0.0	5.4	0.0	0.0	0.0	104	119 *	86	0.0	12
13	0.2	0.0	26	0.0	5.2*	0.0	0.0	0.0	62	116 *	87 *	0.0	13
14	0.2	4.8	26	0.0	4.9	0.0	0.0	0.0	0.7	110	41	0.0	14
15	0.2	9.8*	26	0.0	4.7	0.0	0.0	0.0*	0.0	111	1.4	0.0	15
16	0.2	13	17	19	4.5	0.0	0.0*	0.0	0.0*	113	3.2	0.0	16
17	0.2	14	0.5*	29 *	4.2	0.0*	0.0	0.0	18	112	0.7	0.0	17
18	0.2	19	0.4	30	4.1*	0.0	0.0	0.0	59	110	0.0	0.0	18
19	0.3	35	0.3	30	4.0	0.0	0.0	4.8*	86	112	0.0	0.0	19
20	0.3	38	0.2	34	3.9	0.0	0.0	17	105	113	0.0	0.0	20
21	0 • 2	34	0.1	34	3.7	0.0	0.0	20 *	106	112 *	0.0	0.0	21
22	0.3	35	0.1	40	3.7	0.0	0.0	20	107	112	0.0	0.0	22
23	0.2	34	0.1	48	3.7	0.0	0.0	20	112	112	0.0	0.0	23
24	0.2	37	0.1	52 *	3.7	0.0	0.0	19	114	112	0.0	0.0	24
25	0 • 3	37	0.0	50	3.6	0.0	0.0	20	115	112	0.0	0.0	25
26	0 • 2	37	0.1	50	3.6	0.0	0.0	19	70	112	0.0	0.0	26
27	0.2	37	0.1	49 #	3.5	0.0	0.0	18	0.0	113	0.0	0.0	27
28	0.2	38	0.1	44 *	3.5	0.0	0.0	17	0.0	110	5.7	0.0	28
29	0.3	37	0.1	40	3.5	0.0	0.0	9.3*	0.0	98	20	0.0	29
30	0.3	37	0.1	40		0.0	0.0	0.0	0.0	91	17	0.0	30
31	0.3		0.1	40	1	0.0		0.0		91	16		31
MEAN	2.0	24.5	15.3	20.4	5.9	0.3	0.0	5.9	51.3	94.6	39.4	2.0	MEAN
MAX.	13.0	60.0	38.0	52.0	30.0	3.8	0.0	20.0	115.0	122.0	89.0	18.0	MAX.
MIN.	0 • 1	0.0	0.0	0.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	123	1460	943	1253	337	21		365	3050	5815	2422	121	AC.FT.

E — ESTIMATED

NR — NO RECORO

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

4	MEAN		MAXIMU	M					MIN	IMI	JM		.)
I	DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE	HT.	MO.	DAY	TIME
	21.8												

TOTAL ACRE FEET 15910

1		LOCATION			MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
	LATITUAE	LATITUDE LONGITUDE 1/4 SEC. T. & R.			OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
	CATTIONE	LONGITUDE	м.о.в.вм,	C.F.S.	C.F.S. GAGE HT. DATE		DIO OFFICIO	ONLY	FROM	ТО	GAGE	DATUM
	36 03 18	119 00 54	SW36 21S 27E				APR 42-DATE		1942		0.00	LOCAL

Station located 1.0 mi. S of Porterville approximately 4750 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME HUBBS - MINER DITCH AT PORTERVILLE a C03925

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	17	0.0*	0.0E	0.0	0.0	0.0	0.0*	0.0*	0.0*	7.8*	6.4	0.0	1
2	17	8.8	0.0#	0.0*	0.0	0.0*	0.0	0.0	0.0	7.3	0.0	0.0	2
3	17	14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	3
4	14	13	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	6.9	0.0	0.0	4
5	9.6	12	0.0	0.0	0.0	0.0	0.0	3.4	0.0	8.0	0.0	0.0	5
6	7.5	12	0.0	0.0	0.0	0.0	0.0	7.6	1.8	7.9	6.7	0.0	6
7	4 • 1	9•3	0.0	0.0	0.0	0.0	0.0	8.0=	5.9	10	11 *	0.0	7
8	0.0	4.8	0.0	0.0	0.0	0.0	0.0	4.7	9.3*	16	9.4	0.0	8
9	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	13	14	6.8*	8.0	9
10	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	13	11	5.9	11	10
11	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	12	6.4	5.6	6.5	11
12	0.0	0.1	0.0	0.0	0.0	1.4	0.0	2.4	12	8.1*	5.9	3.8*	
13	0.0	0.0	0.0	0.0	0.0	8 • 3	0.1	6.8*	9.6	9.5*	8.0*	0.0	13
14	0.0	0.0	0.0	0.0	0.0	12	6.5	7.6	6.5	14	11	0.0	14
15	0.0	0.0#	0.0	0.0	0.0	13	11	7.2*	7.3	16 *	13	0.0	15
16	0.0	0.0E	0.0	0.0	0.0	14	11 *	6.9	3.6*	17	12	0.0	16
17	0.0	0.0E	0.0#	0.0*	0.0	17 *	9.7*	6.8	0.0E		6.7	0.0	17
18	0.0	0.0E	0.0*	0.0	0.0*	17	6.9	3.2	0.0E		5.2*	0.0	18
19	0.0	0.0E	0.0	0.0	0.0	8.5*	5.0	0.0*	0.0E		5.0	0.0	19
20	0.0	0.0E	0.0	0.0*	0.0	0.0	3 • 2	2•4	0.0E	10	5•0	0.0	20
21	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.6	1.9E	12 *	4.7	2.8	21
22	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.3	6.1#	12	4.8	11 *	
23	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.6	7.6 14 *	11	5.2 5.1	13 12	23
24	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.8	14 * 15 *	11	5.1	10 *	24
25	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	7•3	15 *	1 13	201	10 *	25
26	0.0	O.OE	0.0	0.0	0.0	0.0	0.0	6.9	14	15	5.1	2.5	26
27	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	7.6*	19 *	17	5.5	0.0	27
28	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	4.0	19	18	8.1	0.0	28
29	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	13	18 *	16	0.0	29
30	0.0	0.0E	0.0	0.0		0.0	0.0	0.0	7.5	19	20	0.0	30
31	0.0*		0.0	0.0		0.0		0.0		13	12		31
MEAN	2.8	2.6E	0.0E	0.0	0.0	2.9	1.8	3.8	7.0	11.8	6.9	2.7	MEAN
MAX.	17.0	14.0E	0.0E	0.0	0.0	17.0	11.0	8.0	19.0	19.0	20.0	13.0	MAX
MIN.	0.0	0.0E	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	6.4	0.0	0.0	MIN.
AC. FT.	171	153				181	106	236	419	728	427	160	AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- EAHD • a - See note (a) below.

MEAN		MAXIMU	M		$\overline{}$			MINIM	J M
DISCHARGE 3 · 3	DISCHARGE	GAGE HT.	MO.	YAC	TIME	[0.0	GAGE HT.	MO . 10

TOTAL ACRE FEET 2581

DAY TIME 1600

	LOCATION	V	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	don	2ERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M,	C.F.S.	GAGE HT.	DATE	oro or minor	ONLY	FROM	TO	GAGE	DATUM
36 03 27	119 02 02	NW35 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 1.1 mi. SW of Porterville, approximately 3400 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

(a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03940 RHODES - FINE DITCH NEAR PORTERVILLE a

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	0.0E 0.0E 0.0E 0.0E	0.0	0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0 0.0	0.0* 0.0 0.0 0.0	12 12 3•6 8•1 13 *	15 * 16 * 12 6.1*	0.0* 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1 2 3 4 5
6 7 8 9 10	0.0E 0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	16 15 19 18 15	8.8 5.7 9.4 13	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6 7 8 9 10
11 12 13 14 15	0.0E 0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	14 11 11 15 17 *	12 10 8.8 7.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11 12 13 14 15
16 17 18 19 20	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	17 19 20 19 *	9.1* 5.0 3.6 6.8*	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	16 17 18 19 20
21 22 23 24 25	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E 0.0E	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0 1.7	18 17 17 17 20 *	5.2 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.1 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	21 22 23 24 25
26 27 28 29 30 31	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0 0.0	3.8 5.7* 9.6* 11 * 12 *	16 14 15 20 17	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	26 27 28 29 30 31
MEAN MAX. MIN.	0.0E 0.0E	0.0E 0.0E 0.0E	0.0E 0.0E 0.0E	0.0E 0.0E 0.0E	0.0E 0.0E 0.0E	0.0E 0.0E 0.0E	1.5 12.0 0.0 87	15.3 20.0 3.6 942	6.3 16.0 0.0 374	0.0	0.1 1.1 0.0 5	0.0	MEAN MAX. MIN. AC.FT.

: — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

a - See note (a) below.

MEAN		MAXIMU	I M					MINIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	I	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1.9						Ц	0.0E		10	1	0000
						,					

TO	[AL	_
ACRE	FEET	
	140	В

	LOCATION	V	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. 7. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	2ERO ON	REF.
LATITODE	LONGITODE	M.D.B.8M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	70	GAGE	DATUM
36 03 26	119 04 13	SE32 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 3.1 mi. SW of Porterville, approximately 3100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

(a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME WOODS-CENTRAL DITCH NEAR PORTERVILLE a 1964 C03948

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	22 21 * 21 21 19	0.0 0.0 0.0 0.0* 0.0	0.0E 0.0E 0.0 0.0E	0.0* 0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1 2 3 4 5
6 7 8 9	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	19 19 16 18 18	0.0 0.0 0.0 0.0 0.0	0.0E 0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6 7 8 9 10
11 12 13 14 15	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	19 20 19 * 19 7•9*	0.0 0.0 0.0 0.0	0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	11 12 13 14 15
16 17 18 19 20	0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	0.0E 17 28 * 21 16	3 · 1 0 · 0 * 0 · 0 0 · 0 0 · 0	0.0 0.0 0.0E 0.0E 0.0E	0.0E 0.0# 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0*	0.0* 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	16 17 18 19 20
21 22 23 24 25	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	24 24 24 24 22	0.0 0.0 0.0 0.0 0.0	0.0E 0.0E 0.0E 0.0E	0.0 0.0 0.0 0.9 0.2	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	21 22 23 24 25
26 27 28 29 30 31	0.0E 0.0E 0.0E 0.0E 0.0E	0.0E 0.0E 0.0E 0.0E	21 21 21 21 21 21	0.0 0.0 0.0 0.0 0.0	0.0E 0.0E 0.0E	0 • 1 0 • 2 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	0.0E 0.0E 0.0E	0.0E 0.0E 0.0E	10.5E 28.0E 0.0E 647	9.1 22.0 0.0 559	0.0E 0.0E 0.0E	0.0E 0.9E 0.0E 3	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0	MEA! MAX MIN AC.FT

E — ESTIMATEO
NR — NO RECORD
* — OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

a - See note (a) below.

DISCHARGE DISCHARGE GAGE HT. MO. DAY TIME DISCHARGE GAGE HT. MO. DAY TIME	MEAN		MAXIMU	M				MINIM	J M		
	DISCHARGE 0 • 8	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE 0.0E	GAGE HT.	MO. 10	DAY 1	TIME 0000

TOTAL ACRE FEET

	LOCATION	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	:
L ATITUOS	LONGITUES	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
36 04 18	119 05 48	SE30 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 4.5 mi. W of Porterville, approximately 100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

(a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association.

IAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	C05150	KERN RIVER NEAR BAKERSFIELD

AY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1574	624	432	344	369	397	473	443	855	1412	646	320	11
2	1550	617	437	353	385	441	479	446	960	1305	655	260	2
3	1497	608	430	343	422	438	454	444	1144	1225	655	188	3
4	1520	593	411	353	424	448	448	443	1082	1221	653	170	4
5	1500	588	404	347	421	453	456	451	1039	1234	642	160	5
6	1468	572	393	338	430	513	447	476	1054	1237	654	164	6
7	1477	565	360	333	442	499	428	451	1169	1263	625	176	7
8	1446	523	364	324	417	484	442	458	1213	1304	608	198	8
9	1393	529	374	316	408	497	444	463	1235	1321	594	154	9
10	1280	539	368	302	398	499	447	461	1258	1377	601	215	10
11	1049	534	365	284	326	488	448	434	1298	1402	625	218	111
12	1057	543	365	286	316	485	445	462	1265	1413	598	173	12
13	1066	579	364	292	306	489	446	449	1253	1415	583	221	13
14	1074	594	368	328	297	467	445	448	1288	1445	537	228	14
15	1091	586	389	330	272	482	435	438	1342	1439	458	220	15
16	1041	583	401	328	261	468	496	443	1440	1379	460	235	16
17	728	550	402	328	283	462	520	439	1356	1306	471	211	17
18	783	446	403	312	310	443	547	443	1313	1265	470	183	18
19	853	437	395	279	315	466	487	457	1518	1250	462	177	19
50	859	438	372	277	309	446	456	446	1498	1176	459	160	20
21	863	459	374	298	340	443	449	451	1419	1086	422	165	21
12	867	490	382	330	387	468	449	451	1394	1110	393	182	22
13	865	502	354	320	400	472	455	459	1394	1103	413	173	23
24	803	498	342	329	412	463	468	455	1208	1008	410	162	24
15	825	469	341	355	421	452	469	498	1141	983	404	138	25
!6	830	459	333	387	418	449	475	448	1418	937	406	144	26
27	839	458	338	381	416	442	467	449	1489	682	393	145	27
85	604	442	341	374	393	463	466	457	1535	639	361	158	28
129	584	449	341	348	366	456	452	458	1465	618	373	130	29
30	645	441	335	359		458	464	470	1409	626	375	112	30
11	653		340	383		454		753		646	386		31
AN	1054	524	375	331	368	464	462	463	1282	1156	509	185	MEAN
AX.	1668	629	439	387	442	513	547	753	1518	1445	655	320	MAX.
IN.	557	426	331	277	261	397	428	434	855	618	361	112	MIN.
₹. FT.	64828	31174	23044	20356	21152	28532	27485	28451	76268	71078	31323	10989	AC.FT.

MEAN		MAXIMU	J M	=		MINIM	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
598					-				
	<u></u>								

TOTAL	١
ACRE FEET	I
434680	

		LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
ľ	LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF.
l	LATITODE	LONGITUDE	M.D.B.8 M.	C.F,S.	GAGE HT.	DATE	5.65.11.1.02	ONLY	FROM	TO	GAGE	DATUM
	35 26 9	118 56 8	SW 2 29S 28E	36000	14.2	11-19-50	93-DATE					

Also known as "Kern River at First Point." Station located 5 mi. NE of Bakersfield. Tabulated discharge is the computed regulated flow and is computed from noon to noon beginning at noon of day shown. Records furn. by Kern County Land Company. Drainage area is 2,420 sq. mi.

⁻ ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW
- E AND *

TABLE B-5

WATER YEAR STATION NO. STATION NAME 1964 C03110 TULARE LAKE

DAILY MEAN GAGE HEIGHT (IN FEET)

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1 2													1 2
3 4													3 4
5													S
6 7													7
8 9													9
10													11
12													12
14 15						D	RY						14
16													16
17 18 19											:		17 18 19
20													20
21 22									-				21
23													23 24
25				İ									25
27 28													26
29													28 29 30
31													31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAG
E - ESTIMATED												
NR NO RECORD												
NE NO FLOW												

	LOCATION	1	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE M.D.8.8M.		C.F,S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATU
30 03 10	119 49 35			196.8	6-28-41		FEB 37-DATE	1937		0.00	USCG

Station located 2.2 mi. SW of Chatom Ranch, 6 mi. SW of Corcoran on south end of El Rico Bridge. Tulare Lake receives water from Kings, Kaweah, and Tule Rivers during high-water periods and occasionally from Kern River, Deer Creek, and several small intermittent streams. Elevation at lowest point of lake bed is now about 180 ft. U.S.G.S. datum. Records furn. by Tulare Lake Basin Water Storage District.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 807885 SAN JOAQUEN RIVER BELOW FRIANT

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2.11	1.95	1.89	1.91	1.89	2.24	2.12	2.34	2.35	2.52	2.54	2.42	1
2	2.11	1.95	1.89	1.91	1.89	2.24	2.07	2.36	2.33	2.56	2.54	2.42	2
3	2.11	1.95	1.90	1.91	1.90	2.22	2.09	2.37	2.32	2.56	2.54	2.42	3
4	2.11	1.95	1.90	1.91	1.90	2.20	2 • 14	2.36	2 • 32	2.56	2.60	2 • 4 1	4
5	2.11	1.96	1.90	1.91	1.90	2.20	2 • 14	2.36	2.32	2.55	2.59	2.38	5
6	2.11	1.96	1.90	1.91	1.94	2.20	2.12	2.34	2.33	2.56	2.58	2.35	6
7	2.10	1.96	1.90	1.91	1.99	2.20	2 • 09	2.32	2.33	2.54	2.58	2.35	7
8	2.09	1.96	1.90	1.91	1.99	2.20	2.09	2.32	2.35	2.56	2.57	2.35	8
9	2.07	1.96	1.90	1.92	2.00	2.20	2 • 15	2.32	2.38	2.59	2.57	2.35	9
10	2.07	1.96	1.90	1.92	2.00	2.18	2.20	2.32	2.35	2.62	2.59	2.35	10
11	2.05	1.96	1.90	1.92	2.00	2.15	2.23	2.32	2.33	2.64	2.60	2.35	11
12	1.99	1.96	1.90	1.92	2.00	2.13	2 • 23	2.32	2.33	2 • 64	2.60	2.36	12
13	1.99	1.96	1.90	1.92	2.00	2.10	2.23	2.32	2 • 3 2	2.63	2.58	2.36	13
14	1.99	1.97	1.90	1.92	2.03	2.10	2 • 24	2.33	2.32	2 • 63	2.56	2.36	14
15	1.99	1.98	1.90	1.92	2.07	2.10	2 • 27	2.34	2.32	2.63	2.56	2.37	15
16	2.00	1.97	1.90	1.92	2.08	2.10	2 • 36	2.35	2.32	2.63	2.56	2.37	16
17	2.00	1.97	1.90	1.91	2.10	2.10	2.37	2.35	2 • 35	2.63	2.56	2.37	17
18	1.99	1.97	1.90	1.93	2.13	2.10	2.37	2.35	2.37	2.61	2.55	2.37	18
19	1.99	1.97	1.90	1.95	2.14	2.11	2.38	2.35	2.37	2.60	2.54	2.37	19
20	1.99	1.96	1.91	1.95	2+14	2 • 12	2.38	2.35	2 • 36	2 • 60	2.54	2.37	20
21	2.01	1.90	1.91	1.97	2.14	2.12	2 • 38	2.35	2.36	2.60	2.54	2.37	21
22	2.00	1.90	1.90	1.95	2 - 14	2 • 14	2 . 38	2.35	2 • 40	2.60	2.54	2.33	22
23	2.00	1.90	1.90	1.90	2.13	2.10	2.37	2.35	2.43	2.62	2.54	2.29	23
24	2.00	1.90	1.90	1.90	2.15	2.05	2.35	2.35	2 • 4 2	2.65	2.54	2.29	24
25	2.00	1.90	1.90	1.90	2.14	2.01	2.33	2.34	2 • 44	2.65	2.54	2.29	25
26	2.00	1.89	1.91	1.90	2.13	2.00	2.28	2.34	2.49	2.64	2.54	2.29	26
27	1.99	1.88	1.91	1.90	2.23	2.02	2.28	2.34	2 • 49	2 • 64	2.54	2 • 30	27
28	2.00	1.88	1.91	1.90	2.25	2.05	2.28	2.34	2 • 49	2.63	2.46	2.30	28
29	2.00	1.89	1.91	1.90	2 • 24	2.05	2 • 28	2 • 34	2.49	2.63	2.41	2.30	29
30	2.00	1.89	1.91	1.90		2.05	2 • 32	2.34	2 • 49	2.59	2 • 41	2.30	30
31	1.97		1.91	1.90		2.11		2.34		2.54	2.42		31

CREST STAGES

E -- ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE \
7-24-64	0900	2.67									
' - ' - '											
(

	LOCATION	V	MAXII	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
36 59 0	119 43 24	SW7 11S 21E	77,200	23.8	12/11/37	OCT 07-DATE		1938		294.00	USGS

Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME 864200 CHOWCHILLA RIVER NEAR RAYMOND

(IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	NR	NR	NR	NR	NR	NR	69.90	NR	NR	NR	NR	NR	1
2	NR	NR I	NR	NR	NR	NR	70.68	NR	NR	NR	NR	NR	2
3	NR	NR	NR	NR	NR	NR	70.13	NR	NR	NR	NR	NR	3
4	NR	NR	NR	NR	NR	NR	69.88	NR	NR	NR	NR	NR	4
5	NR	NR	NR	NR	NR	NR	69.74	NR	NR	NR	NR	NR	5
6	NR	NR	NR	NR	NR	NR	69.68	NR	NR	NR	NR	NR	6
7	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	7
8	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	8
9	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	9
10	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	10
11	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	11
12	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	12
13	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	13
14	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	14
15	NR	70.27	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	15
16	NR	70.01	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	16
17	NR	69.32E	NR	NR	NR	NR	NR	NR	NR	NR	NR ·	NR	17
18	NR	69.52E	NR	NR	NR	NR	NR	NR	NR	NR	NR :	NR	18
19	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	19
20	NR	71.42	NR	NR	NR	NR NR	NR	NR	NR	NR	NR	NR	20
21	NR	70.88	NR	NR .	NR	NR	NR	NR	NR	NR	NR	NR	21
22	NR	69.84E	NR	70.50	NR	NR	NR	NR	NR	NR	NR	NR	22
23	NR	69.43E	NR	70.31	NR	NR	NR	NR	NR	NR	NR	NR	23
24	NR	69.88E	NR	69.88E	NR	70.23	NR	NR	NR	NR	NR	NR	24
25	NR	69.90	NR	NR	NR	70.09	NR	NR	NR	NR	NR	NR	25
26	NR	69.53E	NR	NR	NR	69.89	NR	NR	NR	NR	NR	NR	26
27	NR	69.44	NR	NR	NR	70.13	NR	NR	NR	NR	NR	NR	27
28	NR	NR	NR	NR	NR	70.07	NR	NR	NR	NR	NR	NR	28
29	NR	NR	NR	NR	NR	69.89	NR	NR	NR	NR	NR	NR	29
30	NR	NR	NR	NR		69.77	NR	NR	NR	NR	NR	NR	30
31	NR		NR	NR		69.65		NR		NR	NR		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-20-64	1130	73.30				Ü					

	LOCATION	N	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD	D DATUM OF GAG			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	OIS CHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF.
CATITODE	LONGITUDE	M. O. S. S. M.	C.F.S.	GAGE HT.	DATE	0.00.000	ONLY	FROM	то	GAGE	OATUM
37 15 36	119 56 42	SE 1 8S 22E	8497E	83.9	2- 1-63	NOV 59-SEP 62	OCT 62-DATE	1959		0.00	usces

Station located 6.0 mi. NW of Raymond on Raymond Road. Elevation of station is approximately 600 ft. USCGS datum. This station was installed in cooperation with Madera County and Chowchilla Water District. It is a flood control warning station, equipped with a Stevens Surface Detector and Telemark. Low flows are not recorded. Prior to 1962, high flow records were insufficient for publication. Discharge measurements and partial flow records are available in DWR files. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 500 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR	STATION NO.	STATION NAME
1964	807575	SAN JOAQUIN RIVER ABOVE SAND SLOUGH

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5		NF NF NF NF	10.93 10.72 10.54 NF										1 2 3 4 5
6 7 8 9		NF NF NF NF	NF NF NF NF									į	6 7 8 9
11 12 13 14 15	N O	NF NF NF NF	NF NF NF NF	N O	N 0	N O	N O	N O	N O	N O	N O	N O	11 12 13 14 15
16 17 18 19 20	F L O W	NF NF NF NF	NF NF NF NF	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	16 17 18 19 2D
21 22 23 24 25		NF NF 10.73 11.59 11.55	NF NF NF NF										21 22 23 24 25
26 27 28 29 3D 31		11.44 11.59 11.57 11.39 11.16	NF NF NF NF NF					Acceptance of the control of the con					26 27 28 29 30 31

CREST STAGES

E - ESTIMATEO

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-27-63	1850	11.65									

٢		LOCATION	I		MAXII	NUM DISCH	IARGE	PERIO	F RECORD	DATUM OF GAGE				
t		ATITUDE LONGITUDE 1/4 SEC. T		C. T. & R.		OF RECORD		DISCHARGE GAGE HEIG		GAGE HEIGHT	PERIO0		ZERO ON	REF.
1	LATITUDE I	LONGITUDE	м. С).8.8.M.	C.F.S.	GAGE HT.	OATE		_	ONLY	FROM	то	GAGE	DATUM
r	37 06 36	120 35 24	NE31	9S 13E	2110	6.55	2/12/62	OCT 61-SEP	62	OCT 62-DATE	1961		0.00	USCGS

Station located 5 mi. NW of Santa Rita Bridge and 5 mi. W of El Nido. Flows sometimes affected by operation of control structures below station. During this period flows are not computed. Partial flow records and discharge measurement are available in the office of the San Joaquin Valley Branch of the Department of Water Resources. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 90 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT (IN FEET)

(WATER YEAR	STATION NO.	STATION NAME
r (1964	807400	SAN JOAQUIN RIVER NEAR STEVINSON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	61.28	60.72	60.87	60.79	60.96	60.82	61.10	61.12	61.82	61.02	60.94	61.18	1
2	61.21	60.69	60.81	60.82	60.96	60.83	61.15	61.10	61.82	60.85	60.95	61.14	2
3	61.13	60.67	60-82	60.96	60.92	60.80	61.14	61.08	61.56	60.92	61.04	61.13	3
4	61.10	60.64	60.84	61.08	60.93	60.77	61.18	61.11	61.19	60.91	61.12	61.09	4
5	61+17	60.66	60.81	61.60	60.85	60.76	61.06	61.16	61.02	60.87	61.10	61.00	5
6	61.17	60.67	60.78	61.63	60.83	60.81	60.96	61.29	61.03	60.83	61.05	60.91	6
7	61.16	60.66	60.84	62.08	60.82	60.81	60.98	51.28	60.98	60.80	60.97	60.93	7
8	61.27	60.66	60.87	61.55	60.70	60.84	61.00	61.17	60.98	60.83	60.85	60.96	8
9	61.37	60.62	60.84	61.21	60.70	60.87	60.95	61.22	61.05	60.87	60.85	60.89	9
10	61.29	60.61	60.84	61.17	60.70	60.91	60.86	61.21	61.25	60.90	60.90	60.85	10
1 11	61.13	60.64	60.81	61.14	60.61	60.90	60.84	61.19	61.59	60.87	60.85	60.83	11
12	61.26	60.77	60.69	61.09	60.61	60.93	60.79	61.31	62.14	60.87	60.84	60.80	12
13	61.32	60.78	60.65	61.26	60.61	60.97	60.86	61.35	62.43	60.93	60.87	60.79	13
14	61.32	60.70	60+65	61.26	60.62	61.02	60.96	61.32	62.07	60.91	60.87	60.76	14
15	61.55	60.74	60.70	61.26	60.94	61.09	60.99	61.20	61.63	61.00	60.88	60.75	15
'3	01.00	00014	00010	01.20	00.0	01007	004//	01.20	01.00	01.00	00,00		''
16	61.58	60.88	60.79	61.17	61.14	61.12	60.95	61.16	61.38	61.02	60.93	60.74	16
17	61.26	60.92	60.78	61.06	60.83	61.10	61.00	61.12	61.24	60.94	60.94	60.73	17
18	61.26	60.95	60.78	60.98	60.85	61.01	61.02	61.11	61.19	60.88	60.91	60.71	18
19	61.36	60.96	60.77	60.94	60.77	61.12	61.06	61.14	61.08	60.90	60.85	60.69	19
20	61.38	61•12	60.86	60.91	60.78	60.99	61+24	61.33	61.00	60.93	60.95	60.70	20
21	61.31	61+20	60.87	60.89	60.78	60.93	61.54	61.53	60.97	60.95	60.96	60.68	21
22	61.31	61.22	60.82	61.38	60.76	60.93	61.20	61.50	61.00	61.01	61.01	60.73	22
23	61.17	61.25	60.77	61.97	60.76	60.94	61.04	61.51	61.11	61.00	61.06	60.79	23
24	61.11	61.21	60.77	62.09	60.76	60.99	61.09	61.63	61.22	60.99	61.07	60.72	24
25	61.11	61 • 17	60.80	62.08	60.73	61.14	61.16	61.75	61.18	60.99	61.11	60.71	25
26	61.17	61.11	60.84	61.89	60.75	61.17	61.18	61.72	61.06	60.97	61.21	60.72	26
27	61.12	61.03	60.82	61.68	60.83	61.11	61.16	61.71	60.98	60.92	61.21	60.73	27
28	61.07	60.98	60.77	61.27	60.85	61.13	61.16	61.70	61.02	60.87	61.14	60.76	28
29	61.03	60.95	60.75	60.94	60.80	61.13	61.14	61.72	61.01	60.90	61.10	60.80	29
30	60.90	60.92	60.77	60.82		61.05	61.11	61.70	61.05	60.95	61.13	60.81	30
31	60.77		60.75	60.90		61.05		61.67		60.93	61.14		31
				1									l ")

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-24-64 6-12-64		62.38 62.48									

ſ		LOCATION	ı			MAXI	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
Ì		. 5116171155	1/4	SEC.	T. B. R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO DN	REF
ļ	LATITUDE	LONGITUDE		M.D.B.	BM.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
	37 17 42	120 51 00	26	78	10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-SEP 61	1961		0.00	USCGS

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME 1964 807375 SAN JOAQUIN RIVER AT FREMONT FORO BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	54.95	54.82	55.33	54.93	55.48	54.88	55.22	55.20	55.75	55.11	54.50	54.97	1
2	54.81	54.83	55.20	54.96	55.49	54.88	55.28	55.12	55.80	55.05	54.55	55.16	2
3	54.73	54.84	55.12	54.97	55.48	54.93	55.36	55.20	55.71	55.01	54.60	55.13	3
4	54.86	54.83	55.07	55.03	55.44	54.94	55.27	55 - 34	55.55	54.95	54.80	55 • 10	4
5	54.92	54.79	55.02	55.21	55.38	54.99	55.21	55.36	55.38	54.87	54.84	55.07	5
6	55.00	NR	54.95	55.36	55.32	55.03	55.14	55.49	55.31	54.81	54.83	54.96	6
7	54.99	NR	54.96	55 • 88	55.28	55.01	55.12	55.52	55.21	54.79	54.78	54.97	7
8	54.86	54.60	55.03	56.04	55.13	54.99	55.06	55.46	55.05	54.74	54.65	54.91	8
9	55.00	54.59	55.05	55.87	55.10	55.09	54.96	55.33	55.26	54.64	54.59	54.84	9
10	54.93	54.52	55.08	55.78	55.10	55.19	54.78	55.37	55.42	NR	54.68	54.67	10
11	54.85	54.54	55 • 15	55.73	55.11	55.16	54.64	55.45	55.77	54.67	54.67	54.68	11
12	54.88	54 - 61	55.24	55.66	55.01	55.22	54.73	55 • 45	56.05	54.71	54.78	54.63	12
13	55.13	54.73	55.31	55 • 64	54.98	55.29	54.85	55.52	56.26	54.68	54.64	54.50	13
14	55.20	54.82	55.33	55.65	54.94	55.33	55.08	55.46	56.16	54.81	54.46	54.54	14
15	54.97	54.82	55.34	55.63	55.01	55.40	55 • 18	55 • 22	55.89	54.84	54.55	54.66	15
16	55.05	54.87	55.30	55.59	55.31	55.47	55.16	55.07	55.62	54.78	54.75	54.62	16
17	54.92	55 • 13	55.23	55.50	55.18	55.44	55.12	55.05	55.41	54.68	54.77	54.53	17
18	NR	55 • 29	55.21	55.42	55.13	55.30	55.12	55.11	55.24	54.58	54.74	54.63	18
19	NR	55.31	55.26	55.39	55.07	55.15	55.21	55.24	55.12	54.45	54.65	54.59	19
2D	54.80	55.32	55.25	55.36	55.03	54.90	55.36	55.42	54.99	54.48	54.47	54.42	2D
21	54.82	55.42	55.20	55.38	55.03	54.79	55.48	55.49	55.05	54.61	54.48	54.46	21
22	NR	55.52	55.06	55.35	55.02	54.71	55.38	55.49	55.02	54.62	54.46	54.44	22
23	54.77	55.57	55.04	55.69	54.98	54.69	55.31	55.51	55.06	54.59	54.66	54.45	23
24	54.73	55.51	55.06	55.74	54.98	54.78	55.28	55.52	55.09	54.66	54.85	54.37	24
25	NR	55.50	55.03	55.93	54.86	54.93	55.40	55.66	55.01	54.64	54.88	54.47	25
26	NR	55.46	55.05	55.77	54.78	54.98	55.43	55.79	54.90	54.66	54.89	54.57	26
27	NR	55.42	55.05	55.70	54.82	54.98	55.34	55.76	54.86	54.72	54.96	54.64	27
28	54.73	55.38	55.00	55.52	54.83	55.09	55.32	55.78	54.91	NR	54.92	54.64	28
29	54.80	55.40	54.98	55.42	54.87	55.22	55.35	55.80	55.05	NR	54.72	54.59	29
30	54.80	55.41	54.97	55.38		55.24	55.27	55.71	55.14	NR	54.75	54.58	30
31	54.80		54.94	55.41		55.20		55.67		54.54	54.83		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
6-13-64	1000	56.33									

	LOCATION	ı	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	ATITUDE LONGITUDE 1/4 SEC. T. & R			OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
LATITUDE	LONGITUDE	M.O.B.&M.	C.F.S.	GAGE HT.	DATE	DIO GIIANOE	ONLY	FROM	TO	GAGE	DATUM
37 18 35	120 55 45		5910	71.14	4- 6-58	MAR 37-DATE		1944 1957	1957 1959	-3.73 -3.77	USCGS USCGS
	'				'	•		1959		0.00	USCGS

Station located 30 ft. below Fremont Ford Bridge, 4.5 mi. W of Stevinson, 6.7 mi. above the Merced River. During periods of high flow, some water bypasses station through Mud Slough. Maximum discharge of record is for period 1944 to date. Records furn. by U.S.G.S. Drainage area is approx. 8,090 sq. mi. Flow records are published in U.S.G.S. report "Surface Water Records of California."

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 805170 MERCED RIVER BELOW SNELLING

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	5.46	5 • 25	5.31	5.25	5.33	5.29	5.44	5.80	5.64	5.83	5.91	5.84	1
2	5.59	5 • 25	5.30	5.24	5.33	5.27	5.42	5.83	5.63	5.81	5.91	5.83	2
3	5.88	5 • 27	5.31	5.24	5.33	5.25	5.42	5.92	5.66	5.83	5.90	5.83	3
4	5.35	5.28	5.31	5.27	5.32	5.26	5.36	5.95	5.65	5.87	5.90	5.76	4
5	5.25	5.33	5.32	5.32	5.31	5.24	5.27	6.02	5.62	5.85	5.89	5.77	5
6	5.15	5.40	5.32	5.33	5.31	5.27	5.24	6.03	5.66	5.84	5.84	5.65	6
7	5.11	5.34	5.31	5.34	5.31	5.29	5.27	6.03	5.69	5.85	5.84	5.67	7
8	5.03	5.31	5.30	5.34	5.35	5.28	5.18	5.91	5.71	5.86	5.82	5.60	8
9	5.00	5.30	5.32	5.32	5.35	5.27	5.20	5.88	5.88	5.85	5.84	5.41	9
10	5.01	5 • 32	5.30	5.34	5.42	5.27	5 • 27	5.84	6.02	5.86	5.86	5.25	10
11	5.22	5.33	5.29	5.34	5.41	5.29	5.45	5.75	5.95	5.91	5.87	5.03	11
12	5.16	5.33	5.26	5.32	5.41	5.36	5.44	5.73	5.93	5.93	5.90	5 . 25	12
13	5.10	5.31	5.26	5.32	5.41	5.33	5 • 40	5.71	5.88	5.94	5.88	5.22	13
14	5.08	5.36	5.25	5.32	5.39	5.31	5.36	5.86	5.77	6.68	5.87	5.03	14
15	5.09	5.48	5.27	5.32	5.34	5.29	5.55	5.85	5.73	5.84	5.89	4.99	15
16	5.12	5 • 38	5.26	5.31	5.37	5.30	5.73	5.77	5.84	5.79	5.88	4.92	16
17	5.17	5.37	5 • 25	5.31	5.34	5.30	5.81	5.76	5.86	5.75	5.93	4.85	17
18	5.18	5.37	5.25	5.33	5.36	5.30	5.72	5.74	5.68	5.71	5.93	4.83	18
19	5.16	5.44	5.27	5.33	5.35	5.30	5.79	5.72	5.75	5.74	5.88	4.81	19
20	5.16	5 • 57	5.27	5.33	5.35	5.28	5 • 86	5.67	5.82	5.71	5.93	4.80	2D
21	5.15	5.48	5.26	5.45	5.34	5.26	5.86	5.68	5.83	5.69	6.05	4.78	21
22	5.13	5 • 42	5.27	5.57	5.33	5.27	5.86	5.73	5.87	5.68	5.88	4.78	22
23	5.16	5.45	5.26	5.54	5.33	5.32	5.91	5.73	5.86	5.76	5.68	4.78	23
24	5.16	5.47	5.26	5.42	5.33	5.36	5.94	5.76	5.83	5.94	5.25	4.76	24
25	5.17	5 • 40	5.28	5.37	5.31	5.36	5 • 86	5.79	5 - 84	5.87	5.58	4.75	25
26	5.16	5.40	5.26	5.37	5.24	5.36	5 • 84	5.83	5.89	5.83	5.71	4.74	26
27	5.18	5.39	5.27	5.35	5.23	5.33	5 • 85	5 . 86	5.88	5.81	5.72	4.74	27
28	5.18	5.33	5.27	5.34	5.25	5.30	5 • 83	5.78	5.83	5.90	5.80	4.74	28
29	5.22	5.31	5.27	5.34	5.27	5.29	5.80	5.75	5.86	5.89	5.78	4.75	29
3D	5.27	5.31	5.26	5.34		5.25	- 5.79	5.65	5.85	5.93	5.79	4.74	30
31	5.20		5.26	5.35		5 • 22		5 • 63		5.94	5.80		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
10- 3-63 7-14-64	0630 1440	6.59 9.35									

	LOCATION	V	MAXII	NUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF.
LATITOOE	LONGITODE	M.O.B.8 M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 58 14E	4910	12.51	5-10-63	NOV 58-DATE		1958		0.00	LOCAL

Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream.

DAILY MEAN GAGE HEIGHT (IN FEET)

	WATER YEAR	STATION NO.	STATION NAME	
Ţ	1964	805155	MERCED RIVER AT CRESSEY	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	10.62	10.55	10.76	10.56	10.60	10.25	10.30	10.30	10.54	10.43	10.51	10.85	1
2	10.62	10.57	10.75	10.57	10.58	10.26	10.30	10.31	10.57	10.42	10.60	10.82	2
3	10.66	10.58	10.74	10.57	10.58	10.29	10.29	10.39	10.48	10.35	10.62	10.89	3
4	10.84	10.59	10.74	10.58	10.57	10.29	10.26	10.45	10.49	10.36	10.64	10.87	4
5	10.80	10.59	10.74	10.58	10.56	10.29	10.24	10.51	10.46	10.42	10.54	10.90	S
6	10.65	10.59	10.74	10.57	10.54	10.32	10.25	10.59	10.43	10.55	10.63	10.87	6
7	10.59	10.65	10.74	10.57	10.53	10.38	10.23	10.70	10.48	10.59	10.64	10.82	7
8	10.52	10.66	10.73	10.58	10.52	10.37	10.21	10.80	10.55	10.55	10.64	10.82	8
9	10.48	10.64	10.72	10.57	10.51	10.34	10.19	10.71	10.62	10.54	10.62	10.85	9
10	10.44	10.63	10.72	10.57	10.52	10.31	10.17	10.69	10.77	10.52	10.67	10.83	10
11.5	10.56	10.63	10.70	10.56	10.51	10.33	10.18	10.66	10.85	10.55	10.63	10.75	11
12	10.64	10.63	10.70	10.56	10.49	10.38	10.19	10.59	10.85	10.44	10.57	10.69	12
13	10.66	10.63	10.69	10.55	10.47	10.39	10.21	10.49	10.78	10.45	10.55	10.65	13
14	10.62	10.65	10.68	10.57	10.46	10.40	10.27	10.41	10.68	10.43	10.73	10.66	14
15	10.58	10.72	10.67	10.58	10.47	10.40	12.27	10.34	10.68	11.56	10.76	10.59	15
16	10.59	10.79	10.65	10.56	10.49	10.37	10.27	10.28	10.60	11.07	10.78	10.62	16
17	10.61	10.79	10.66	10.57	10.48	10.34	10.41	10.26	10.60	10.71	10.82	10.64	17
18	10.63	10.77	10.66	10.58	10.47	10.33	10.47	10.32	10.59	10.61	10.82	10.67	18
19	10.64	10.78	10.64	10.57	10.46	10.34	10.57	10.28	10.55	10.51	10.81	10.71	19
20	10.63	10.84	10.64	10.57	10.46	10.34	10.69	10.22	10.46	10.40	10.87	10.70	2D
21	10.61	10.88	10.64	10.62	10.46	10.32	10.66	10.22	10.39	10.41	10.88	10.63	21
22	10.59	10.88	10.63	10.81	10.45	10.30	10.69	10.30	10.38	10.41	10.95	10.59	22
23	10.59	10.84	10.61	11.73	10.45	10.33	10.67	10.38	10.40	10.44	11.13	10.53	23
24	10.58	10.84	10.61	11.20	10.46	10.35	10.61	10.41	10.43	10.38	11.09	10.58	24
25	10.58	10.84	10.62	10.92	10.40	10.35	10.62	10.41	10.46	10.37	10.06	10.61	25
26	10.57	10.83	10.61	10.78	10.32	10.35	10.60	10.44	10.44	10.46	10.73	10.58	26
27	10.58	10.81	10.62	10.69	10.30	10.36	10.56	10.52	10.37	10.50	10.74	10.54	27
28	10.59	10.80	10.60	10.65	10.28	10.35	10.46	10.51	10.33	10.47	10.87	10.50	28
29	10.58	10.79	10.59	10.62	10.27	10.33	10.35	10.59	10.33	10.43	10.87	10.38	29
30	10.55	10.78	10.58	10.60		10.32	10.34	10.59	10.35	10-40	10.95	10.44	30
31	10.55		10.57	10.61		10.31		10.57		10.43	10.96		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1210	11.92									
1220	12.40									
]	1210	1210 11.92	1210 11.92	1210 11.92	1210 11.92	1210 11.92	1210 11.92	1210 11.92	1210 11.92	1210 11.92

	LOCATION	٧	MAXII	NUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORO			DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF
CATITODE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
37 25 28	120 39 47	SW 9 6S 12E	34400	22.67	12- 4-50	JUL 41-DATE	APR 41-JUL 41	1950		96.24	USCGS

Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream.

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR	STATION NO.	STATION NAME	
1964	B05138	MERCED RIVER NEAR LIVINGSTON	

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	11.58	11.07	11.28	11.13	11.21	10.95	11.00	11.08	11.17	10.98	10.82	11.24	1
2	11.43	11.07	11.25	11.13	11.16	10.90	10.94	11.04	11.22	10.92	11.10	11.09	2
3	11.34	11.08	11.24	11.15	11.18	10.92	10.92	11.09	11.07	10.92	11.06	11.10	3
4	11.32	11.08	11.22	11.15	11.16	10.93	10.89	11.29	10.97	10.88	11.07	11.12	4
5	11.58	11.10	11.21	11.14	11.17	10.90	10.92	11.24	11.09	10.94	11.00	11.12	5
6	11.38	11.10	11.20	11.13	11.16	10.91	11.03	11.48	11.15	11.07	10.92	11.10	6
7	11.29	11.13	11 • 19	11.14	11.14	10.98	10.99	11.43	11.18	11.04	10.90	11.04	7
8	11.27	11.16	11.21	11.14	11.13	11.05	10.90	11.45	11.21	10.96	11.00	11.03	8
9	11.33	11 • 15	11.22	11.14	11.12	10.99	10.88	11.53	11.61	10.96	11.04	11.04	9
10	11.12	11.13	11.22	11.13	11.12	10.97	10.84	11.43	11.54	10.98	11.15	11.02	10
11	11.22	11 • 12	11.22	11.12	11.12	11.00	10.88	11.48	11.46	10.99	11.03	11.02	11
12	11.23	11.13	11.21	11.12	11.14	11.13	10.86	11.22	11.51	11.00	11.23	10.97	12
13	11.25	11.12	11.20	11.12	11.13	11.06	10.86	11.15	11.52	10.95	11.14	10.94	13
14	11.23	11.14	11.19	11.12	11.11	11.02	10.77	11.12	11.39	10.86	10.98	10.92	14
15	11.20	11.18	11.18	11.12	11.10	11.06	10.82	11.05	11.30	11.15	11.19	10.89	15
16	11.21	11.23	11.17	11.13	11.11	11.05	10.90	10.88	11.28	11.99	11.14	10.87	16
17	11.15	11.27	11.19	11.13	11.10	11.05	10.90	11.03	11.30	11.48	11.17	10.86	17
18	11.15	11.25	11.19	11.13	11.10	11.03	11.08	11.08	11.24	11.22	11.18	10.87	18
19	11.16	11.25	11 • 17	11.12	11.10	10.95	11.29	11.01	11.19	11.22	11.14	10.96	19
20	11.14	11.31	11.15	11.12	11.08	10.92	11.35	10.90	11.12	11.16	11.13	10.97	20
21	11.13	11.34	11.15	11.18	11.08	10.91	11.31	10.67	11.17	10.92	11.15	10.94	21
22	11.12	11.37	11.15	11.25	11.07	10.96	11.39	10.99	11.27	10.95	11.17	10.84	22
23	11.12	11.35	11.14	11.91	11.06	10.94	11.54	10.98	10.95	10.93	11.24	10.86	23
24	11.10	11.33	11.14	12.12	11.07	10.98	11.49	11.16	10.84	10.80	11.36	10.84	24
25	11.08	11.34	11.15	11.71	11.02	10.97	11.34	11.07	10.89	10.75	11.24	10.85	25
26	11.08	11.33	11.14	11.50	10.98	10.97	11.78	10.98	10.87	10.95	11.07	10.77	26
27	11.07	11.33	11.14	11.39	10.91	10.97	11.73	11.30	10.87	11.03	10.91	10.73	27
28	11.07	11.31	11.14	11.30	10.86	10.99	11.54	11.26	10.91	10.94	11.01	10.75	28
29	11.06	11.30	11.13	11.26	10.90	11.06	11.10	11.22	10.97	10.82	11.08	10.74	29
30	11.06	11.29	11.13	11.23		10.99	11.16	11.22	11.08	10.79	11.14	10.69	30
31	11.05		11.12	11.21		10.96		11.20		10.71	11.28		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE
E — ESTIMATED	1-23-64	2200	12.43									
NR - NO RECORD	7-16-64	0200	12.41									
NE NO FLOW												

	LOCATION	V	MAXII	MUM DISCH	IARGE	PERIOD	F RECORD		DATUM	OF GAGE	
LATITUDE	TITUDE LONGITUDE 1/4 SEC. T. & R		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD .		ZERO	REF.
CATHODE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 23 18	120 47 35	NW29 6S 11E	11100	21.44	2-12-38	MAR 22-SEP 24 OCT 25-FEB 44	JAN 51-JAN 60 APR 62-DATE		DATE	79.5	USGS

Station located 4.5 mi. W of Livingston and 9.5 mi. upstream from mouth. Early discharge records, 1922-44, available in U.S.G.S. Water Supply Papers. Stage records from 1951-1960 were not published, available from D.W.R., State of California. Station reactivated April 1, 1962 for stage only. Drainage area, 1,259 sq. mi. In order to machine process this station, the recorder datum was changed. To obtain recorder gage heights subtract 10.00 feet from all of the above gage heights.

DAILY MEAN GAGE HEIGHT (IN FEET)

(WATER YEAR	STATION NO.	STATION NAME	
	1964	807300	SAN JOAQUIN RIVER NEAR NEWMAN	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	49.40	49.07	49.79	49.20	49.60	48.98	49.13	49.04	49.27	48 - 82	48.24	48.94	1
2	49.31	49.09	49.64	49.24	49.60	49.02	49.18	48.98	49.31	48.72	48.39	48.97	2
3	49.23	49.09	49.52	49.28	49.59	48.99	49.09	48.98	49.26	48.64	48.42	48.88	3
4	49.23	49.11	49.45	49.30	49.57	48.98	49.01	49.18	49.11	48.58	48 • 43	48.92	4
5	49.32	49.13	49.42	49.39	49.53	48.98	48.97	49.20	49.03	48.58	48 • 45	48.87	5
6	51.02	49.13	49.38	49.64	49.49	48.97	48.97	49.32	49.04	48.64	48.45	48.85	6
7	51.40	49.11	49.36	49.95	49.45	48.97	48.99	49.40	49.03	48.58	48.42	48.83	7
8	49.55	49.16	49.41	50.16	49.38	48.98	48.85	49.36	49.01	48.54	48.31	48.76	8
9	49.44	49.13	49.45	50.12	49.32	49.04	48.77	49.29	49.18	48 • 45	48.28	48.75	9
10	49.37	49.07	49.48	50.05	49.30	49.05	48 • 68	49.32	49.44	48.40	48.33	48.71	10
11	49.26	49.04	49.52	49.98	49.32	49.00	48.52	49.40	49.64	48.40	48.37	48.63	11
12	50.27	49.02	49.54	49.92	49.24	49.19	48.59	49.28	49.74	48.47	48.40	48.52	12
13	51.95	49.05	49.53	49.89	49.22	49.22	48.68	49.20	49.81	48.51	48.43	48.42	13
14	51.99	49.09	49.52	49.89	49.17	49.19	48.73	49.09	49.70	48.44	48.32	48.47	14
15	50.08	49.14	49.52	49.86	49.14	49.26	48 . 85	48.98	49.56	48.48	48.35	48.56	15
16	50.32	49.17	49.49	49.82	49.27	49.29	48 . 80	48.92	49.32	48.58	48.54	48.55	16
17	50.30	49.32	49.44	49.75	49.26	49.27	48.86	48.89	49.27	48.76	48.60	48.45	17
18	50.19	49.43	49.42	49.68	49.16	49.24	48.95	48.95	49.08	48-61	48.53	48.46	18
19	50.18	49.52	49.42	49.66	49.14	49.07	49.02	49.01	49.01	48.49	48.48	48.48	19
20	51.77	49+63	49.38	49.64	49.09	48.87	49.23	49.10	48.89	48.53	48 - 47	48.48	20
21	51.92	49.69	49.35	49.69	49.09	48.80	49.29	49.10	48.89	48.60	48.48	48.60	21
22	50.57	49.79	49.29	49.72	49.09	48.76	49.20	49.10	48.90	48.53	48.45	48.48	22
23	49.94	49.96	49.26	49.88	49.07	48.93	49.24	49.11	48 • 85	48.37	48.58	49.12	23
24	49.47	49.92	49.27	50.18	49.07	48.96	49.28	49.12	48.73	48.37	48.69	49.91	24
25	49.42	49.93	49.25	50.21	49.03	48.95	49.24	49.26	48.66	48.30	48.76	49.97	25
26	49.29	49.89	49.24	50.02	48.98	48.94	49.23	49.39	48.59	48 • 25	48.71	50.02	26
27	49.08	49.87	49.23	49.90	48.96	48.94	49.33	49.31	48.57	48.46	48.64	50.02	27
28	49.04	49.85	49.20	49.78	48.93	49.02	49.28	49.38	48.63	48.41	48.74	50.04	28
29	49.06	49.85	49+19	49.68	48.94	49.12	49.24	49.37	48.73	48.39	48.65	50.07	29
30	49.07	49.85	49.19	49.60		49.13	49.07	49.26	48.88	48.32	48.62	50.10	30
31	49.07		49.19	49.58		49.06		49.20		48.24	48.75		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE
E — ESTIMATED	10-14-63	0900	52.70									
NR - NO RECORD												
NF - NO FLOW												

	LOCATION	V	MAXIMUM DISCHARGE OF RECORD			PERIOD O	DATUM OF GAGE				
		1/4 SEC. T. 8 R.				DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	70	GAGE	DATUM
37 21 02	120 58 34	SW 3 7S 9E	33000	18.50	3- 7-38	APR 12-DATE		1912	1959	- /	USCGS USCGS USCGS

Station located at bridge on Hills Ferry Road, 300 ft. below the Merced River, 3.5 mi. NE of Newman. Records furn. by U.S.G.S. Drainage area is 9,990 sq. mi. Flow records are published in the U.S.G.S. report "Surface Water Records of California".

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 807250 SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	39.05	38.53	39.30	38.69	39.10	38.31	38.63	38.54	38.84	38.34	37.73	38.36	1
2	38.90	38.56	39.18	38.72	39.11	38.41	38 • 80	38.52	38.86	38.25	37.85	38.48	2
3	38.91	38.58	39.05	38.77	39.10	38.40	38.63	38.48	38.78	38.11	37.89	38.43	3
4	38.92	38.63	38.98	38.81	39.08	38.37	38.50	38.70	38.72	38.03	37.88	38.33	4
S	38.96	38.69	38.93	38.86	39.06	38.43	38 • 44	38 • 81	38.58	38.08	37.91	38.32	5
6	39.83	38.67	38.89	39.06	39.02	38.38	38.42	38.79	38.53	38.02	37.87	38.33	6
7	41.39	38.57	38 • 84	39.33	38.96	38.38	38.40	38.90	38.52	37.97	37.95	38.30	7
8	39.75	38.67	38.88	39.60	38.89	38.35	38 • 42	38.92	38.50	37.97	37.88	38.28	8
9	39.14	38.65	38.93	39.65	38.80	38.39	38.27	38.81	38.63	37.90	37.86	38.16	9
10	39.05	38.56	38.96	39.61	38.76	38.44	38 • 16	38.81	38.91	37.84	37.82	38.07	10
11	39.03	38.49	38.99	39.52	38.79	38.37	38.02	38.90	39.23	37.88	37.80	38.03	11
12	39.53	38 • 46	39.03	39.48	38.70	38.46	37.98	38.79	39.33	37.89	37.83	38.08	12
13	40.79	38 • 51	39.02	39.41	38.69	38.71	38.12	38.74	39.32	37.98	37.89	37.90	13
14	42.01	38.55	39.01	39.44	38.62	38.61	38.12	38.64	39.26	37.81	37.87	37.85	14
15	40.24	38.60	39.01	39.38	38.58	38.76	38 • 35	38.44	39.07	37.94	37.79	37.98	15
16	40.01	38.60	38.98	39.35	38.65	38.79	38.28	38.38	38.88	37.90	37.94	38.00	16
17	39.94	38.67	38.94	39.29	38.71	38.74	38.29	38.41	38.75	38.14	38.11	37.92	17
16	39.84	38.83	38.92	39.22	38.60	38.75	38.35	38.57	38.65	38.13	38.08	37.84	18
19	39.66	38.91	38.93	39.16	38.60	38.60	38.50	38.59	38.55	38.01	37.99	37.93	19
2D	40.59	39.07	38.90	39.15	38.53	38.43	38.68	38.64	38.44	38.05	37.94	37.91	20
21	41.70	39.15	38.86	39.21	38.49	38.29	38 . 86	38.68	38.44	38.06	37.92	38.12	21
22	40.43	39.19	38.81	39.25	38.52	38.27	38.86	38.65	38.44	38.08	37.92	38.05	22
23	39.83	39.39	38.76	39.34	38.43	38.49	38 • 72	38.58	38.33	37.86	38.05	38.07	23
24	39.12	39.42	38.76	39.60	38.46	38.69	38.77	38.61	38.24	37.83	38.26	38.93	24
25	38.98	39.40	38.75	39.74	38.46	38.76	38.81	38.70	38.15	37.77	38.26	39.28	25
26	38.88	39.38	38.73	39.61	38.40	38.79	38.72	38.80	38.07	37.72	38.17	39.39	26
27	38.65	39.36	38.72	39.45	38.34	38.81	38.77	38 . 82	37.98	37.93	38.11	39.41	27
28	38.56	39.34	38.70	39.36	38.30	38.69	38.70	38.89	38.04	37.97	38.15	39.46	28
29	38.55	39.32	38.67	39.24	38.28	38.75	38.74	38.91	38.20	37.85	38.19	39.48	29
30	38.55	39.33	38.68	39.16		38.83	38.65	38.80	38.30	37.79	38.09	39.48	3D
31	38.53		38.68	39.10		38.61		38.73		37.86	38.07		31
			1										"

CREST STAGES

E — ESTIMATED

NR — NO RECORD

NF - NO FLOW

DATE	TIME	5TAGE	DATE	TIME	5TAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE
1,0,14,60	1450										
10-14-63	1450	42.20									
1											

LOCATION			MAXII	MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
LATITUOE	, and the	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
	LONGITUDE	M. D. B. & M.	C.F.S. GAGE HT.		DATE		ONLY	FROM	то	GAGE	DATUM
37 26 52	121 00 44	NW 8 6S 9E		61.9	4- 7-58		41-DATE	1959 1959	1959	0.00 0.00 3.51	USED USGS USED

Station located at Crows Landing Road Bridge, 4.3 mi. NE of Crows Landing.

DAILY MEAN GAGE HEIGHT
(IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 B07200 SAN JOAQUIN RIVER AT PATTERSON BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	32.99	32.33	33.02	32.39	32.74	31.78	32.21	31.46	31.99	32.69	32.08	33,20	1
2	32.81	32.32	32.93	32.40	32.74	31.78	32.48	31.46	32.00	33.17	32.18	33.31	2
3	32.77	32.34	32.79	32.45	32.76	31.61	32.31	31.48	32.02	33.03	32.55	33.23	3
4	32.88	32.36	32.72	32.48	32.72	31.50	32.15	31.83	31.91	32.91	32.46	33.09	4
5	32.86	32.42	32.67	32.49	32.69	31.42	32.03	32.05	31.81	33.01	32.54	33.05	5
6	33.25	32.46	32.63	32.60	32.65	31.41	31.95	32.05	31.62	32.93	32.25	33.16	6
7	34.98	32.38	32.59	32.85	32.60	31.57	31.81	32.18	31.61	32.8c	32.28	33.09	7
8	34.14	32.38	32.56	33.16	32.54	31.56	31.72	32.26	31.69	32.74	32.23	33.00	8
9	33.15	32.42	32.61	33.26	32.47	31.64	31.51	32.00	31.94	32.56	32.37	32.85	9
10	33.08	32.35	32.63	33.23	32.41	31.60	31.23	32.01	32.34	32.49	32.33	32.73	10
-11	33.16	32.26	32.66	33.17	32.39	31.43	30.99	32.20	32.63	32.48	32.15	32.60	11
12	33.43	32.24	32.68	33.13	32.33	31.81	30.71	31.95	32.63	32.47	32.22	32.68	12
13	34.35	32.23	32.71	33.09	32.28	32.08	31.01	31.84	32.52	32.54	32.16	32.75	13
14	35.81	32.28	32.73	33.10	32.21	31.96	31.03	31.83	32.60	32.40	32.22	32.62	14
15	34.62	32.35	32.72	33.05	32.17	31.95	31.35	31.49	32.36	32.34	32.18	32.58	15
16	33.85	32.37	32.71	33.00	32.16	31.98	31.29	31.34	32.07	32.46	32.34	32.72	16
17	33.76	32.39	32.69	32.97	32.24	31.85	31.18	31.45	31.78	32.73	32.61	32.69	17
18	33.65	32.51	32.66	32.91	32.17	31.78	31.25	31.78	31.71	32.90	32.69	32.57	18
19	33.44	32.65	32.64	32.88	32.14	31.67	31.83	31.79	31.33	32.81	32.55	32.62	19
20	33.88	32.79	32.64	32.88	32.08	31.43	32.10	31.85	31.32	32.79	32.39	32.66	20
21	35.19	32.84	32.60	32.91	31.97	30.97	32.15	31.93	31.40	32.66	32,31	32.75	21
22	34.49	32.89	32.56	32.97	31.96	31.66	32.14	31.93	31.53	32.60	32.48	32.74	22
23	33.75	33.05	32.50	33.03	31.97	32.15	31.86	31.81	30.83	32.28	32.89	31.90	23
24	33.02	33.12	32.49	33.16	31.93	32.33	31.79	31.92	30.77	32.11	33.17	32,54	24
25	32.83	33.10	32.47	33.34	31.98	32.56	32.08	32.02	30.92	32.14	33.13	32.97	25
26	32.75	33.11	32.44	33.28	31.91	32.50	31.97	31.97	31.00	32.18	32.76	33.03	26
27	32.56	33.08	32.43	33.11	31.81	32.46	31.95	31.98	30.90	32.58	32.73	33.09	27
28	32.41	33.05	32.41	33.00	31.70	32.38	31.77	32.01	30.91	32.56	32.80	33.08	28
29	32.35	33.04	32.38	32.89	31.70	32.34	31.63	32.14	31.51	32.44	32.82	33.03	29
30	32.33	33.03	32.36	32.82		32.48	31.48	32.09	31.35	32.06	32.99	33.07	3D
31	32.33		32.38	32.76		32.22		32.02		32.21	32.94		31

CREST STAGES

E -- ESTIMATED

NR -- NO RECORD

MK - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
10-14-63	1810	36.07									

	LOCATIO	N	MAXI	MUM DISCH	IARGE	PERIOD (F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUOE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	2008	ZERO ON	REF
LATTIONE	LONGITUDE	M. D. B. B. M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
37 29 52	121 04 52	SW15 5S 8E		54.0	6-13-38		APR 38-DATE	1938 1959 1959	1959	0.00 0.00 3.53	USED USCGS USED

Station located at Patterson-Turlock Highway Bridge, 3.1 mi. NE of Patterson

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME 1964 B07080 SAN JOAQUIN RIVER AT GRAYSON

(IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	24.61	24.09	24.65	24.17	24.35	23.45	23.92	23.46	23.83	23.21	22.89	23.67	1
2	24.41	24.02	24.65	24.17	24.30	23.40	24.12	23.47	23.79	23.25	22.83	23.81	2
3	24.28	24.05	24.65	24.22	24.30	23.34	23.97	23.52	23.88	23.28	23.04	23.84	3
4	24.44	24.06	24.85	24.18	24.28	23.37	23.96	23.77	23.79	23.20	23.02	23.69	4
5	24.82	24.12	24.85	24.20	24.28	23.27	23.72	23.85	23.70	23.32	23.05	23.64	5
6	25.12	24.18	24.85	24.28	24.22	23.25	23.73	23.88	23.64	23.33	22.97	23.74	6
7	25.55	24 • 11	24.85	24.49	24.17	23.34	23.59	23.91	23.61	23.14	22.92	23.78	7
6	26.42	24.09	24.85	24.77	24.13	23.31	23.54	23.97	23.62	23.17	22.91	23.61	8
9	25.38	24.13	24.85	24.91	24.05	23.35	23.40	23.87	23.68	23.07	23.01	23.44	9
10	25.18	24.08	24.85	24.84	23.97	23.35	23 • 24	23.75	24.07	22.99	23.02	23.37	10
11	25.30	24.01	24.85	24.79	23.93	23.24	23.18	23.84	24.32	22.96	22.86	23.24	11
12	25.62	23.97	24.71	24.72	23.93	23.40	23.07	23.77	24.37	22.94	22.91	23.31	12
13	26.30	23.97	24.72	24.67	23.88	23.74	23.07	23.63	24.32	22.91	22.87	23.42	13
14	27.43	24.00	24.73	24.65	23.85	23.69	23.07	23.63	24.39	22.89	22.91	23.38	14
15	27.23	24.08	24.68	24.63	23.83	23.59	23.17	23.54	24.32	22.82	22.91	23.25	15
16	27.12	24.12	24.63	24.59	23.77	23.65	23.28	23.37	24.12	22.89	22.94	23.35	16
17	25.87	24.17	24.63	24.56	23.85	23.57	23.26	23.48	23.88	23.07	23.12	23.37	17
16	25.79	24.29	24.62	24.48	23.77	23.52	23.27	23.51	23.80	23.19	23.34	23.31	18
19	25.64	24.43	24.57	24.41	23.72	23.41	23.55	23.65	23.64	23.21	23.25	23.34	19
20	25.72	24.70	24.52	24.40	23.68	23.38	23.80	23.76	23.62	23.19	23.04	23.38	20
21	25.92	24.83	24.48	24.48	23.63	23.15	23.86	23.71	23.69	23.15	23.08	23.40	21
22	27.00	24.83	24.43	24.61	23.57	23.23	23.90	23.75	23.72	23.08	23.02	23.55	22
23	26.29	24.98	24.38	24.68	23.58	23.88	23.81	23.66	23.50	22.95	23.32	23.58	23
24	25.77	25.17	24.37	24.76	23.54	24.06	23.69	23.69	23.27	27.78	23.57	24.06	24
25	25.34	25.15	24.53	24.89	23.55	24.26	23.87	23.81	23.25	22.81	23.55	24.65	25
26	24.86	25.15	24.56	24.88	23.52	24.18	23.84	23.80	23.25	22.88	23.40	24.72	26
27	24.54	25.15	24.61	24.72	23.44	24.11	23.85	23.85	23.20	23.07	23.31	24.85	27
28	24.34	25 • 15	24.33	24.62	23.37	24.14	23.76	23.88	23.15	23.09	23.34	24.80	28
29	24.23	25.20	24.26	24.51	23.35	24.02	23.59	24.19	23.40	23.05	23.27	24.75	29
30	24.22	25.22	24.18	24.40		24.17	23.51	23.97	23.30	22.82	23.47	24.75	30
31	24.22		24.17	24.40		24.02		23.88		22.83	23.50		31

CREST STAGES

	OATE	TIME	STAGE D	DATE	TIME	STAGE	DATE	TIME	STAGE	OATE	TIME	STAGE
E - ESTIMATEO	10- 7-63	2350 2400	26.98 5-1 27.72 7-		0530 1945	24.17 22.63						
NR - NO RECORO	12-27-63	1100	24.65 9-		1300	24.95						
NF - NO FLOW												

	LOCATION	V	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. 7.8 R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PEF	8100	ZERO ON	REF.
LATITUDE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE	O D O TANGE	ONLY	FROM	TO	GAGE	DATUM
37 33 47	121 09 06	NW25 4S 7E	23900	45.15	3- 8-41	JUL 28-DATE		1960 1960	1959	0.00 0.00 3.81	USED USCGS USED

Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME 1964 807070 SAN JOAQUIN RIVER AT WEST STANISLAUS 1. D. INTAKE

(IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	19.96	22.07	24.23	22.54	21.02	16.54	19.05	18.73	18.33	18.14	18.46	19.59	1
2	19.82	22.09	24.23	22.50	20.90	18.53	19.22	18.67	18.15	18.22	18.40	19.67	2
3	19.92	22.23	24.20	22.58	20.82	18.42	18.94	19.04	18.07	18.24	18.57	19.56	3
4	20.19	22.26	23.85	22.18	20.74	18.31	16.84	19.23	17.84	18.15	18.47	19.34	4
5	20.65	22.32	23.68	22.26	20.77	17.63	16.82	19.30	17.97	18.38	18.32	19.19	5
6	21.15	22.40	23.66	22.26	20.74	17.30	18.73	19.38	17.67	18.52	18.12	19.27	6
7	21.94	22.37	23.70	22.34	20.72	18.43	18.38	19.23	17.91	18.20	18.31	19.32	7
8	21.98	22.33	23.66	22.43	20.68	18.36	18.33	19.18	18.45	17.78	18.33	19.20	8
9	21.37	22.36	23.65	22.32	20.63	18.30	18.17	19.02	19.02	17.11	18.59	19.07	9
10	21.26	22.36	23.67	21.83	20,49	18.37	18.83	18.86	19.27	16.80	18.59	18.92	10
11	21.57	22.32	23.50	21.68	20.32	18.32	18.47	18.82	19.33	17.44	18.16	18.95	11
12	22.19	22.30	23 • 44	21.52	20.47	18.58	18.22	18.60	19.37	17.99	18.46	18.96	12
13	22.71	22.35	23.47	21.30	20.45	18.96	18.20	18.33	19.19	17.87	18.36	19.11	13
14	23.31	22.39	23.52	21.26	20.50	18.87	18.20	17.94	19.29	17.36	18.30	19.07	14
15	23.20	22.48	23.31	21.36	20.55	18.87	18.29	17.91	19.08	16.63	18.44	18.86	15
16	22.44	22.56	23.21	21.31	20.43	18.74	18.44	17.56	18.78	17.44	18.74	18.86	16
17	22.38	22.75	23.28	21.27	20.31	18.54	18.48	17.91	18.39	18.33	18.97	18.85	17
18	22.71	22.85	23.28	21.17	20.19	18.67	18.42	18.27	18.20	18.27	18.97	18.87	18
19	22.74	23.01	23.15	21.09	20.23	18.89	18.62	18.51	18.07	18.33	18.96	18.90	19
2D	22.93	23.42	23.01	21.02	19.94	18.93	18.99	18.53	17.24	18.29	18.70	19.07	20
21	23.98	23.59	22.97	21.15	19.74	18.77	18.93	18.75	18.27	18.19	18.64	19.03	21
22	24.50	23.51	22.96	21.32	19.56	19.12	18.84	18.75	18.44	18.12	18.62	19.26	22
23	24.24	23.74	22.90	22.08	19.56	19.52	18.66	18.60	17.99	17.99	18.93	19.55	23
24	23.90	23.91	23.02	22.10	19.42	19.57	18.53	18.51	16.63	17.53	19.16	20.00	24
25	23.64	23.90	23.47	21.65	19.16	19.64	18.77	18.77	17.42	18.05	19.13	20.39	25
26	22.79	23.89	23.54	21.45	19.29	19.52	18.92	18.81	17.99	18.34	18.99	20.44	26
27	22.42	23.94	23.59	21.25	19.28	19.39	19.03	18.73	18.15	18.57	18.91	20.55	27
28	22.16	23.98	22.88	21.05	18.04	19.39	18.95	18.71	18.30	18.34	19.04	20.49	28
29	22.11	24.13	22.67	21.06	17.52	19.21	18.70	18.86	18.46	18.05	19.06	20.30	29
30	22.22	24.17	22.48	21.01		19.14	18.66	18.83	18.47	18.06	19.31	20.36	30
31	22.21		22.39	20.98		18.97		18.60	100.,	18.25	19.45		31
					1		L	L		L			

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
10-22-63	1200	24.54									
12- 1-63	2400	24.25									
		21101									
											,

	LOCATIO	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	COD	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 36 07	121 10 51	SE10 4S 7E					DEC 50-DATE	1959	1959	0.00 0.00 3.67	USED USCGS USED

Station located at intake gates for W.S.I.D. Canal, 2.6 mi. N of Grayson.

· · · · · ·	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	804175	TUDLUMNE RIVER AT LAGRANGE BRIDGE
(IN FEFT)			

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	68.38	70.86	72.23	70.89	69.11	67.48	67.33	67.29	67.02	66.94	66.91	67.05	1
2	68.47	70.94	72.18	70.97	68.92	67.45	67.35	67.28	67.02	66.98	67.19	67.04	2
3	68.52	70.91	71.85	70.31	69.01	67.39	67.36	67.30	67.00	66.97	67.18	67.05	3
4	68.52	70.96	71.84	70.62	69.14	67.38	67.29	67.30	67.02	66.95	67.21	67.04	4
5	68.53	70.97	71.86	70.69	69.12	67.37	67.29	67.26	67.02	67.05	67.22	67.06	5
6	67.53	70.96	71.89	70.69	69.16	67.35	67.28	67.28	67.03	67.05	67.22	67.05	6
7	68.45	70.95	71.83	70.60	69.16	67.37	67.28	67.26	66.96	66.96	67.21	67.06	7
8	68.51	70.96	71.84	69.98	69.14	67.34	67.28	67.20	66.99	66.98	67.21	67.07	8
9	68.51	70.97	71.83	69.54	68.70	67.34	67.29	67.11	67.00	67.04	67.21	67.14	9
10	68.52	70.95	71.64	69.55	68.97	67.35	67.34	67.09	66.97	67.04	67.21	67.24	10
`ii	68.53	70.99	71.67	69.20	69.15	67.34	67.30	67.02	66 • 93	67.02	67.21	67.07	11
12	68.54	71.02	71.66	69.14	69.18	67.37	67.29	67.02	67.12	67.01	67.21	67.03	12
13	67.50	71.03	71.73	69.38	69.41	67.35	67.29	67.04	67.17	66.95	67.21	67.01	13
14	68.45	71.05	71.45	69.38	69.20	67.35	67.29	67.01	67.09	66.94	67.21	67.00	14
15	68.71	71.15	71-47	69.43	69.15	67.34	67.35	67.03	66.96	66.99	67.21	67.05	15
16	69.63	71.38	71.59	69.26	68.77	67.33	67.31	67.05	66.92	67.12	67.25	67.11	16
17	70.09	71.37	71.50	69.27	69.00	67.34	67.30	67.05	67.30	66.97	67.23	67.09	17
18	70.10	71.53	71.39	69.15	68.91	67.37	67.42	67.04	67.04	66.99	67.23	67.02	18
19	70.57	71.72	71.24	69.12	68.49	67.33	67.31	67.23	66.96	66.88	67.22	67.02	19
20	70.82	71.80	71.25	69.04	68.48	67.34	67.29	67.09	66.97	66.86	67.43	67.00	20
21	71.26	71.67	71.21	69.51	68.50	67.34	67.34	67.04	66.95	66.85	67.20	67.00	21
22	71.29	71.85	71.23	69.40	68.49	67.36	67.33	67.01	66.95	66.91	67.12	67.02	22
23	71.27	71.91	71.45	69.22	68.37	67.34	67.30	67.01	67.00	66.93	67.05	67.10	23
24	71.08	71.90	71.83	69.15	68.51	67.35	67.29	67.01	67.08	67.11	67.04	67.15	24
25	70.48	71.87	71.75	69.12	68.71	67.34	67.29	67.01	67.01	67.15	67.30	67.13	25
26	70.51	71.92	71.76	68.94	68.13	67.42	67.29	67.05	66 • 94	66.91	67.10	67.05	26
27	70.30	72.01	70.96	69.03	67.54	67.34	67.29	67.05	66.93	66.86	67.04	67.04	27
28	70.55	72.18	70.94	69.16	67.65	67.40	67.29	67.03	66.93	NF	67.03	67.02	28
29	70.60	72.16	70.82	69.16	67.56	67.34	67.29	67.03	66.93	66.89	67.03	67.03	29
30	70.62	72.22	70.71	69.41		67.32	67.30	67.03	66.93	66.95	67.03	66.98	30
31	70.62		71.05	69.15		67.34		67.03		NF	67.02		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	12-8-63	2020	72.31									
NR - NO RECORD												
NE - NO FLOW									1			

	LOCATION	V	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUOE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	3100	ZERO ON	REE
CATTIONE	LONGITODE	M. O. B. B. M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	ТО	GAGE	DATUM
37 39 59	120 27 40	NW20 35 14E	48200	88.0		OCT 36-SEP 60 OCT 61-DATE		1937		0.00	uses

Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 804165 TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE

(IN FEET)

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	8.89	11.58	13.09	11.73	9.95	8.44	8.40	8.46	8.53	8.65	0.69	8.71	1
2	9.61	11.71	13.11	11.77	9.83	8.40	8.38	8 - 46	8.58	8.65	8.70	8.68	2
3	9.68	11.71	12.72	11.22	9.78	8 • 35	8.36	8.49	8.57	8.64	8.70	8.68	3
4	9.68	11.73	12.68	11.43	9.91	0.31	8.39	8.51	8.60	8.64	8.70	8.70	4
5	9.68	11.76	12.70	11.32	9.90	8.31	8.39	8.51	8.62	8.67	8.70	8.68	5
6	9.36	11.77	12.72	11.31	9.91	8.32	8.37	8.54	8 . 62	8.68	8.71	8.70	6
7	9.14	11.76	12.68	11.22	9.92	8.32	8.34	8.52	8.63	8.68	8.75	8.71	7
8	9.64	11.76	12.68	11.02	9.90	8.30	8.34	8.52	8 . 65	8.67	8.76	8.69	8
9	9.66	11.77	12.68	10.41	9.70	8.29	8 • 34	8.53	8.67	8.67	8.77	8.68	9
10	9.67	11.76	12.43	10.40	9.68	8 • 29	8.35	8.51	8.65	8.67	8.75	8.66	10
11	9.73	11.80	12.42	10.26	9.86	8.28	8 • 36	8.49	0.67	8.65	8.75	8.67	11
12	9.68	11.84	12.44	10.06	9.86	6.33	8.38	8.46	8 • 69	8.65	8.74	8.67	12
13	9.36	11.86	12.53	10.05	9.97	8.34	8.40	8 • 45	8 • 68	8.65	8.72	8.67	13
14	9.15	11.88	12.24	10.24	10.02	8.31	8.40	8.43	8 . 68	8.67	8.76	8.67	14
15	9.71	11.97	12.25	10.23	9.91	8.31	8 • 38	8 • 45	8.69	8.67	8.78	8.64	15
16	10.37	12.23	12.33	10.16	9.66	8.31	8.40	8.46	8.69	8.67	8.79	6.65	16
17	11.03	12.22	12.29	10.12	9.68	8.30	8.40	8.47	8.68	8.66	8.79	8 • 65	17
18	11.03	12.28	12.16	10.10	9.77	8.30	8.41	8.47	8 . 69	8.65	8.77	8.67	18
19	11.28	12.56	12.04	9.99	9.41	8.31	8.48	8 - 46	8.71	8 • 65	8.77	8.68	19
2D	11.60	12.69	12.04	9.95	9.34	8.30	8 • 43	8.47	6.70	8 • 6 9	8.80	8.67	20
21	12.00	12.52	12.06	10.02	9.35	8.30	8.40	8.49	6.70	8.68	8.92	8.65	21
22	12.09	12.73	12.03	10.34	9.34	8.33	8.39	8.52	8 - 65	8,68	8.82	8.65	22
23	12.09	12.78	12-15	10.15	9.26	8.36	8.40	8.54	8 • 65	8.67	8.80	8.64	23
24	12.05	12.77	12.59	10.05	9.23	8.35	8.40	6.53	8.66	8.68	8.78	8.64	24
25	11.36	12.74	12.52	9.98	9.46	8.35	8.39	8.54	8 • 6 4	8 • 69	8.75	8.66	25
26	11.37	12.78	12.65	9.92	9.36	8.35	8.38	8 • 5 4	8+64	8.70	8.73	8.70	26
27	11.18	12.85	11.75	9.78	8.60	8.38	8.39	8 • 5 4	8.65	8.70	6.73	8.69	27
28	11.34	13.05	11.73	9.94	8.48	8.36	8 • 42	8 • 53	8 • 66	8.70	8.73	8.66	28
29	11.42	13.02	11.62	9.97	8.56	8.39	8.39	8.52	8 • 64	8.69	8.72	8.67	29
30	11.41	13.09	11.52	10.03		8.37	8.41	8.52	8 • 65	8.70	8.72	8.65	3D
31	11.43		11.75	10.09		8.36		8.53		8.69	8.73		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-2-63	2030	13.12									

				MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUOE	LATITUDE LONGITUDE	1/4 SEC. T. & R.	OF RECORO		DISCHARGE	GAGE HEIGHT	PER	RIOD	2ERO ON	REF.	
LATITODE	LONGITODE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 38 08	120 37 03	NW35 3S 12E	49800	28.2	12- 8-50	JUL 28-OCT 36 JAN 37-FEB 38 JUN 38-DATE		1930 1940	1940	106.20	USCGS USCGS

Station located at highway bridge, 7.5 mi. E of Waterford. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME 1964 804150 TUOLUMNE RIVER AT HICKMAN BRIDGE

(IN FEET)

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	71.58	74.66	76.14	74.93	73.21	71.80	71.71	71.63	71.36	71.40	71.52	71.24	1
2	72.37	74.80	76.17	74.98	73.08	71.76	71.70	71.66	71.38	71.42	71.53	71.21	2
3	72.52	74.80	75.86	74.48	72.99	71.73	71.69	71.69	71.43	71.43	71.50	71.21	3
4	72.55	74.79	75.80	74.72	73.21	71.70	71.72	71.68	71.42	71.42	71.43	71.25	4
s	72.59	74.82	75.82	74.57	73.21	71.66	71.71	71.67	71.43	71.44	71.45	71.23	5
6	72.50	74.84	75.86	74.53	73.21	71.69	71.69	71.71	71.43	71.46	71.45	71.24	6
7	71.91	74.81	75.85	74.54	73.22	71.68	71.64	71.72	71.43	71.44	71.49	71.27	7
8	72.52	74.82	75.82	74.47	73.21	71.68	71.63	71.70	71.46	71.45	71.52	71.28	8
9	72.59	74.82	75.83	73.72	73.09	71.66	71.64	71.69	71.55	71.46	71.49	71.25	9
10	72.59	74.80	75.60	73.68	72.83	71.64	71.61	71.67	71.48	71.47	71.44	71.27	10
-11	73.04	74.83	75.56	73.58	73.17	71.66	71.62	71.66	71.46	71.46	71.42	71.27	11
12	73.06	74.88	75.60	73.30	73.16	71.66	71.62	71.61	71.47	71.44	71.41	71.29	12
13	72.92	74.89	75.67	73.27	73.28	71.68	71.65	71.59	71.46	71.44	71.42	71.29	13
14	72.10	74.90	75.44	73.54	73.42	71.68	71.64	71.56	71 • 45	71.43	71.44	71.30	14
15	72.69	75.00	75.40	73.50	73.25	71.66	71.60	71.53	71.46	71.47	71.46	71.29	15
16	73.15	75.19	75.48	73.46	73.04	71.66	71.60	71.54	71.49	71.49	71.50	71.28	16
17	74.01	75 • 21	75.43	73.39	72.93	71.66	71.61	71.54	71.50	71.47	71.53	71.28	17
18	74.06	75.23	75 • 34	73.37	73.14	71.64	71.61	71.50	71.50	71.45	71.49	71.28	18
19	74.23	75+57	75.16	73.25	72.75	71.65	71.66	71.48	71.54	71.43	71.45	71.32	19
20	74.66	75.74	75.16	73.22	72.62	71.66	71.66	71.48	71.50	71.48	71.49E	71.33	20
21	74.99	75.58	75.19	73.26	72.60	71.67	71.62	71.50	71.50	71.51	71.49E	71.30	21
22	75.12	75.77	75 - 15	73.72	72.60	71.69	71.60	71.51	71.47	71.47	71.52E	71.29	22
23	75.07	75.85	75.24	73.49	72.54	71.71	71.62	71.51	71.42	71.46	71.55E	71.30	23
24	75.08	75.87	75.75	73.34	72.48	71.70	71.60	71.53	71.39	71.49	71.58E	71.27	24
25	74.48	75.83	75.71	73.26	72.74	71.69	71.61	71.56	71.41	71.47	71.66E	71.29	25
26	74.50	75.86	75.65	73.20	72.80	71.69	71.59	71.56	71.38	71.50	71.19	71.32	26
27	74.32	75.89	74.97	72.99	72.14	71.71	71.59	71.53	71.37	71.53	71.19	71.34	27
28	74.34	76 - 10	74.96	73.21	72.18	71.70	71.59	71.53	71.38	71.52	71.23	71.35	28
29	74.53	76.08	74.78	73.24	72.09	71.68	71.58	71.53	71.39	71.49	71.21	71.34	29
30	74.50	76.14	74 • 69	73.24		71.67	71.60	71.47	71.41	71.50	71.21	71.33	30
31	74.51		74.92	73.41		71.66		71.39		71.54	71.24		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	12-2-63	2100	76.18									
NR - NO RECORD												
												,
NF - NO FLOW												

	LOCATION			MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUOS	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO ON	REF.
LATITUDE	ATITUOE LONGITUDE	M. D. B. & M.	C.F,S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12~ 8-50	JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38 JUL 38-DEC 38 MAR 39-DATE		1932		0.00	USCGS

Station located at Hickman-Waterford Road Bridge, immediately S of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 8D feet, USC & GS datum. In August 1964 this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford Road Bridge.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME
1964 804130 DRY CREEK NEAR MODESTO

(IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	68.40	67.73	67.73	67.64	67.96	67.64	68.38	68.82	68.13	68.13	67.98	68.64	1
2	68.42	67.73	67.73	67.64	67.91	67.67	69.63	68.91	68.21	68.11	68.00	68.57	2
3	68.48	67.73	67.71	67.63	67.84	67.70	68.37	68.94	68.15	67.99	68.07	68.48	3
4	68.55	67.72	67.71	67.64	67.81	67.69	67.99	69.05	68.13	67.90	67.94	68.50	4
5	68.76	67.74	67.71	67.64	67.77	67.78	67.94	68.89	68.10	67.90	67.93	68.28	5
6	68.81	67.78	67.70	67.64	67.74	60.05	67.88	69.01	68.25	68.05	67.93	68.32	6
7	68.72	67.77	67.71	67.64	67.72	68.46	67.89	68.93	68.19	67.98	67.87	68.31	7
8	68.63	67.76	67.71	67.65	67.71	68.45	67.95	68.50	68.21	67.81	67.91	68.39	8
9	68.64	67.77	67.70	67.63	67.73	68.62	68.21	68.27	68.33	67.85	68.07	68.46	9
10	68.79	67.76	67.70	67.64	67.70	68.61	68.18	68.15	68.57	67.86	68.17	68.47	10
11	69.30	67.75	67.70	67.62	67.67	68.45	68.23	68.17	68.26	68.00	68.06	68.52	11
12	70.69	67.74	67.70	67.64	67.64	68.43	68.32	68.15	68.06	67.96	68.00	68.48	12
13	69.56	67.74	67.70	67.64	67.66	68.34	68.30	68.19	68.15	67.93	67.92	68.32	13
14	68.76	67.80	67.70	67.56	67.66	68.12	68.27	68.33	68.13	67.89	67.99	68.42	14
15	68.47	67.96	67.70	67.64	67.69	67.96	68.52	68.21	68.15	67.R9	68.00	68.32	15
16	68.39	67.97	67.69	67.64	67.69	67.76	66.55	68.04	68.30	67.82	67.93	68.41	16
17	68.35	67.97	67.68	67.65	67.70	67.91	68.39	67.98	68.31	67.95	68.12	68.35	17
16	68.19	67.95	67.68	67.65	67.72	67.90	68.51	68.C7	68.35	67.94	68.18	68.33	18
19	68.08	67.96	67.68	67.64	67.71	67.89	68.54	68.09	68.35	67.92	68.07	68.44	19
20	67.96	68.07	67.68	67.73	67.69	67.95	68.76	68.12	68.48	68.03	68.16	68.39	20
21	67.68	68.28	67.66	67.97	67.68	68.11	68.64	68.14	68.40	67.95	68.28	68.35	21
22	67.82	68 - 22	67.66	70.15	67.71	68.45	68.70	66.12	68.30	68.10	68.17	68.41	22
23	67.79	68.00	67.66	74.11	67.69	69.06	68.73	68.16	68.15	67.94	68.21	68.36	23
24	67.79	68.01	67.66	70.57	67.68	68.53	68.79	68.22	68.11	67.94	68.22	68.44	24
25	67.79	68.15	67.67	69.43	67.66	68.21	68 • 82	68.19	68.15	67.97	68.04	68.45	25
26	67.75	67.97	67.67	68.84	67.64	67.97	68.87	68.17	68.07	67.94	67.97	68.44	26
27	67.71	67.86	67.66	68.51	67.60	67.86	68.99	68-15	68.03	67.96	68.10	68.39	27
28	67.72	67.78	67.66	68.32	67.59	67.83	68.72	68.23	67.93	68.09	68.17	68.53	28
29	67.73	67.75	67.65	68.18	67.67	67.82	68.48	68.21	68.02	68.05	68.17	68.65	29
30	67.74	67.74	67.66	68.10		67.75	68.49	68.22	68.96	68.11	68.31	68.67	30
31	67.74		67.66	68.04		67.83		68.20		68.04	68.48		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1.											
1-23-64	0700	75.53									

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	, and the	ONGITUDE 1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.
CATITOOE	LONGITUDE	M.O.B.&M.	C.F.S.	GAGE HT.	DATE	0.00.	ONLY	FROM	TO	GAGE	DATUM
37 39 26	120 55 19	SE24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE		1941		0.00	USCGS

Station located 0.1 mi. below Claus Road bridge, 4 mi. E. of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. Station is operated under a cooperative agreement between the Department of Water Resources and the Modesto Irrigation District.

WATER YEAR STATION NO. STATION NAME 1964 804120 TUOLUMNE RIVER AT MODESTO

DAILY	MEAN	GAGE	HEIGHT
	(IN	FEET)	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	41.32	42.56	43.97	42.73	41.95	41.32	41.34	41.26	41.20	41.20	41.13	41.25	1
2	41.44	42.65	43.99	42.70	41.91	41.28	41.33	41.28	41.20	41.20	41.12	41.23	2
3	41.59	42.68	43.84	42.67	41.84	41.26	41.28	41.31	41.20	41.17	41.14	41.20	3
4	41.64	42.67	43.52	42.50	41.88	41.25	41.27	41.34	41.20	41.19	41.11	41.21	4
5	41.68	42.71	43.48	42.56	41.91	41.23	41.27	41.31	41.20	41.21	41.12	41.20	5
6	41.71	42.71	43.52	42.53	41.91	41.26	41.26	41.34	41.23	41.21	41.12	41.18	6
7	41.54	42.71	43.55	42.54	41.91	41.28	41.22	41.32	41.25	41.19	41.13	41.19	7
8	41.52	42.70	43.50	42.50	41.91	41.29	41.24	41.28	41.25	41.14	41.15	41.20	8
9	41.66	42.71	43.51	42.26	41.91	41.30	41.25	41.23	41.30	41.15	41.16	41.21	9
10	41.67	42.71	43.42	42.12	41.76	41.30	41.23	41.22	41.28	41.15	41.16	41.24	10
11	41.85	42.71	43.24	42.08	41.86	41.29	41.23	41.22	41.24	41.18	41.16	41.27	11
12	42.07	42.73	43.26	41.96	41.90	41.36	41.25	41-20	41.20	41.16	41.13	41.27	12
13	41.97	42.76	43.25	41.92	41.92	41.32	41.26	41.19	41.21	41.15	41.11	41.24	13
14	41.72	42.78	43.26	42.00	42.00	41.28	41.26	41.20	41.21	41.15	41.13	41.25	14
15	41.66	42.84	43.04	42.00	41.95	41.28	41.27	41.20	41.22	41.14	41.14	41.25	15
16	41.80	42.92	43.06	42.02	41.90	41.27	41.27	41.19	41.24	41.14	41.14	41.22	16
17	42.07	43.05	43.17	41.97	41.79	41.25	41.25	41.17	41.26	41.15	41.16	41.20	17
18	42.24	43.05	43.09	41.96	41.87	41.24	41.25	41.18	41.26	41.16	41.17	41.20	18
19	42.25	43.20	42.96	41.92	41.81	41.26	41.26	41.16	41.26	41.17	41.15	41.21	19
20	42.49	43.47	42.91	41.90	41.67	41.25	41.30	41.17	41.27	41.18	41.15	41.23	20
21	42.60	43.40	42.92	41.93	41.66	41.27	41.27	41.19	41.27	41.16	41.18	41.21	21
22	42.82	43.42	42.90	42.17	41.65	41.33	41.26	41.19	41.25	41.20	41.20	41.22	22
23	42.86	43.60	42.89	42.63	41.63	41.39	41.26	41.20	41.22	41.19	41.19	41.23	23
24	42.87	43.63	43.21	42.21	41.58	41.36	41.28	41.21	41.22	41.16	41.18	41.23	24
25	42.73	43.60	43.44	42.05	41.61	41.32	41.27	41.22	41.20	41.17	41.15	41.23	25
26	42.49	43.59	43.49	41.98	41.70	41.29	41.28	41.19	41.19	41.19	41.14	41.25	26
27	42.48	43 • 62	43.16	41.89	41.57	41.28	41.30	41.19	41.20	41.18	41.17	41.24	27
28	42.37	43.76	42.77	41.91	41.33	41.27	41.26	41.22	41.21	41.20	41.17	41.31	28
29	42.47	43.89	42.70	41.94	41.28	41.25	41.24	41.20	41.22	NR	41.17	41.34	29
30	42.53	43.94	42.65	41.94		41.25	41.23	41.20	41.20	NR	41.17	41.34	30
31	42.53		42.65	42.02		41.27		41.21		NR	41.22		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-2-63	2400	44.02									
Į.											

	LOCATIO	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	LATITUDE LONGITUDE		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO	REF.	
LATITUDE	LONGITUDE	M, D, B, B, M,	UISCHARGE	τo	GAGE	DATUM					
37 37 38	120 59 20	SW33 3S 9E	57000	69.19	12- 9-50	JAN 95-DEC 96 MAR 40-DATE	78- 84 91- 94	1940		0.00	USCGS

Station located at U.S. Highway 99 Bridge. Records furn. by U.S.G.S. Flow records are published by the U.S.G.S. report "Surface Water Records of California."

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 804105 TUOLUMNE RIVER AT TUOLUMNE CITY

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	24.09	27.53	29.79	28.00	25.66	23.98	23.73	23.56	23.37	23.32	23.11	23.51	1
2	24.11	27.72	29.80	27.94	25.50	23.93	23.63	23.60	23.30	23.30	23.13	23.47	2
3	24.54	27.86	29.82	26.00	25.36	23.88	23.75	23.63	23.34	23.31	23.10	23.38	3
4	24.76	27.89	29.40	27.39	25.30	23.85	23.71	23.59	23.31	23.30	23.06	23.33	4
5	24.85	27.92	29.32	27.56	25.46	23.81	23.72	23.68	23.33	23.29	23.08	23.39	5
6	24.99	27.95	29.35	27.46	25.46	23.79	23.73	23.71	23.30	23.29	23.02	23.37	6
7	24.85	27.96	29.40	27.56	25.46	23.85	23.67	23.71	23.41	23.30	23.00	23.32	7
8	24.43	27.93	29.35	27.40	25 • 47	23.87	23.64	23.66	23.45	23.25	23.07	23.27	8
9	24.82	27.94	29.34	27.01	25.42	23.86	23.59	23.56	23.54	23.14	23.15	23.30	9
10	24.95	27.95	29.31	26.38	25.24	23.88	23.55	23.49	23.51	23.15	23.12	23.35	10
11	25.34	27.94	29.05	26 • 24	25.17	23.85	23.52	23.46	23.48	23.16	23.11	23.38	11
12	25.94	27.96	29.00	26.00	25.40	23.94	23.55	23.44	23.38	23.16	23.12	23.37	12
13	26.02	26.01	29.00	25.79	25.42	23.94	23.53	23.41	23.36	23.13	23.11	23.42	13
14	25 • 68	28.05	29.07	25.82	25.58	23.80	23.52	23.34	23.40	23.13	23.14	23.35	14
15	25.13	28 • 15	26.76	25.94	25.60	23.81	23.51	23.35	23.38	23.07	23.22	23.42	15
16	25.37	28.23	28.70	25.93	25.47	23.73	23.52	23.36	23.42	23.02	23.28	23.48	16
17	25.82	28.47	28.82	25.86	25.20	23.68	23.51	23.40	23.44	23.02	23.17	23.44	17
18	26.50	28.51	26.72	25.79	25.20	23.58	23.50	23.40	23.43	23.05	23.13	23.48	18
19	26.70	28.67	28.60	25.72	25.28	23.59	23.51	23.39	23.42	23.13	23.13	23.38	19
20	27.10	29.12	26.43	25.63	24.80	23.69	23.54	23.36	23.42	23.14	23.12	23.43	2D
21	27.62	29.23	28.41	25.74	24.79	23.67	23.59	23.34	23.44	23.12	23.17	23.38	21
22	28.20	29.07	28.41	25.00	24.75	23.78	23.58	23.31	23.41	23.09	23.25	23.33	22
23	28.39	29.35	28.38	27.16	24.74	23.89	23.58	23.34	23.37	23.17	23.27	23.34	23
24	28.40	29.42	28.62	26.75	24.64	23.89	23.58	23.35	23.28	23.11	23.24	23.31	24
25	28.30	29.40	29.14	26.02	24.51	23.82	23.53	23 • 35	23.27	23.09	23.20	23.35	25
26	27.53	29.37	29.17	25.78	24.81	23.78	23.52	23.30	23.27	23.12	23.17	23.37	26
27	27.43	29.41	29.14	25.58	24.76	23.75	23.62	23.28	23.30	23.10	23.18	23.38	27
28	27.19	29.47	28.22	25 • 42	24.21	23.73	23.59	23.30	23.30	23.04	23.23	23.35	28
29	27.32	29.70	28.06	25.55	23,99	23.72	23.55	23.31	23.29	22.98	23.20	23.48	29
30	27.47	29.72	27.65	25.57		23.69	23.52	23.36	23.34	23.02	23.24	23.63	3D
31	27.49		27.75	25.62		23.64		23.38		23.06	23.36		31

CREST STAGES

	DATE	TIME	STAGE DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	10-24-63	1700	28.60 1-23-64	1800	27.64	7-30-64	1400	22.99			
	12- 1-63	0800	29.86 2-27-64	0700	24.90			ļ			
NR - NO RECORD	12-27-63	0300	28.50 5- 7-64	0600	23.76						
NF - NO FLOW											

	LOCATIO	N	MAXI	MUM DISCH	HARGE	PERIOD O	F RECORD	DATUM OF GAGE			
ATITURE	ATITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.B.M.	C.F.S,	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
37 36 12	121 07 50	NW 7 45 8E		46.65	12- 9-50	30-DATE		1960 1960	1959	0.00 0.00 3.50	USED USCGS USED

Station located at highway bridge, 3.35 mi. above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Records furn. by City of San Francisco.

TARLE R-5 (Cont.)

TABLE B-5 (Cont.)	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	B07040	SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE
HAT CECTA			

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	15.20	17.36	19.14	17.88	16.56	14.00	14.42	13.91	13.93	13.47	12.97	14.36	1
2	15.11	17.31	19.17	17.89	16.45	14.00	14.53	14.04	13.77	13.47	13.02	14.33	2
3	15.18	17.42	19.16	17.93	16.38	13.87	14.44	14.11	13.77	13.51	13.08	14.28	3
4	15.44	17.45	18.93	17.70	16.29	13.79	14.20	14.25	13.65	13.52	13.14	14.12	4
5	15.76	17.50	18.74	17.65	16.36	13.68	14.19	14.32	13.62	13.53	13.02	13.98	5
6	16.28	17.58	18.68	17.65	16.37	13.66	14.11	14.46	13.55	13.62	12.97	14.06	6
7	16.82	17-58	18.68	17.72	16.34	13.84	13.92	14.35	13.60	13.44	12.88	14.13	7
8	17.15	17.54	18.66	17.80	16.29	13.86	13.92	14.27	13.75	13.30	12.90	14.01	8
9	16.67	17.56	18.66	17.81	16.06	13.88	13.87	14.11	14.16	13.22	13.01	13.92	9
10	16.48	17.56	18.69	17.49	15.88	13.90	13.70	13.99	14.40	13.16	13.14	13.80	10
111	16.72	17.53	18.53	17.16	15.66	13.86	13.67	13.94	14.42	13.14	12.97	13.79	31
12	17.44	17.53	18.44	17.02	15.75	13.97	13.77	13.81	14.43	13.14	12.99	13.83	12
13	17.96	17.54	18.45	16.80	15.75	14.22	13.71	13.69	14.26	13.18	13.03	13.92	13
14	18.42	17.59	18.48	16.72	15.76	14.18	13.65	13.61	14.22	13.03	12.96	13.96	34
15	18.54	17.66	18.38	16.80	15.83	14.09	13.64	13.55	14.20	12.89	13.10	13.80	15
16	17.98	17.72	18.24	16.77	15.72	14.06	13.74	13.53	13.99	12.73	13.24	13.75	16
17	17.77	17.86	18.27	16.72	15.61	13.94	13.75	13.57	13.82	12.97	13.50	13.74	17
18	18.02	17.96	18.27	16.48	15.45	13.96	13.74	13.63	13.67	13.10	13.57	13.80	18
19	18.07	18.10	18.17	16.39	15.48	14.06	13.81	13.80	13.60	13.25	13.59	13.77	19
20	18.02	18.44	18.06	16.32	15.24	14.11	14.08	13.83	13.49	13.26	13.43	13.92	20
21	18.65	18.63	18.16	16.45	15.00	13.98	14.06	13.93	13.52	13.22	13.31	13.95	21
22	19.18	18.58	18.24	16.66	14.90	14.16	14.04	13.91	13.61	13.17	13.38	14.12	22
23	19.07	18.73	18.23	17.44	14.86	14.64	14.04	13.85	13.48	13.20	13.59	14.33	23
24	18.88	18.90	18.28	17.73	14.76	14.77	13.96	13.78	13.30	13.03	13.79	14.66	24
25	18.65	18.91	18.66	17.24	14.63	14.80	14.00	13.96	13.31	12.97	13.79	15.04	25
26	18.09	18.89	18.79	16.97	14.66	14.73	14.13	13.98	13.27	13.12	13.70	15.09	26
27	17.70	18.92	18.88	16.76	14.66	14.63	14.19	13.97	13.32	13.15	13.62	15.25	27
28	17.49	18.93	18.33	16.56	14.33	14.54	14.14	13.89	13.49	13.14	13.74	15.31	28
29	17.34	19.06	18.07	16.55	13.97	14.46	13.98	13.98	13.52	12.95	13.75	15.10	29
30	17.44	19.12	17.91	16.51		14.46	13.90	14.06	13.56	12.81	13.91	15.13	30
31	17.45		17.80	16.52		14.33		13.96		12.75	14.13		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	10-22-63	1950	19.25									
NR - NO RECORD	12- 3-63	1400	19.18									
NR - NO RECORD												
NF - NO FLOW												

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
	ATTITUDE LONGITUDE 1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.	
LATITUDE	ATITUDE LONGITUDE M.D.B.B.M.		C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 38 28	121 13 37	SW29 3S 7E		39.8	12-9-50	JAN 50-MAR 52	SEP 43-DEC 49 APR 52-DATE	1943 1959 1959	1959	0.00 0.00 3.41	USED USCGS USED

Station located at State Highway 132 Bridge, 13 mi. W of Modesto.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 B03175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.85	2.01	2.07	3.60	3.67	1.81	2.15	1.44	1.26	1.24	1.25	1.51	1
2	1.85	2.00	2.29	3.61	3.67	1.75	2.11	1.43	1.25	1.21	1.27	1.47	2
3	1.84	1.99	2.10	3.63	3.66	1.74	1.97	1.46	1.27	1.20	1.30	1.48	3
4	1.85	2.00	2.11	3.64	3.67	1.75	1.95	1.46	1.23	1.22	1.31	1.40	4
5	1.86	2.03	2 • 1 1	3.64	3.68	1.76	1.94	1.40	1.19	1.34	1.36	1.44	5
6	1.64	2.04	2.11	3.67	3.67	1.79	1.95	1.47	1.20	1.29	1.39	1.37	6
7	1.84	2.07	2.10	3.66	3.18	1.82	1.99	1.46	1.27	1.23	1.48	1.32	7
s l	1.87	2.08	2.11	3.66	2.18	1.81	2.05	1.34	1.29	1.23	1.37	1.32	8
9	1.86	2.05	2.13	3.66	2.16	1.81	1.98	1.34	1.34	1.20	1.35	1.33	9
10	1.65	2.06	2.11	3.65	2.11	1.82	1.78	1.32	1.28	1.20	1.34	1.36	10
11	2.03	2.04	2.08	3.64	2.09	1.82	1.75	1.27	1.22	1.24	1.38	1.37	11
12	3.30	2.05	2.05	3.64	2.13	1.80	1.80	1.34	1.21	1.28	1.40	1.36	12
13	3.17	2.05	2.09	3.63	2.09	1.79	1.82	1.27	1.22	1.22	1.42	1.40	13
14	3.09	2.06	2.10	3.61	1.99	1.77	1.69	1.29	1.29	1.20	1.47	1.36	14
15	3.13	2.07	2.03	3.62	1.87	1.77	1.51	1.30	1.26	1.24	1.44	1.35	15
16	3.11	2.12	2.06	3.33	1.84	1.78	1.52	1.26	1.25	1.34	1.41	1.48	16
17	3.12	2 • 05	2.09	2.60	1.62	1.79	1.44	1.28	1.24	1.27	1.42	1.36	17
18	2.13	2 • 11	2.03	3.02	1.81	1.79	1.50	1.23	1.26	1.27	1.47	1.34	18
19	1.84	2.06	2.99	3.01	1.81	1.79	1.50	1.21	1.31	1.24	1.40	1.34	19
20	1.92	2 • 22	3.51	3.01	1.80	1.79	1.45	1.22	1.29	1.28	1.39	1.37	20
21	1.96	2.09	3.51	3.53	1.80	1.80	1.46	1.26	1.30	1.24	1.39	1.37	21
22	2.01	2.17	3.52	4.46	1.79	1.61	1.50	1.26	1.30	1.23	1.41	1.40	22
23	2.04	2 • 14	3.53	3.78	1.80	1.79	1.45	1.28	1.32	1.25	1.46	1.43	23
24	2.03	2 • 18	3.54	3.73	1.60	1.78	1.48	1.25	1.35	1.22	1.47	1.36	24
25	2.01	2 • 12	3 • 5 4	3.71	1.79	1.78	1.49	1.21	1.29	1.27	1.44	1.32	25
26	2.04	2.11	3.55	3.69	1.79	1.78	1.45	1.24	1.25	1.26	1.38	1.38	26
27	2.04	2.05	3.54	3.68	1.77	1.79	1.47	1.35	1.23	1.33	1.43	1.39	27
28	1.98	2.08	3.50	3.67	1.79	1.79	1.53	1.31	1.26	1.30	1.42	1.40	28
29	1.98	2.09	3.58	3.67	1.79	1.81	1.50	1.26	1.22	1.29	1.48	1.43	29
3D	2.02	2.09	3 • 60	3.66		1.81	1.44	1.23	1.26	1.29	1.42	1.38	30
31	2.01		3.50	3.67		1.87		1.23		1.26	1.45		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-22-64	0650	5.28		,							
											,

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
		1/4 SEC. T. 8. R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.
LATITUDE L	LONGITUDE	M, D, 8, 8, M,	C.F.S.	GAGE HT.	DATE		ONLY			GAGE	DATUM
37 47 18	120 45 41	SW 4 2S 11E	52000	30.05	11-21-50	JUN 28-DEC 39 APR 40-DATE				0.00	LOCAL

Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME 803145 1964 STANISLAUS RIVER AT RIVERBANK

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
3	73.43	73.56	73.65	75.94	76.07	73.00	73.50	72.75	72.54	72.43	72.50	72.72	1
2	73.41	73.58	73.68	76.05	76.06	72.99	73.30	72.74	72.57	72.39	72.44	72.70	2
3	73.38	73.55	74.18	76.05	76.06	72.93	73.01	72.74	72.51	72.41	72.49	72.67	3
4	73.41	73.53	73.73	76.04	76.05	72.92	72.93	72.74	72.50	72.41	72.41	72.70	4
5	73.44	73.58	73.74	76.02	76.06	72.97	72.92	72.74	72.47	72.46	72.43	72.66	5
6	73.39	73.62	73.74	76.02	76.05	73.03	72.91	72.76	72.43	72.48	72.44	72.69	6
7	73.43	73.60	73.70	76.03	76.00	73.11	72.94	72.76	72.47	72.46	72.44	72.66	7
8	73.42	73.67	73.71	76.03	74.37	73.10	72.97	72.72	72.52	72.50	72.53	72.59	8
9`	73.45	73.65	73.76	76.03	73.78	73.05	72.99	72.62	72.59	72.45	72.50	72.62	9
10	73.47	73.64	73.84	76.04	73.70	73.08	72.95	72.59	72.59	72.42	72.51	72.57	10
11	73.84	73.64	73.76	76.02	73.59	73.14	72.83	72.57	72.51	72.42	72.49	72.59	11
12	75.25	73.61	73.68	76.02	73.60	73.32	72.83	72.57	72.49	72.49	72.55	72.61	12
13	75.94	73.60	73.64	76.03	73.63	73.00	72.89	72.57	72.47	72.48	72.61	72.63	13
14	75.81	73.61	73.73	76.02	73.45	72.94	72.83	72.56	72.51	72.49	72.63	72.69	14
15	75.80	73.67	73.68	76.02	73.31	72.95	72.70	72.54	72.53	72.46	72.61	72.66	15
16	75.85	73.68	73.56	75.99	73.13	73.03	72.64	72.54	72.54	72.47	72.60	72.63	16
17	75.84	73.72	73.67	74.83	73.09	72.96	72.64	72.57	72.52	72.49	72.63	72.69	17
18	75.23	73.64	73.66	75.11	73.08	72.98	72.65	72.53	72.51	72.48	72.62	72.68	18
19	73.65	73.72	74.09	75.23	73.08	72.95	72.65	72.51	72.50	72.45	72.63	72.64	19
20	73.44	73.90	75.98	75.22	73.07	72.99	72.65	72.50 .	72.45	72.53	72.55	72.64	20
21	73.52	74.04	76.07	75.51	73.06	72.99	72.65	72.49	72.48	72.54	72.55	72.67	21
22	73.59	73.81	76.07	76.85	73.05	73.07	72.64	72.50	72.50	72.43	72.58	72.71	22
23	73.69	73.83	76.07	76.41	73.04	73.29	72.66	72.60	72.41	72.45	72.65	72.75	23
24	73.66	73.90	76.07	76.18	73.00	73.03	72.64	72.58	72.47	72.45	72.65	72.73	24
25	73.61	73.83	76.05	76.14	72.99	73.00	72.63	72.52	72.50	72.41	72.63	72.69	25
26	73.65	73.75	76.04	76.10	72.96	72.97	72.71	72.50	72.39	72.51	72.60	72.70	
27	73.65	73.71	76.06	76.09	72.96	72.94	72.76	72.53	72.33	72.48	72.57	72.68	26 27
28	73.58	73.60	75.94	76.08	72.96	72.96	72.77	72.55	72.45	72.46	72.65	72.71	26
29	73.47	73.67	76.04	76.07	72.99	73.02	72.83	72.49	72.42	72.50	72.67	72.73	28
30	73.56	73.67	76.04	76.07	, 20,77	73.07	72.77	72.51	72.40	72.48	72.68	72.72	30
31	73.57	15001	76.02	76.07		73.06	12011	72.53	120	72.47	72.62		30

CREST STAGES

	DATE	TIME	STAGE	OATE	TIME	STAGE	OATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	1-22-64	1500	77.47									
			,,,,,,,									
NR - NO RECORD	1											
												,
NE - NO FLOW												

	LOCATION	V		MAXII	MAXIMUM DISCHARGE			FRECORD	DATUM OF GAGE			
LATITUOE	LONGITUDE	1/4 SEC. T.	8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	1100	ZERO ON	REF.
LATITUDE	LUNGITUDE	M.O.B.8	M.	C.F.S.	GAGE HT.	OATE	510 011A110E	ONLY	FROM	то	GAGE	OATUM
37 44 31	120 56 21	SW24 2S	9E	85800	103.18	12-23-55	JUL 40-DATE		1940		0.00	USCGS

Station located at Burneyville Bridge, immediately N of Riverbank.

,	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	803125	STANISLAUS RIVER AT RIPON
(IN FFFT)			

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	38.43	38.28	38.38	NR	41.59	37.62	38.05	37.13	37.04	36.73	36.66	37.36	1
2	38.44	38 - 27	38 • 32	MR	41.58	37.63	38.42	37.09	36.94	36.76	36.72	37.28	2
3	38.67	38 - 27	38.59	NR	41.57	37.57	37.95	37.18	36.90	36.74	36.67	37.36	3
4	38.43	38.25	NR NR	NR	41.57	37.54	37.79	37.39	36.86	36.84	36.76	37.16	4
5	38.32	38 • 27	NR	MR	41.58	37.52	37.80	37.35	36.91	36.95	36.67	37.06	5
6	38.24	38.35	NR	NR	41.57	37.59	37.70	37.49	36.86	35.84	36.62	37.07	6
7	38.37	38.34	NR	NR	41.56	37.63	37.55	37.40	36.88	36.88	36.74	37.13	7
8	38.40	38 • 34	NR	NR.	40.72	37.75	37.58	37.33	37.06	36.90	36.80	37.07	8
9	38.38	38 • 38	NR	41.48	39.18	37.76	37.60	37.26	37.37	36.91	36.87	36.98	9
10	38.52	38.34	NR	41.48	38.80	37.64	37.57	37.15	37.39	36.92	36.78	36.96	10
11	39.04	38.34	NR	41.48	38.60	37.67	37.53	37.12	37.44	36.84	36.78	36.94	11
12	39.64	38.33	NR	41.47	38.48	37.80	37.45	37.10	37.19	36.83	36.87	37.01	12
13	40.77	38.30	NR.	41.47	38.46	37.75	37.44	37.08	37.01	36.86	36.70	36.94	13
14	40.87	38.30	NR	41.46	38.41	37.54	37.50	37.00	37.04	36.88	36.71	37.03	14
15	41.00	38.34	NR	41.43	38.24	37.49	37.43	36.96	37.00	36.90	36.81	37.96	15
16	40.96	38.35	NP.	41.44	38.08	37.48	37.36	36.99	36.97	36.81	36.89	37.21	16
17	40.99	38 • 38	NP	40.90	37.94	37.56	37.25	37.06	37.00	36.81	36.91	36.96	17
18	40.85	38 - 35	NR	39.92	37.89	38.05	37.31	37.09	36.92	36.76	36.83	37.01	18
19	39.60	38.38	NP	40.32	37.87	37.76	37.28	37.10	36.92	36.70	36 . R3	37.01	19
20	38.68	38.49	NP	40.33	37.82	37.61	37.30	36.98	36.97	36.70	36 • R2	36.98	20
21	38.46	38.79	NR.	40.47	37.79	37.58	37.26	37.02	36.91	36.76	36.78	37.01	21
22	38.39	38 • 65	NR	41.72	37.76	37.83	37.21	37.00	36.92	36.77	36 . R2	37.06	22
23	38.40	38.56	NR	42.74	37.72	38.29	37.23	37.02	36.89	36.70	36.99	37.07	23
24	38.41	38 • 66	NP.	41.92	37.71	37.82	37.17	37.03	36.85	36.72	36.89	37.12	24
25	38.38	38.66	NR	41.73	37.68	37.60	37.15	37.10	36.86	36.78	36.82	37.07	25
26	38.36	38.52	NR	41.67	37.66	37.58	37.10	37.04	36.82	36.76	36.82	36.96	26
27	38.38	38.44	NR	41.63	37.64	37.58	37.27	36.98	36.79	36.79	36.77	37.09	27
28	38.38	38.35	NR	41.62	37.62	37.53	37.17	37.07	36.88	36.69	36.74	37.09	28
29	38.30	38.31	NR	41.61	37.61	37.57	37.23	37.06	36.95	36.65	36.85	37.02	29
30	38.25	38.33	NR	41.61		37.64	37.19	37.04	36.91	36.66	36.98	37.09	30
31	38.30		NR	41.61		37.65		37.01		36.75	37.05		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	1-23-64	0300	43.24									
NR - NO RECORD												
NF - NO FLOW									, J			

	LOCATION	N	MAXIMUM DISCHARGE			PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF.
LATITUDE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 43 50	121 06 35	SE29 2S 8E	62500	63.25	12-24-55	APR 40-DATE		1940		0.00	USGS

Station located 15 ft. below the Southern Pacific Railroad Bridge, 1.0 mi. SE of Ripon. Records furn. by U.S.G.S. Flow records are published in U.S.G.S. report "Surface Water Records of California."

TABLE B-5 (Cont.)	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	B03115	STANISLAUS RIVER AT KOETITZ RANCH
(IN FEFT)			

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	28.80	28.55	28.61	31.73	32.10	27.81	28.37	27.45	27.32	26.72	26.88	27.63	1
2	28.83	28 • 52	28 • 56	31.78	32.09	27.82	28.79	27.35	27.21	26.75	26.95	27.63	2
3	29.08	28.51	28.67	31.85	32.08	27.77	28.46	27.44	27.35	26.86	26.70	27.69	3
4	28.95	28.51	28.92	31.88	32.07	27.66	28.07	27.66	27.18	27.03	26.84	27.62	4
5	28.79	28.52	28.68	31.89	32.08	27.54	28 • 15	27 • 68	27.21	27.24	27.01	27.41	5
6	28.69	28.58	28.63	31.90	32.08	27.57	28.05	27.89	27.14	27.10	26.93	27.33	6
7	28.83	28.57	28.61	31.89	32.07	27.67	27.77	27.65	27.22	27.10	26.79	27.31	7
8	28.85	28.56	28.60	31.90	31.65	27.85	27.69	27.75	27.33	27.28	26.82	27.25	8
9	28.74	28 - 60	28.61	31.91	30.05	27.94	27.79	27.58	27.84	27.18	27.06	27.22	9
10	28.79	28.58	28.65	31.91	29.46	27.81	27.93	27.52	27.72	27.04	27.44	27.27	10
11	29.62	28.56	28.69	31.91	29.18	27.83	27.89	27.32	27.88	26.83	27.41	27.18	11
12	30.25	28.55	28.63	31.91	28.99	28.00	27.92	27.26	27.67	26.95	27.37	27.05	12
13	31.20	28.53	28.57	31.91	28.92	28.04	27 • 83	27.32	27.40	27.03	27.16	27.01	13
14	31.56	28.54	28.53	31.92	28.87	27.78	27.81	27.23	27.29	27.06	27.10	27.12	14
15	31.65	28.57	28.59	31.90	28.68	27.70	27.79	27.27	27.26	27.12	27.02	27.27	15
16	31.60	28.56	28.54	31.89	28.49	27.66	27.65	27.05	27.24	27.05	27.23	27.32	16
17	31.44	28.59	28.46	31.63	28.34	27.67	27.48	27.08	27.27	27.03	27.06	27.27	17
18	31.30	28.59	28.51	30.46	28.23	28.26	27 • 68	27.35	27.21	26.91	27.09	27.36	18
19	30.34	28.57	28.50	30.73	28.13	28.19	27.69	27.24	27.11	26.98	27.24	27.37	19
20	29.21	28.71	29.28	30.79	28.07	27.99	27.67	27.17	27.19	26.96	27.08	27.33	20
21	28.84	28.94	31.00	30.88	28.03	28.19	27.58	27.21	27.30	27.01	27.14	27.53	21
22	28.70	28.96	31.41	31.52	28.00	28.12	27.52	27.16	27.21	27.00	27.19	27.59	22
23	28.70	28.82	31.56	32.88	27.95	28.71	27.51	27.16	27.14	26.88	27.37	27.55	23
24	28.70	28.89	31.65	32.46	27.92	28.32	27.40	27.26	26.93	26.93	27.38	27.50	24
25	28.66	28.95	31.66	32.21	27.90	28.14	27.41	27.36	26.93	26.92	27.12	27.46	25
26	28.63	28.80	31.66	32.13	27.83	28.06	27.50	27.27	26.98	27.00	27.13	27.58	26
27	28.66	28.68	31.70	32.10	27.76	28.05	27.65	27.32	26.90	26.96	26.96	27.62	27
28	28.66	28.60	31.74	32.08	27.81	27.95	27.58	27.25	26.89	26.80	26.94	27.55	28
29	28.57	28.53	31.67	32.09	27.78	28.03	27.42	27.22	26.93	26.78	27.11	27.26	29
30	28.52	28.56	31.78	32.09		28.01	27.40	27.34	27.05	26.73	27.28	27.30	30
31	28.56		31.81	32.09		28.01		27.38		26.88	27.39		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	1-23-64	1440	33.09									
NR - NO RECORD												
NE - NO FLOW					· · · · · · · · · · · · · · · · · · ·							

	LOCATIO	V	MAXIMUM DISCHARGE			PERIOD (OF RECORD	DATUM OF GAGE			
		1/4 SEC. T. B.R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.8M,	C.F.S.	GAGE HT.	OATE	- CIO GITATIOE	ONLY	FROM	TO	GAGE	DATUM
37 41 57	121 10 08	SW 2 3S 7E				OCT 62-DATE	MAR 50-SEP 62	1950 1951	1951	0.00	USED USCGS
				1		1		1951		3.60	USED

Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon.

TABLE B-5 (Cont.)	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	803105	STANISLAUS RIVER NEAR MOUTH
/IN FEET)			

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	16.31	16.73	17.69	19.12	19.17	15.78	16.13	14.83	14.68	13.89	13.97	15.03	1
2	16.31	16.69	17.73	19.11	19.14	15.62	16.36	14.70	14.44	13.92	14.15	15.12	2
3	16.51	16.72	17.74	19.20	19.15	15.66	16.18	14.89	14.50	13.96	14.01	15.24	3
4	16.57	16.73	17.76	19.17	19.14	15.62	15.52	15.17	14.51	14.04	13.92	15.48	4
5	16.45	16.74	17.62	19.19	19.16	15.20	15 • 49	15.26	14.55	14.29	14.13	15.49	5
6	16.57	16.79	17.50	19.11	19.15	15.45	15.49	15.33	14.46	14.37	14.18	15.55	6
7	16.75	16.80	17.47	19.18	19.13	15.56	15.35	15.11	14.93	14.47	13.98	15.02	7
8	16.85	16.78	17.42	19.19	18.97	15.72	15.11	15.02	14.85	14.35	13.99	14.77	8
9	16.68	16.77	17.41	19.20	18.21	15.77	15.03	14.89	15.50	14.51	14.11	14.62	9
10	16.50	16.79	17-41	19.14	17.46	15.54	15.37	15.32	15.61	14.27	14.38	14.84	10
11	17.25	16.77	17.41	19.12	17.12	15.39	15.43	14.98	15.71	14.08	14.32	14.70	11
12	18.04	16.77	17.35	19.12	16.88	15.59	15.40	14.72	15.52	14.29	14.15	14.35	12
13	18.62	16.76	17.31	19.10	16.78	15.78	15.24	14.67	15.25	14.35	13.94	14.60	13
14	19.15	16.77	17.27	19.09	16.71	15.64	15.23	14.67	15.04	14.23	14.00	14.80	14
15	19.23	16.80	17.26	19.05	16.62	15.48	15.15	14.64	14.73	14.06	14.00	14.85	15
16	19.14	16.83	17.19	19.06	16.54	15.29	15.08	14.58	14.88	14.22	14.57	15.03	16
17	18.95	16.87	17.12	18.91	16.46	15.21	14.96	14.47	14.71	14.31	14.39	14.83	17
18	18.80	16.98	17.12	18.17	16.29	15.35	14.98	14.84	14.64	14.04	13.99	14.78	18
19	18.42	17.03	17-12	18.08	16.11	15.68	15.06	15.04	14.33	14.19	14.28	14.95	19
20	17.58	17.23	17.22	18.19	15.95	15.52	15.07	14.88	14.18	14.17	14.25	15.23	20
21	17.47	17.42	18.36	18.23	15.82	15.77	14.91	14.66	14.19	14.18	14.22	14.97	21
22	17.75	17.55	18.83	18.77	15.74	15.84	14.99	14.63	14.19	14.03	14.45	14.85	22
23	17.70	17.53	18.97	19.88	15.73	16.39	15.05	14.72	14.18	14.05	14.79	14.88	23
24	17.58	17.61	19.07	19.73	15.64	16.37	15 • 19	14.97	14.08	14.04	15.02	15.03	24
25	17.40	17-68	19-20	19.43	15.48	16.17	14.98	14.82	14.02	14.06	14.71	14.95	25
26	17.11	17.69	19.27	19.32	15.40	16.07	14.94	14.66	14.20	14.39	14.38	15.25	26
27	16.89	17.63	19.32	19.24	15.35	16.12	14.89	14.75	14.06	14.13	14.42	15.57	27
28	16.82	17-60	19.21	19.24	15.49	16.04	14.87	14.88	14.09	14.06	14.14	15.29	28
29	16.64	17.64	19.08	19.23	15.59	16.01	14.78	14.82	13.94	14.13	14.20	14.77	29
30	16.58	17.67	19.14	19.20		15.81	14.64	14.69	14.05	13.69	14.73	14.99	30
31	16.63		19.15	19.18		15.86		14.89		13.81	15.01		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	1-23-64	1400	20.21									
NR - NO RECORD												
NF - NO FLOW												

	LOCATION	١	MAXI	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITURE	LONGTURE	1/4 SEC. T.8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE	0.00.	ONLY	FROM	TO	GAGE	DATUM
37 40 33	121 13 18	NE17 3S 7E				SEP 51-DATE		1951 1959	1959	1.11	USCGS USCGS

Station located 1.9 mi. above mouth, 7 miles SW of Ripon. Backwater from San Joaquin River at times affects the stage-discharge relationship. Prior records available at other sites. Drainage area 1,091 sq. mi. Altitude of gage is approx. 25 ft. (from U.S.G.S. topographic map).

TABLE 5-0 (Cont.)	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	807020	SAN JOAQUIN RIVER NEAR VERNALIS
(IN FEET)			

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	NR	13.78	15.38	14.65	13.63	NR	11.01	10.22	10.15	9.62	9.04	10.58	1
2	NR	13.69	15.40	14.68	13.52	NR	11.17	10.29	9.95	9.54	9.17	10.62	2
3	NR	13.81	15.39	14.72	13.47	NR	11.11	10.36	9.91	9.53	9.23	10.55	3
4	NR	13.85	15.27	14.57	13.39	10.10	10.98	10.48	9.86	9.55	9.21	10.51	4
5	NR	13.87	15.05	14.48	13.43	10.10	10.55	10.59	9.82	9.68	9.17	10.41	5
6	12.87	13.95	14.98	14.47	13.44	10.16	10.52	10.71	9.78	9.78	9.17	10.38	6
7	13.27	13.94	14.97	14.50	13.42	10.30	10.31	10.80	9.83	9.67	9.02	10.46	7
8	13.67	13.92	14.94	14.61	13.37	10.39	10.21	10.72	9 • 96	9.48	9.04	10.38	8
9	13.32	13.92	14.95	14.63	NR	10.42	10.19	NR	10.44	9.50	9.13	10.29	9
10	13.07	13.93	14.96	14.28	NR	10.37	10.15	NR	10.88	9.37	9.32	10.15	10
11	13.33	13.92	14.89	14.09	NR	10.28	10.15	NR	10.91	9.38	9.24	10.12	11
12	14.03	13.90	14.78	13.99	NR	10.38	10.18	10.11	10.88	9.33	9.16	10.13	12
13	14.63	13.90	14.78	13.80	NR	10.70	10.11	9.99	10.68	9.40	9.20	10.12	13
14	15.09	13.92	14.79	13.72	NR	10.68	10.00	9.93	10.45	9.22	9.12	10.22	14
15	15.32	13.98	14.73	13.76	NR	10.51	9.93	9.78	10.44	9.08	9.20	10.20	15
16	14.87	14.04	14.59	13.76	NR	10.40	10.06	9.78	10.28	8.98	9.33	10.12	16
17	14.60	14.12	14.58	13.75	NR	10.26	10.01	9.78	10.13	9.13	9.64	10.11	17
18	14.72	14.26	14.62	13.38	NR	10.25	10.00	9.91	9.92	9.23	9.61	10.11	18
19	14.73	14.33	14.54	13.24	NR	10.56	10.03	10.13	9.83	9.38	9.69	10.12	19
20	14.48	14.63	14.43	13.21	NR	10.54	10.37	10+12	9.89	9.41	9.60	10.16	20
21	14.84	14.86	14.72	13.32	NR	10.53	10.44	10.16	9.74	9.31	9.48	10.28	21
22	15.35	14.88	14.91	13.48	NR	10.55	10.41	10.16	9.87	9.28	9.53	10.31	22
23	15.34	14.98	14.94	14.37	NR	11.23	10.43	10.13	9.72	9.32	9.73	10.37	23
24	15.17	15.15	14.98	14.73	NR	11.42	10.46	10.14	9.49	9 • 24	10.01	10.83	24
25	14.96	15.20	15.29	14.22	NR	11.34	10.43	10.25	9 • 45	9.11	10.00	11.20	25
26	14.56	15.20	15.44	13.98	NR	11.28	10.46	10.26	9.41	9.26	9.86	11.34	26
27	14.13	15.18	15.52	13.83	NR	11.21	10.51	10.24	9.46	9.31	9.80	11.52	27
28	13.93	15.20	15.17	13.64	NR	11.09	10.54	10.29	9.61	9.28	9.84	11.71	28
29	13.74	15.30	14.87	13.62	NR	11.01	10.45	10.27	9.59	9.17	9.86	11.34	29
30	13.79	15.33	14.73	13.60		10.97	10.31	10.36	9.68	8.97	10.06	11.36	30
31	13.81		14.64	13.55		10.90		10.26		8.93	10.31		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	10-15-63	1020	15.38	12-27-63	1400	15.58						
NR - NO RECORD	10-22-63 12- 2-63	2400 0430	15.45 15.41		0430	14.88						
NF - NO FLOW								_				

	LOCATION	ı	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	ATITUDE LONGITUDE 1/4 SEC. T. & M.D. 8.8 M			OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.8.8M.	C.F,S,	GAGE HT.	DATE	O O O O I I I I I I I I I I I I I I I I	ONLY	FROM	TO	GAGE	DATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23 JAN 24-FEB 25		1931		8.4	USED
						JUN 25-OCT 28 MAY 29-DATE		1959	1959		USCGS USCGS

Station located 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River, 3.4 mi. NE of Vernalis. Records furn. by U.S.G.S. Drainage area is approx. 14,010 sq. mi.

DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1963 through September 1964

	MILE ANO BANK	NUMBER ANO SIZE				М	ONTHLY	OIVERSI	OA NI NO	RE - FE	ΕT				TOTAL
WATER USER	*	OF PUMP IN INCHES	ост.	NOV.	OEC.	JAN,	FE8	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT. ACRE-FEET
DURHAM FERRY BRIDGE	76.7														
GAGING STATION - SAN JOAQUIN	76.7														
RIVER NEAR VERNALIS Cook Land and Cattle Company	79 00	1 14													
COOK Land and Cattle Company	78.9R	1-14 1-24						164	522	160	383	858	727	285	3099
Cruze, Trudel and Gillmeister	79.4R	1-20					2	136	41	77	79	59	153	44	591
STANISLAUS RIVER	79.7R		1								1				
Faith Ranch	79.8R	1-16	161	3			60	164	147	140	172	245	220	240	1552
W. C. Blewett Estate	80.7L	1-12	172						259	284	251	441	477	181	2065
W. C. Blewett Estate	81.8L	2-12 1-14	540				394	128	970	1230	1110	1980	1850	61	8263
GAGING STATION - SAN JOAQUIN RIVER AT MAZE ROAD BRIOGE	81.85														
Blewett Mutual Water Company	81.95L	1-10 2-12	208				3.	557	869	1280	1170	1210	1330	770	7397
El Solyo Water District	82.0L	1-10 1-16 3-18	125				164	1380	2420	2550	2110	3520	3680	1360	17310
GAGING STATION - SAN JOAQUIN RIVER AT HETCH HETCHY AQUEOUC CROSSING	82.65 T														
El Solyo Ranch	82.91,	1-16	41					105	202	250	77	204	384	282	1545
El Solyo Ranch	83.5L	1-12						28	43	117	64	85	59	35	431
El Solyo Ranch	83.7L	1-12	55					202	248	285	189	264	327	289	1859
Faith Ranch	84.4R	1-16 1-20	514	60			320	422	906	1010	599	904	781	604	6120
TUOLUMNE RIVER	91.CR	1 20													
GAGING STATION - SAN JOAQUIN RIVER AT WEST STANISLAUS IRRIGATION OISTRICT INTAKE CANAL	91.8L											!			
WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	91.8L														
West Stanislaus Irrigation Oistrict	91.8L	1-12 1-24 6-26	1530	151		407	3520	6390	7650	7850	9290	7420	5000	2910	52120
Fred Lara #1	**(0.6S)	1-14						164	6	154	200	288	152	47	1011
Frank Sarmento #1	** (0.7N)	3-16	152					1230	873	697	929	1050	748	507	6186
Frank Sarmento #2	** (1.1N)	1-14	583				74	454	529	374	361	610	363	107	3455
Fred Lara #2	**(2.2S)	1-16 1-16					19	9	30	29	60	12	55		214
Frank Sarmento #3	** (2.3N)	2-16					1	250	103	153	291	364	383	100	1644
J. V. Steenstrup Estate	93.IR	1-12						250	338	634	393	1260	1370	135	a 4130
		1-14											1273	100	
T. C. Daily	94.1L	1-3 I-6	21				37	159	49	131	93	129	75	25	719
Rancho Dos Rios	94.7R	1-12	15	1		1	149	3	174	175	314	419	226	305	1782
E. L. Brazil	95.5R	1-16	15	3		2	94	51	102	139	70	163	221	35	895
Charles Correia	95.8R	1-10								50	19	27	20	12	128
GAGING STATION - SAN JOAQUIN RIVER AT GRAYSON	95.95L														
Island Dairy	96.0L	1-18	107				211	119	318	266	438	519	568	345	2891
LAIRD SLOUGH BRIOGE	96.05														
E. S. 8rush	98.5R	1-7	25						6	44		45	33		153
Rancho El Pescadero	98.9L	1-18	23		1	1	120	22	140	230	216	246	29	73	1101
GAGING STATION - SAN JOAQUIN	104.4L														1
RIVER AT PATTERSON BRIOGE Patterson Water District	104.4L	1-14 2-18 3-20					322	4290	6670	6190	7210	9280	8800	5080	47840
Chase Brothers	104.5R	1-36 1-18	21					303	480	289	375	551	541	470	3030
PATTERSON BRIDGE		1-18	21					303	400	209	373	331	541	470	3030
	104.6							247	244	45.5					
Chase Brothers	106.5R	1-12	10					367	244	453	631	448	517	391	3061
Tony Spinelli	109.1R	1-12					35	35	36	75	44	80	31	80	416
Twin Oaks Irrigation Company	109.8L	1-12 2-16 1-18	39				134	1280	980	2550	2290	2770	2280	1810	a 14130
T. J. Henderson	110.8R	2-8	20				12	120	204	351	307	308	321	300	1943

DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1963 through September 1964

	MILE AND SANK	NUMBER AND SIZE				М	ONTHLY	DIVERSI	ON IN A	CRE - FE	ET				TOTAL
WATER USER	*	OF PUMP IN INCHES	OCT.	NOV.	DEC.	JAN,	FEB.	MAR,	APR,	MAY	JUHE	JULY	AUG.	SEPT.	OCTSEPT. ACRE-FEET
L. A. Thompson	112.55R	1-18						32	331	231	98	33	30		755
Frank C. Mosier	113.4R	1-12	72				79	107	143	143	155	169	167	155	1190
GAGING STATION - SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE	113.4														
Frank C. Mosier	114.63R	b 1-4 1-8						15	47	30	67	70	46	51	326
Manual A. Serpa	114.75R	2-10	43				146	50	257	189	322	410	356	263	2036
ORESTIMBA CREEK	115.2L								ŀ						
Roy F. Crow	115.8L	1-10							47	314	42	250	205	11	B96
L. B. Crow	116.051	1-14	23			24	41	51	86	157	94	205	162	108	951
John W. Greer	116.5R	1-12						101	294	99	156	206	276	190	1322
Stevinson Water District	121.3R	1-1B	12	:			37	121	24 2	262	190	450	322	272	1908
MERCED RIVER SLOUGH	122.2R										i				
GAGING STATION - SAN JOAQUIN RIVER NEAR NEWMAN	123.7														:
MERCED RIVER	123.75R									1					
Stevinson Corporation	129.1R	1-16	19				193	222	212	312	381	195	443	240	2217
GAGING STATION - SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE-	129.5														
VERNALIS TO FREMONT FORD BRIDGE															
Total Average cubic feet per second Monthly use in percent of seaso	nal		4546 74 2.2	218 4 0.1	1 0 0	435 7 0.2	6166 107 3.0	19230 313 9.2	27040 454 13.0	29950 487 14.4	31240 525 15.0	37750 614 18.1	33730 549 16.2	17870 300 8.6	208700 288

Mileage along San Joaquin River from its mouth, 4.5 miles below Antioch.
 West Stanislaus Irrigation District Canal. The intake canal joins the San Joaquin River at mile 91.8L. Distance from the river and the bank is shown in parentheses.

a Includes an undetermined amount of water returned to river by spill.b The 4" unit was installed in 1964.

DIVERSIONS - SAN JOAQUIN RIVER (Fremont ford Bridge to Gravelly Ford) October 1963 through September 1964

	MILE AND SANK	NUMBER ANO SIZE				MC	NTHLY	OIVERSIO	N IN AC	RE - FE	£Τ				TOTAL
WATER USER	*	OF PUMP	DCT.	NOV.	OEC.	JAN.	FE8	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT.
GAGING STATION - SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE	129.5														
GAGING STATION - SAN JOAQUIN RIVER NEAR DOS PALOS	186.0												,		
San Luis Canal Company (a)	186.6L	Gravity	7517	3486	2751	1279	7404	12260	18284	22586	25030	26775	26120	18828	169323
FIREBAUGH BRIDGS	198.4														
GAGING STATION - SAN JOAQUIN RIVER NEAR MENDOTA	206.2														
MENDOTA DAM	208.63														
Central California Irrigation District (a)	208.8L	Gravity	19460	4856	107	5871	28477	50686	66553	75168	75667	90252	83826	43097	đ 544020!
FRESNO SLOUGH	209.0L														
DELTA-MENDOTA CANAL	8 (0.2L)														
Firebaugh Canal Company (a)	8 (0.4L)		835	117	20	0	1722	9956	11748	13440	14231	13765	5946	1203	72983
M. Jenson								NO DIV	ERSION						
M. L. Dudley	8 (3.4L)		0	0	0	0	182	438	373	347	530	S45	454	14	2883
State of California Ö (6 Mendota Waterfowl Management (b)	.45 - 8.20)		4762	1960	446	470	26	54	186	79	2212	2414	2634	3120	18363
Fresno Slough Water District	(a)		0	0	0	0	651	141	569	696	1123	873	661	0	4714
JAMES BYPASS	ö (11.80R)														
Traction Water District (b)	öö (0.75)		192	0	0	34	573	240	611	756	912	1020	1152	1218	6708
Reclamation District (b) 1606	öö (1.50)		0	0	0	0	40	36	54	0	137	123	71	7	468
James Irrigation District (b	88 (4.4)		36	0	0	0	5336	2729	4348	5338	8846	9483	9082	3352	4855
Tranquillity ở (12.0 Irrigation District (b)	00 - 13.75)		210	0	0	28	5361	1722	2164	2045	5395	7018	5353	1327	30623
Melvin D. Hughes (b)	ö (12.20)		0	0	0	0	20	0	0	0	28	14	22	0	84
LONE WILLOW SLOUGH	219.8R														
Columbia Canal Company (a)	219.8R		3050	2523	145	1166	1978	4149	6006	8630	6083	8785	8652	6141	59308
State Center Duck Club (b)		е	173	89	40	0	0	0	0	0	0	0	0	0	302
C. Sawall		f						NO DIV	ERSION						
Mendota Duck Club (b)		g						NO DIV	ERSION						
M. Beck (b)		h	20	2	0	0	0	0	0	0	0	0	0	0	22
Mario Giomi (c)			0	0	0	0	159	52	61	10	32	52	34	0	400
F. A. Yearout			0	0	0	0	54	63	56	52	38	0	85	0	348
Tulle Gun Club		j	34	0	0	0	0	0	0	0	0	0	0	٥	34
Westlands Water District			0	0	0	0	0	0	0	216	1038	1824	1962	488	5528
FREMONT FORD BRIDGE TO GRAVE	LLY FORD														
Total Average cubic feet per secon Monthly use in percent of se			37174 605 3.8	13008 219 1.3	3501 569 0.4	9237 150 1.0	53254 926 5.5	77535 1261 8.0	108821 1829 11.2	127373 2072 13.1	141299 2375 14.6	164221 2671 16.9	154359 2510 15.9	80064 1346 8.3	969846 1336

- 8
- Mileage along San Josquin River from its mouth 4.5 miles below Antioch.
 Plant is located on Fresno Slough which diverts from San Josquin River at mile 209.0L. Distance from San Josquin River and bank is shown in parentheses.
 Plant is located on James Bypass which diverts from Fresno Slough at mile ö (11.80R). Distance from Fresno Slough and bank are shown in parentheses.
 Records furnished by contracting entities.
 Records furnished by U. S. Bureau of Reclamation.
 Formerly listed as J. E. Jennings.

- d Includes Class I water.

 e 1 6" pump located on arm of slough at S.W. corner S. 12, T. 14 S., R. 15 E.

 f 1 8" pump located on arm of slough, 1500' W. of S.E. corner S. 18, T. 14 S., R.16 E.

 g 1 8" pump located on arm of slough at S.W. 1 corner S. 11, T. 14 S., R. 15 E.

 h 1 8" pump located on arm of slough, 1400' S. of N.E. corner S. 24, T. 14 S., R. 15 E.

 j 1 8" pump located on arm of slough adjacent to M. Beck.

DIVERSIONS - SAN JOAQUIN RIVER (Gravelly Ford to Friant Dam) Dctober 1963 through September 1964

	MILE	NUMBER AND SIZE	<u> </u>			м	ONTHLY	DIVERSI	ON IN AC	RE - FE	ET				TOTAL
WATER USER	AND BANK	OF PUMP IN INCHES	ост.	NDV.	DEC.	JAN.	FEB.	MAR.	APR,	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT.
W. A. Kochergen l	233.66R	1-6						8	27		22	31	36		124
Dewey W. Johnson 1	235.33R	1-5 1-10						16	26	42	50	61	81	17	293
SKAGGS BRIDGE	238.18														
U. S. HIGHWAY 99 BRIDGE	247.38														
SANTA FE RAILROAD BRIDGE	249.23														
Miller Brothers	251.46L	1-6	23				8	7	73	. 86	70	92	64	54	477
Sycamore Island Stock Ranch 2	256.52R	1-8							3	50	50	93	50	37	283
Oscar Spano River Ranch 1	257.10L	1-16	33				41	36	112	148	218	257	224	134	1203
Oscar Spano River Ranch 2	257.70L	1-12	10	6			7	30	33	51	43	157	151	162	650
L. D. Cobb	258.08R	1-6 1-7					15	97	21	8	147	176	132		596
STATE HIGHWAY 41 BRIDGE	258.33														
R. J. Curtis	258.39L	1-4 1-7									21	61	41		123
W. E. Roberts 1	258.80L	1-6	4					5	44	16	38	52	42	5	206
W. E. Roberts 2	258.9DL	1-12	29	2	1	1	1	9	44	70	97	99	85	89	5 27
J. E. Cobb	259.39R	2-6	1				39	4	19	5	51	79	79	16	293
DLD LANES BRIDGE	259.78														
J. E. Cobb 3	260.40R	1-6	34	1				39	72	105	121	126	122	69	689
R. C. Arnold	261.53R	1-4 1-5	5				16	35	46	67	87	142	146	62	606
Duane M. Folsom	261.70L	1-6	20					38	55	99	117	161	144	90	724
E. G. Rank, Jr.	262.32L	1-5	12				11	17	13	56	45	63	50	36	303
Dale McCoon 1	262.60R	1~5						25	98		32	153	134	30	472
W. H. Rohde	262.66L	1-7						46	1	6	36	86	60	12	247
Dale McCoon 2	263.40R	1-7						5	80	16	27	171	141	27	467
Dale McCoon 3	263.48R	1-6	5					29	20	17	23	126	74		294
H. K. Jensen	263.76R	1-5	31				37	15	54	67	96	91	78	58	527
H. W. Ball 4	264.08L	1~6									36	103	110	80	329
Ike D. Ball	264.60R	1-6	34				29	57	94	114	108	111	109	96	752
W. F. Ball	264.83L	1-4 1-5	12	1			10	9	25	50	61	67	69	53	357
Virgil Durando	267.56L	1~8	3	1	11		10	45	52	57	180	204	210	118	891
GAGING STATION - SAN JOAQUIN RIVER BELDW FRIANT	268.13L														
FRIANT BRIDGE	268.88														
COTTONWOOD CREEK	269.53R														
FRIANT DAM	269.63														
GRAVELLY FORD TO FRIANT DAM															
Total Average cubic feet per second Monthly use in percent of seaso	nal		252 4.1 2.2	0.2 0.1	12 0.2 0.1	1 0 D	224 3.9 2.0	567 9.2 5.1	968 16 8.6	1114 18 9.9	1738 29 15.5	2710 44 24.1	2390 39 21.3	1240 21 11.0	11230 15

^{*} Mileage along San Joaquin River from its mouth $4\frac{1}{2}$ miles below Antioch.

DIVERSIONS - MERCED RIVER October 1963 through September 1964

	MILE	NUMBER AND SIZE				м	ONTHLY	DIVERSI	ON IN AC	RE - FE	ET				TOTAL
WATER USER	AND BANK ABOVE MOUTH	OF PUMP IN INCHES	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR,	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT
WYLIG GODDY ODYDGO											-	100			ACRE-FEE
HILLS FERRY BRIDGE Stevinson Water District #1	1.1 1.8R	1-16	43	116			11	307	231	222	252	255	493	277	2212
Stevinson Water District #2	3.8R	1-18	141	110	3	4	77	462	557	227 580	257 718	255 868	699	273 450	2213 4559
Milton Gordon	4.3L	1-10	3	1	,	2	4	3	27	55	53	1	29	37	
GAGING STATION - MERCED RIVER NEAR STEVINSON	4.6	1 10		_			,	J	. 21	25	23	64	29	37	278
Maria DeAngelis	5.8L	1-12	10				42		32	43	62	80	96	49	414
Stevinson Water District	6.1L	1-20	114	3	11	4	279	404	466	464	548	606	553	332	3784
Stevinson Water District #3	7.7L	1-20					154	551	943	106	222	1150	937	551	4614
Manuel Clemintino	8.5L	1-12	18				22	16	34	25	32	62	74		283
Manuel Clemintino	8.9L	1-12	11					66	55	26	48	50	44	42	342
Samuel 8. McCullagh	9.4L	1-8	14		2					130	8	135	82	6	377
Mrs. J. R. Jacinto	9.6L	1-12	14	42			30	103	100	105	122	145	66	40	767
Mrs. J. B. Silva, E. and J. Gallo Winery Ranch, L. Alves and A. Mattos	10.35L	1-10	21	6	S	3	9	115	131	173	177	304	108	110	1162
Manual Freitas	10.9L	1-12	35			}		57	82	68	119	106	130	44	641
R. E. Prusso and John Vierra	10.9L	1-8 1-12	13	4				63	84	50	106	128	103	99	650
E. and J. Gallo Winery Ranch	11.6L	1-18						158	319	29	340	342	269		1457
MILLIKEN BRIDGE	11.65														
E. and J. Gallo Winery Ranch	12.35L	1-10						19	38	6	61	87	17		228
Anthony L. Calderia	12.5R	1-12	7					21	38	55	16	48	64	43	292
E. and J. Gallo Winery Ranch	12.85L	1-12						67	109	17	177	250	42		662
J. M. Souza	14.5L	1-10	32						55	65	64	66	97	55	434
GAGING STATION - MERCED RIVER NEAR LIVINGSTON	16.49L														
E. and J. Gallo Winery Ranch	16.5L	1-14							136	124	63	234	97		654
J. E. Gallo	20.4L	1-8						130	182	32	178	224	8		754
U. S. HIGHWAY 99 BRIDGE	21.04														
SOUTHERN PACIFIC RAILROAD BRIDGE	21.05														
Gallo Cattle Company	22.2R	1-8 1-16	38	1	1	5	72	241	244	135	248	438	310	204	1937
Gallo Cattle Company	22.8R	1-12 1-15					57	128	183	90	169	325	198	38	1188
Merced River Farms Association	26.3R	1-8							67	71	50	78	71	31	368
SANTA FE RAILROAD BRIDGE	27.05														
W. C. Magneson	27.5R	1-10	31						31	48	14	57	35	50	266
GAGING STATION - MERCED RIVER AT CRESSEY	27.55														
CRESSEY BRIDGE	27.55														
Manuel Silva	29.9R	1-6 1-10							13	71	67	91	61		303
Manuel Silva	30.95R	1-12							62	67	90	138	89	78	524
Rancho Con Valor	31.1L	1-8	31						22	119	54	122	76	67	491
Manuel Silva	31.4R	1-10							91	237	118	261	210	145	1062
P. Hilarides	32.3L	1-12							4	44		3	52	27	130
SHAFFER BRIDGE	32.5														
Harry F. Schmidt and Son	33.1R	1-10							3	138	18	57	107	3	326
Walter Bettencourt	34.5L	1-12						NO I	IVERS I	N					
W. F. Bettencourt, F. Hilarides, and Cowel Lime and Cement Company	36.9L	Gravity	648	752	597	713	25	35	521	887	956	1330	1080	566	8110
Amsterdam Orchards Incorporated	39.1L	1-14				1	75	116	90	32		24	16		354
Ratzlaff Brothers	4D.2L	a 1-2 1-4						10	23	18	44	56	58	23	232
COX FERRY BRIDGE	42.1														
Cowel Ditch	45.3R	Gravity	511	654	582	819	787	827	2410	3620	3390	3720	3410	1620	22350
GAGING STATION - MERCED RIVER BELOW SNELLING	46.2														
MERCED RIVER											-				
Total Average cubic feét per second Monthly use in percent of season	al		1735 28 2.8	1579 27 2.5	1201 20 1.9	1551 25 2.5	1644 29 2.7	3899 63 6.3	7383 124 11.9	7957 129 12.8	8589 144 13.8	11900 194 19.1	9781 159 15.7	4983 84 8.0	6221D 86

a The 2" unit was installed in 1964.

DIVERSIONS - TUOLUMNE RIVER October 1963 through September 1964

		NUMBER				ugh Sept									TOTAL
	MILE AND BANK	NUMBER ANO SIZE OF PUMP				M+	ONTHLY	OIVERSIO	ON IN AC	RE - FE	ET				OIVERSION OCTSEPT.
WATER USER	ABOVE MOUTH	IN INCHES	OCT.	NOV.	OEC.	JAN.	FEB	MAR,	APR.	MAY	JUNE	JULY	AUG.	SEPT.	ACRE-FEET
E. T. Mape	1.3R	a 2-14	73			55	429	560	366	810	806	1120	1110	386	5715
J. V. Steenstrup Estate	1.9L	2-12					19	96	176	161	63	258	347	13	1153
J. V. Steenstrup Estate	2.9L	1-10 1-12		1			28	445	224	94	318	337	343	108	1898
GAGING STATION - TUOLUMNE RIVER AT TUOLUMNE CITY (SHILOH BRIDGE)	3.35														
Bancroft Fruit Farms	5.0R	1-10	10					21	44	47	58	57	42	37	316
Della Battestin	5.9L	b 1-16						391	869	356	603	948	1199	744	5110
Western Farms	6.3L	1-16	1					35	108	11	71	114	69	22	431
Eugene Boone, Galen Hartwich, and Dr. Harold Willis	7.1R	1-10	7				10	4	118	4	34	51	95	72	1 395
Beth Wootten	8.4R	1-10					23	10	32	51	5	20	43	27	211
Ella T. Rahilly Estate	8.5L	1-10	16				,		25	20	12	29	61	8	171
A. C. Watkins Estate	9.4L	1-20	7		2		5	90	593	523	168	561	406	40	2395
McClure Ranches	9.7R	1-12	16				20	4	23		23	3	13		102
Homer Couchman (c)	10.2R	1-14					17	3	107	78	123	107	120	129	684
CARPENTER ROAD BRIDGE	12.9														
SEVENTH STREET BRIDGE	15.75														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.8														
U. S. HIGHWAY 99 BRIDGE	16.05														
GAGING STATION - TUOLUMNE RIVER AT MODESTO	16.05														
DRY CREEK	16.5R			}								i			
EAST MODESTO BRIDGE	19.3	1													
Jack Gardella	20.3R	1-10	19					4	23	19	51	19	51	56	242
SANTA FE RAILROAD BRIDGE	21.6														
SANTA FE ROAD BRIDGE	21.65		1		1										
Mrs. A. L. Leib	22.8R	1-3 1-6						6	25	7	26	27	28	13	132
GEER AVENUE BRIDGE	26.0														
Michel Investment Company	2B.BR	1-B	10				1	24	35	22	79	54	100	50	375
J. W. and Lola Mae Short	29.8L	1-10	17				2	108	60	56	34	72	63	8	d 420
Firpo Ranch	30.2L	1-10			1		9	15	55	59	30	54	39	28	290
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	31.5														
GAGING STATION - TUOLUMNE RIVER AT HICKMAN BRIDGE	31.7														
Iva M. Ketcham (e)	39.4R	1-8	18					39	62	116	96	159	134	111	735
Westley N. Sawyer	39.8L	1-8	7					13	64	90	90	95	97	54	510
GAGING STATION - TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE	39.9														
Westley N. Sawyer	40.8L	1-14	24					26	75	80	82	97	106	54	544
Curtner Zanker	45.7L	1-10	1	1		1	1	1	90	58	5 5	51	36	33	328
Dolling Brothers	46.3R	1-8	20					15	57	68	55	90	103	80	488
STATE HIGHWAY 132 BRIDGE	47.4														
GAGING STATION - TUOLUMNE RIVER AT LA GRANGE BRIDGE	50.5														
TUOLUMNE RIVER				T)											
Total Average cubic feet per second Monthly use in percent of seas	onal		246 4 1.1	2 0 0	3 0 0	56 1 0.2	564 10 2.5	1910 31 8.4	3231 54 14.3	2730 44 12.1	2902 49 12.8	4323 70 19.1	4605 75 20.3	2073 35 9.2	22640 31

a One 14" unit was installed in 1964.
b Replaces a 14" unit.
c Formerly listed as Raymond Boone.
d Includes an undetermined amount of water returned to river by spill.
e Formerly listed as A. E. Ketcham Estate.

OIVERSIONS - ORY CREEK October 1963 through September 1964

	MILE AND BANK	NUMBER AND SIZE				М	ONTHLY	OIVERSIC	N IN AC	RE - FE	ET				TOTAL DIVERSION
WATER USER	ABOVE MOUTH	OF PUMP IN INCHES	ост.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT ACRE-FEE
MODESTO-EMPIRE TRACTION COMPANY RAILROAD BRIGGE	0.7														
STATE HIGHWAY 132 BRIDGE (YOSEMITE BOULEVARD)	0.8														
LA LOMA BRIDGE	1.2														
EL VISTA AVENUE BRIDGE	2.9														i
GAGING STATION - DRY CREEK NEAR MODESTO	5.3R														
CLAUS ROAD BRIDGE	5.4														
SANTA FE RAILROAD BRIDGE	6.4														
CHURCH STREET BRIDGE	7.2														
WELLSFORD ROAD BRIDGE	8.7														
ALBERS ROAD BRIOGE	11.0														
MODESTO IRRIGATION DISTRICT CANAL CROSSING	11.1										i				
Edward Johnson	12.6R	1-6	7						7	12	2	19	37	26	110
Edward Johnson	12.7R	1-6	22						28	17	39	46	64	24	240
Joe Fagundes	14.7R	1-10	22	2	4	7	61	78	108	91	120	144	166	106	909
OAKDALE-WATERFORD HIGHWAY BRIOGE	17.4														
DRY_CREEK															
Total Average cubic feet per second Monthly use in percent of sea	sonal		51 1 4.0	2 0 0.2	4 0 0.3	7 0 0.6	61 1 4.8	78 1 6.2	143 2 11.4	120 2 9.5	161 3 12.8	209 3 16.6	267 4 21.2	156 3 12.4	1259

OIVERSIONS - STANISLAUS RIVER October 1963 through September 1964

	MILE ANO BANK	NUMBER ANO SIZE				м	ONTHLY	OIVER51	OA NI NO	RE - FE	EΤ				TOTAL
WATER USER	ABOVE MOUTH	OF PUMP	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR,	MAY	JUNE	JULY	AUG.	SEPT,	OCT SEPT.
GAGING STATION - STANISLAUS RIVER NEAR MOUTH	1.9R														
Cook Land and Cattle Company and C. M. Carroll	1.9R	1-16							13	20	9	9	10	57	118
C. C. Angyal	2.4R	1-18	63				1	198	146	153	309	318	239	125	1551
Faith Ranch	3.4L	2-12 1-16	408				299	290	443	673	566	660	618	506	4463
Reclamation District 2064	4.0R	1-14 1-16 2-20	223				344	689	2630	2040	2340	3080	2670	2050	16070
Reclamation District 2075	4.05R	2-16 1-20	483		31	42	739	976	2160	2280	2270	2580	2550	1890	16000
D. F. Koetitz	4.7L	1-14					39	49	3 24	356	206	288	331	312	1905
E. T. Mape	4.75L	1-20					131	212			110	269	117		839
Henry Pelucca	5.5L	1-16	18					53	55	52	156	149	167	91	741
Alice Gill	6.4L	1-12								370	312	298	453	265	a 1698
D. J. Macedo	8.4R	1-16	123				58	213	263	403	203	539	589	498	2889
N. E. Cannon	8.7R	1-10	19					271	281	2 66	321	459	430	163	2210
GAGING STATION - STANISLAUS RIVER AT KOETITZ RANCH	9.35L														
D. F. Koetitz	9.4L	1-12			i '		51	181	369	2 58	253	622	420	342	2496
John L. Hertle	9.8L	1-10	6					40	36	41	40	39	56	34	292
Nelson Santos	10.0R	1-16	18			i			102	94	20	55	81	33	403
Nelson Santos	10.5R	1-16	2 5						263	122	63	127	180	68	848
John L. Hertle	10.7L	1-10	7					17	9	9	10	15	17	5	89
GAGING STATION - STANISLAUS RIVER AT RIPON SOUTHERN PACIFIC RAILROAD	15.7L 15.7														
BRIDGE															
U. S. HIGHWAY 99 BRIDGE	15.7														
A. Girardi	17.7L	1-16				2	1		219	126	92	249	182	115	a 986
E. J. Freethy	19.0R	1-14					29		130	134	123	200	236	88	940
Libby, McNeill, and Libby	20.9R	1-14						250	150	55	264	300	268	164	1451
Heath Ranch	21.2L	1-6	71					7	8	50	61	53	74	91	415
Mark Rumble	23.4L	1-8									3	3	7		13
MODESTO-ESCALON HIGHWAY 8RIDGE	29.6														
F. K. Floden	29.9L	1-10						NO I	DIVERSI	ON					
SANTA FE RAILROAD BRIDGE	33.4														
GAGING STATION - STANISLAUS RIVER AT RIVERBANK	33.6														
Oakdale Irrigation District (Crawford pump) (b)	37.7L	1-14	17					86	144	115	164	112	260	6	a 904
Oakdale Irrigation District (Brady pump) (b)	39.1L	1-12	46					81	94	130	145	157	191	54	a 898
OAKDALE-STOCKTON HIGHWAY BRIDGE	41.2														
SOUTHERN PACIFIC RAILROAD 8RIDGE (OAKDALE BRANCH)	41.2														
GAGING STATION - STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE	47.0														
STANISLAUS RIVER															
Total Average cubic feet per second Monthly use in percent of seaso	onal		1527 25 2.6		31 1 0.1	44 1 0-1	1691 29 2.9	3613 59 6.2	7839 132 13.5	7747 126 13.3	8040 135 13.8	10580 172 18.2	10150 165 17.4	6957 117 11.9	58 220 80

a Includes an undetermined amount of water returned to river by apill.
 b Oakdale Irrigation District for season of 1964 maintained plants at miles 27.7L and 39.1L to supplement district gravity supply.

DIVERSIONS - TULE RIVER October 1963 through September 1964

	MILE ANO BANK	NUMBER AND SIZE				М	ONTHLY	DIVERSI	DN IN AC	RE - FE	ETa				TOTAL
WATER USER	*	DF PUMP IN INCHES	DCT.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT
SUCCESS DAM	0.0														
GAGING STATION - TULE RIVER BELOW SUCCESS DAM	0.35														
Campbell Moreland Ditch	2.4L	Gravity	832	156	176	944	71	20	55	1485	740	697	888	1412	7476
PORTER SLOUGH	2.4R								ì						l
GAGING STATION - PORTER SLOUGH AT PORTERVILLE (B LANE BRIDGE)	** (2.4)														
PIONEER SPILL	** (3.7R)													1	
Porter Slough Ditch	**(4.5R)	Gravity	155	191							417	531	292		1586
GAGING STATION - PORTER SLOUGH NEAR PORTERVILLE (NEWCOMB ROAD)	** (6.1)							,							
Vandalia Ditch (b)	3.1L	Gravity	165					ļ		209	143	132	211	44	904
SANTA FE RAILROAD BRIDGE	5.1														
Poplar Ditch	5.8L	Gravity	123	1460	943	1253	337	21		365	3050	5815	2422	121	15910
STATE HIGHWAY 190 BRIDGE	5.9														
SOUTHERN PACIFIC RAILROAD BRIDGE	6.0														
Hubbs-Miner Ditch (c)	6.4R	Gravity	171	153				181	106	236	419	728	427	160	2581
STATE HIGHWAY 65 BRIDGE	6.6														
Rhodes-Fine Ditch (c)	8.4L	Gravity							87	942	374		5		1408
OLIVE AVENUE BRIDGE	9.9									İ					
FRIANT KERN CANAL CROSSING	10.5														
Woods-Central Ditch (c)	11.0L	Gravity			647	559		3							1209
GAGING STATION - TULE RIVER BELOW PORTERVILLE	11.8														,
OTTLE BRIDGE	14.4														
TULE RIVER															
Total Average cubic feet per second Monthly use in percent of seaso	onal		1446 24 4.7	1960 33 6.3	1766 29 5.7	2756 45 8.9	408 7 1.3	225 4 0.7	248 4 0.8	3237 53 10.4	5143 86 16.5	7903 129 25.4	4245 69 13.7	1737 29 5.6	31070 42

Mileage downstream from Success Dam.
Figure in parenthesis indicates distance along Porter Slough from Tule River.
Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.
The greater portion of this water was used to recharge Vandalia Irrigation District well field.
During periods of no record, the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods.

	T						OIVERSI	ON						ACREAGE I	RRIGATEO
WATER USER	ост.	NOV.	OEC.	JAN	FE8	MAR.	APR.	мау	JUNE	JULY	AUG.	SEPT.	TOTAL	GENERAL	RICE
Friant-Kern Canal	T			San Jo	aquin R	iver									
Total acro-feet diverted Average cubic feet per second Monthly use in percent of sessonal	93329 1568 11.4	23222 390 2.8	1557 25 .2	0 0 0	92337 1605 11.3	75012 1220 9.2	32460 546 4.0	36786 598 4.5	112026 1883 13.7	155538 2530 19.0	145948 2374 17.9	49348 829 6.0	817563 1126		
Madera Canal															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	9965 167 4.5	492 83 .2	0 0	0 0	0 0 0	28154 458 12.8	0 0	5133 83 2.3	47560 799 21.5	72890 1185 33.0	49264 801 22.3	7281 122 3.3	220739 304		
Merced Irrigation District				Merc	ed Rive	-									
Main Canal Northside Canal	2755 494	0 117	0 123	0 188	0 125	0 135	75680 3074	83610 3687	84134 3731	104660 4737	73586 3521	0 5 2 0	a 424645 20452	ъ 111826	5297
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	3249 53 .7	117 2 0	123 2 0	188 3 0	125 2 0	135 2 0	78754 1324 17.7	87297 1420 19.6	87865 1477 19.8	109617 1783 24.7	77107 1254 17.4	520 9 .1	445097 615		
Turlock Igrigation District				Tuolu	mne Riv	e <u>r</u>									
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	34187 556 6.6	18960 319 3.6	1595 26 .3	1459 24 .3	9540 166 1.8	40982 666 7.9	73190 1230 14.0	59006 960 11.3	73071 1228 14.0	80648 1312 15.4	1258		c 522414 722	d 173043	0
Modesto Irrigation Oistrict	1														
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	20049 326 7.9	45 1 0	43 1 0	304 5	90 2 0	26607 433 10.5	34828 585 13.7	37342 607 14.7	40791 686 16.1	40163 653 15.8	534	352	e 254068 351	f 74161	450
Waterford Irrigation District															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	2049 33 6.7	0 0 0	0 0	0 0	0 0	2060 34 6.8	4189 70 13.8	5206 85 17.1	5568 94 18.3	5241 85 17.3	3917 64 12.9	2164 36 7.1	g 30394 42	h 6819	0
Oakdale Irrigation District	1			Stanis	laus Ri	ver				1					
Northside Canal Southside Canal	6811 10201	0	0	0	0	7458 13745	15848 22975	16572 23758	16044 24499	16535 26302		12899 20852	109101 169324	i 33381 j 33869	3290 416
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	17012 277 6.1	0 0	0 0	0 0	0 0	21203 345 7.6	38823 652 13.9	40330 656 14.5	40543 681 14.6	42837 697 15.4	714	33751 567 12.1	278425 385	k 67250	k 3706
South San Joaquin Irrigation District															
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	8284 135 3.0	0	0 0	0	6812 123 2.5	17109 278 6.1	48558 816 17.4	44205 719 15.9	36513 614 13.1	40096 652 14.4			278427 385	m 62832	0

- Data for Madera and Friant-Kern Canals furnished by \mathbf{U}_{\star} S. Sureau of Reclamation, all other data furnished by individual irrigation
- Reclamation, all other data turnished by summer districts. An additional 118,352 acre-feet of water was pumped from wells. An additional 118,352 acre-feet of this acreage, 3,341 was double cropped. It does not include an undetermined amount of riparian water users acreage. An additional 178,064 acre-feet of water was pumped from wells. Of this acreage, 19,909 was double cropped. An additional 91,060 acre-feet of water was pumped from wells. Of this acreage, 8,971 was double cropped.

- g An additional 7,569 acre-feet of water was pumped from wells.
 h Of this acreage, 110 was double cropped.
 i Of this acreage, 275 was double cropped.
 j Of this acreage, 486 was double cropped.
 k This acreage also received 13,435 acre-feet of water from wells and controlled drainage.
 This acreage also received an undetermined amount of well water, and an undetermined amount of controlled drainage water from Oakdale Irrigation District. Of this acreage, 3,198 was double cropped. Includes 1,446 acrea served by subirrigation.

TABLE 8-8 IMPORTS AND EXPORTS
October 1963 through September 1964

WATER USER	OCT.	NOV.	OEC.	JAN.	FE8	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL
					Im	ports f	com Del	ļ ķā					
Delta-Mendota Canal													
Total acre-feet Average cubic feet per second Monthly use in percent of seasonal	120464 1959 7.4	475		504	1508	2079	2932		3586		247272 4021 15.2	2240	
					Export	from '	<u>Fuolumne</u>	e River					
City and County of San Francisco													
Total acre-feet Average cubic feet per second Monthly use in percent of seasonal	10255 167 6.5			200	243		258		261	16185 263 10.2	16236 264 10.2	264	219

	MILE POST FR	DM			1	MONTHLY	OELIVE	RIES IN	ACRE-FE	ET				Γ
WATER USER	CANAL HEAD FROM TO	ост.	NOV.	OEC.	JAN.	FE8.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL
		_	_		_		+				1	1		
0	2.54	2201					elta-Mer							
State of California (South Bay Aqueduct)	3.54	2301	487	382	1277	1040	1315	621	2808	2986	2754	2348	2537	20856
Plain View Water Oistrict	8.50 20.	615	33	6	7	424	1492	25 23	2802	2317	3677	3 523	1739	19158
West Side Irrigation Oistrict	14.78	0	0	0	0	0	0	219	286	0	999	578	2	2084
Banta-Carbona Irrigation Oistrict	20.42	0	0	0	0	0	0	962	1476	776	3752	5707	1317	13990
Hospital Water District	18.05 30.	96 544	53	116	30	683	2762	3513	3838	4234	4696	4580	2617	2 7666
West Stanislaus Irrigation Oistrict	31.31	0	0	0	0	0	1322	8703	3210	4022	11895	10578	3349	43079
Kern Canon Water District	31.31 35.3	18 372	4	0	1	130	826	1699	772	812	1548	1275	598	8037
Oel Puerto Water Oistrict	35.73 42.0	228	22	22	95	507	1865	1828	1028	2002	2105	1884	863	12449
Patterson Water District	42.51	249	0	28	30	0	993	684	646	922	501	1021	587	5661
Salado Water Oistrict	42.10 46.8	33 14	0	0	0	0	662	2371	1280	1380	2125	1573	800	10205
Sunflower Water Oistrict	44.23 52.0	108	99	0	0	253	1185	2335	1456	1647	2750	2105	546	12484
Orestimba Water District	46.83 51.4	110	0	2	0	226	819	3344	1179	1462	2770	1537	371	11820
Foothill Water Oistrict	51.65 57.4	342	0	0	1	412	848	1169	1677	1584	2016	1757	1178	10984
Davis Water Oistrict	53.60 56.8	206	1	0	0	214	71	539	360	385	758	435	206	3175
Luhr and Wendt		6	1	0	0	0	0	0	0	0	0	0	0	7
Mustang Water Oistrict	56.80 62.6	136	0	0	0	209	882	921	1655	1029	2055	1791	792	9470
Quinto Water District	63.96 67.5	5 252	0	0	0	409	865	940	732	752	1107	1064	768	6889
Romero Water Oistrict	66.70 68.0	104	33	0	0	101	420	138	168	41	119	178	105	1407
San Luis Water District	69.21 90.5	1683	1578	2407	3802	6866	9354	6625	8260	11101	12958	9993	4148	78775
Grasslands Water Oistrict	70.00	9633	4773	0	0	0	0	472	1097	922	1094	244	2501	20736
Grasslands Water District (a)	Poo1	22501	7311	0	0	0	0	0	0	0	0	0	6819	36631
Morrison-Knudsen		13	3	1	1	1	5	6	5	2	7	5	1	50
State Fish and Game	70.00	0	0	0	0	0	0	0	0	0	0	0	0	0
Sam Hamburg Farms	90.53	2	1	1	1	1	2	2	3	2	4	0	3	22
Panoche Water District	93.25 96.7	0 1462	1062	1650	4760	10198	7492	4587	6699	9220	13151	10912	1508	72701
Eagle Field Water District	93.27 94.5	7 191	0	318	352	719	233	724	620	467	815	1167	572	6178
Oro Loma Water Oistrict	95.50 96.6	2 0	0	0	0	0	52	595	1113	942	1141	1028	212	5083
Westside Golf Association	95.95	11	3	5	2	6	8	14	19	21	26	20	14	149
McNamara-Mannix		62	41	26	34	50	74	67	0	157	51	101	98	761
Mercy Springs Water Oistrict	97.70 99.8	2 302	7	128	0	38	447	107	1164	1185	1115	1081	297	5871
Mercy Springs (a)	Pool	0	0	0	0	0	0	0	0	0	0	0	0	0
Widren Water District	102.03	0	0	0	0	79	0	170	542	363	427	396	0	1977
Broadview Water District	102.95	291	433	158	1507	2952	2276	1642	1499	2752	3102	2276	55	18943
McNamara Corp. of California		0	0	0	0	0	0	0	0	0	13	33	14	60
San Luis Water District (Temp. M & I)		0	0	0	0	0	0	0	9	25	27	39	19	119
Western Contracting Corp.		0	0	0	0	0	0	0	0	0	0	0	63	63
Total		41738	15945	5250	11900	2 5518	36270	47520	46403	53510	79558	69229	34699	467540
Net Deliveries, DMC to Mendota Pool		66062	19946	0	17449	59516	86206	119855	130885	144565	168974	161806	90470	1065734
							Millert	1						
Fresno County Water Oistrict #18		5	2	2	1	3	3	7	12	19	23	18	12	107
Ralston Associates		1	0	0	1	1	۵	1	2	4	2	1	1	14
Total		6	2	2	2	4	3	8	14	23	25	19	13	121
							Madera	Canal						
Madera Irrigation Oistrict	6.10 32.2	9965	492	0	0	0	16378	0	5133	30018	43151	20325	0	125462
Adobe Ranch	20.6	0	0	0	0	0	0	0	0	О	0	43	89	132
Chowchilla Water District	35.9	0	0	0	0	0	11776	0	0	17542	29739	28896	7192	95145
				0									_	

TABLE 8-9 (Cont.)

DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS* October 1963 through September 1964

	MILE POS		MONTANI DIDIVENTED IN NORD-1201												
WATER USER	FROM	TO	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL
								riant-K	orn Can						
Garfield Water District	7.	.53	110	122	168	0	<u>£</u> 278	46	200	430	512	547	488	298	3199
International Water District	14.		61	58	0	0	0	21	0	103	151	210	84	27	715
Round Mountain Water District	20.85	21.33	15	0	0	0	0	0	0	0	0	0	0	0	15
Round Mountain Ranch	20.		4	0	0	0	4	0	6	0	5	11	7	4	41
Consolidated Irrigation District	28.		10084	1674	0	0	1533	0	0	0	0	0	0	0	13291
Last Chance Water Ditch Company	28.		, 0	0	a	0	0	0	0	0	0	0	0	0	0
Laguna Irrigation District	28.		. 0	0	0	0	0	0	0	0	0	0	0	0	0
Corcoran Irrigation District	28.	.50	3618	0	0	0	4701	0	0	0	0	0	0	0	8319
Stratford Irrigation District	28.	.50	О	0	0	0	О	0	0	0	0	0	0	О	o
Tulare Lake Basin Water Storage District	28.50 8	95.64	0	0	0.	0	0	0	0	0	0	0	0	0	0
Alta Irrigation District	28.	.50	0	0	0	0	0	0	О	0	0	0	0	0	0
Fresno Irrigation District	28.	.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Riverdale Irrigation District	28.	.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Kings River Water Association	28.	.50	9001	0	0	0	0	0	0	0	0	0	0	0	9001
Westside Irrigation District	28.	.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Kings County Water District	28.50	71.29	1855	145	0	0	3273	0	0	0	0	0	0	0	5273
Orange Cove Irrigation District	35.87	53.31	1063	474	0	0	0	2140	1571	3400	5847	7436	7266	3667	3 2864
City of Orange Cove	43.	.44	14	4	0	0	1	21	25	37	44	45	38	22	251
Stone Corral Irrigation District	56.90	64.40	238	131	0	0	353	393	101	694	1382	1870	1910	881	7953
Ivanhoe Irrigation District	65.04	68.13	1339	547	0	0	0	373	212	621	968	2475	2694	1607	10836
Tulare Irrigation District	68.14	71.29	13307	0	0	О	16927	0	0	0	15755	27581	21918	0	95488
Lakeside Irrigation Water District	69.	.42	0	0	0	0	0	0	0	0	0	0	0	0	0
Kaweah-Delta Water Conservation District	69.08	71.29	10249	0	0	0	0	0	0	0	0	0	. 0	0	10249
Exeter Irrigation District	72.52	79.24	938	422	0	0	1938	944	996	2053	2491	2803	3 2 0 5	1827	17617
Lindsay-Strathmora Irrigation District	85,		1396	686	0	0	984	770	1454	3047	4312	5066	5125	4017	b 26857
Lindmore Irrigation District	86.17	91.12	1628	563	0	0	3414	2039	2267	3170	5954	7611	7569	5125	39340
Porterville Irrigation District	93.93	98.62	916	321	0	0	1065	1845	1267	1384	2577	3983	4263	1863	19484
Lower Tule Irrigation District	95.67	98.62	20008	7549	0	0	18960	12984	0	0	18587	32270	33777	7561	151696
Tea Pot Dome	99.		194	34	0	0	133	147	329	458	682	783	815	603	4178
Saucelito Irrigation District	98.62		1623	375	0	0	3408	4848	1632	1045	4044	4949	5772	2061	29757
Cloer Commercial Service District	101.		0	0	0	0	0	0	.0	0	0	0	0	0	0
Terra Bella Irrigation District	102.		662	91	0	0	298	452	1004	1525	2317	2761	2755	1853	13718
Pixley Irrigation District Delano-Earlimart Irrigation District	102.		4510 5272	2372 4873	179	0	6016 16406	19920	9416	7801	20551	22211	18671	7156	12898 132456
Rag Gulch Water District	117.	96	377	262	0	0	946	0	0	0	0	0	0	0	1585
Southern San Joaquin Municipal Utility Diatrict	117.44		3683	1422	32	0	B188	19849	8674	7222	16967	21586	20150	7178	114951
Shafter-Wasco Irrigation District	134.42	137.17	1164	692	301	0	3511	8220	3306	3796	8880	11340	9441	3598	54249
Pacific Gas and Electric Company	150.		0	405	877	0	0	0	0	0	0	0	0	0	1282
Rosedale Rio Bravo Water Storage District	151.		0	0	0	0	0	0	0	0	0	0	0	0	0
Buena Viata Water Storage District	151.	.80	0	0	0	0	0	0	0	0	0	0	0	0	0
Total			93329	23222	1557	0	92337	75012	32460	36786	11 2026	155538	145 94 8	49348	817563

^{*} Data furnished by the U.S. Bureau of Reclamation.
a Delta-Mendota Canal water delivered via Delta-Mendota Pool.
b Includes water transported from Wutchumna Ditch.

APPENDIX C
GROUND WATER MEASUREMENTS

TABLE OF CONTENTS

	<u>Page</u>
INTRODU	CTION
De	finitions
Ex	planation of Headings and Symbols Used in Columns in Appendix C
	LIST OF TABLES
Table <u>Number</u>	
C-1	Ground Water Levels at Wells
	LIST OF PLATES
	(Bound at end of volume)
Plate Number	
C-1	Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-2	Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-3	Location of Selected Observation Wells and Cooperative Program Areas
C-4	Map of 19 Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1963, and 1964
C-5	Fluctuation of Average Water Level, 1921 to 1964, in 19 Ground Water Areas in San Joaquin Valley
C-6°	Fluctuation of Water Level in Selected Wells in San Joaquin Valley
C-7	Lines of Equal Elevation of Water in Wells, Unconfined Aquifers, San Joaquin Valley, Spring 1964
C-8	Lines of Equal Elevation of Water in Wells, Pressure Surface, San Joaquin Valley, Spring 1964

(Plates C-7 and C-8 are in pocket)

INTRODUCTION

This appendix presents ground water measurement data for the period July 1, 1963, through June 30, 1964.

The area for which ground water level measurements of selected wells are shown on Table C-1 is designated as Area 4 on page iii. Area IV is that portion of the Water Pollution Control Board Region 5, which includes the Stanislaus River drainage area and the area south, to the Tehachapi Mountains.

The Department cooperates with U. S. Geological Survey and the U. S. Bureau of Reclamation and many local agencies for the systematic observation of ground water levels. Wells for which water level measurements are collected in the San Joaquin Valley Hydrologic area number approximately 7,500 of which nearly 600 are presented here. These 600 wells were selected as representative wells of all the wells measured in the area, and are designated as selected wells. These wells were selected on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, in a confined aquifer, or in a zone of shallow depth; and availability of a log, mineral analyses, and production records.

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gage or an electric sounder.

Forty-eight districts or areas in the San Joaquin Valley are shown on Plates C-1 and C-2.

The districts or areas with a ground water level change of five feet or more in the unconfined and semiconfined aquifers are also shown on Plate C-1. The districts or areas with a ground water level change of five feet or more in the confined and semiconfined aquifers are shown on Plate C-2.

A map showing the location of the selected wells as listed in Table C-1 and cooperative program areas is presented on Plate C-3.

A map of 19 ground water areas and profiles along a section showing water levels in 1921, 1951, 1963, and 1964 are presented on Plate C-4.

Unit hydrographs depicting the fluctuation of average water levels in the 19 ground water areas in the San Joaquin Valley are presented on Plate C-5.

Water level fluctuations are depicted graphically on hydrographs for 35 selected wells distributed among significant districts and areas in the San Joaquin Valley. The hydrographs are presented on Plate C-6 by region, basin, or area, and well number.

Presented on Plate C-7 is a map showing lines of equal elevation of water in wells, unconfined aquifers, San Joaquin Valley, spring 1964.

Presented on Plate C-8 is a map showing lines of equal elevation of water in wells, pressure surface, spring 1964.

Definitions

Free ground water is water in the interconnected interstices in the zone of saturation down to the impervious barrier, moving under the control of the water-table slope.

Water table is the upper surface of the body of free water which completely fills all openings in the material sufficiently pervious to permit percolation. On fractured impervious rocks and in solution openings, it is the surface at the contact between the water body in the openings and the overlying ground air.

<u>Confined ground water</u> is a body of ground water overlain by material sufficiently impervious to sever free hydraulic connections with overlying ground water except at the intake. Confined water moves in conduits under pressure due to difference in head between intake and discharge areas of the confined water body.

Semiconfined ground water occurs when the vertical movement is at a slower rate than the horizontal movement so as to cause differences in head between aquifers during periods of heavy pumping, but when during periods of little draft, the water level recovers to a level coincident with the water table.

These aquifers are subject to pressure effects for short periods but the artesian head adjusts to equilibrium with the water table over long periods of time.

<u>Pressure surface</u> or <u>piezometric surface</u> is the level to which the water level will rise above the bottom of a confining bed of impervious material when penetrated.

Perched ground water is ground water occurring in a saturated zone separated from the main body of ground water by unsaturated material.

Explanation of Headings and Symbols Used in Columns in Appendix C

State well number used in this report is based on the township, range, and section subdivision of the Public Land Survey. It conforms to the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number, which is assigned to a well in accordance with this system, is referred to as the "state well number".

Under the system, each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	Н
М	L	К	J
N	P	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well which has the number 16S/15E-17Kl M would be in Township 16 South, Range 15 East, Section 17, M.D.B. & M., and would be further located as the first well assigned a state well number in Tract K. In this report, well numbers are referenced to the Mount Diablo Base and Meridian (M) or the San Bernardino Base and Meridian (S).

<u>Ground surface elevation</u> represents the elevation in feet above mean sea level (U.S.G.S. datum).

<u>Date</u> is the date upon which the depth measurement was made.

Ground surface to water surface in feet is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump in operation, (c) existence of a leaking or wet casing, (d) well having been pumped recently, (e) air gage measurement, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained through the San Joaquin District Office of the Department of Water Resources.

Other code symbols used in this column are as follows:

m--No measurement

#--Measurement discontinued

@--Well has been destroyed

The words FLOW and DRY are shown in this column to indicate a flowing or dry well.

The word DISCONTINUED indicates records from this well will no longer be published.

<u>Water surface elevation</u> is the elevation in feet above mean sea level (U.S.G.S. datum) of the water surface in the well. It was derived by machine computation by subtraction of the depth measurement from the reference point elevation.

Agency supplying data represents the code numbers for the agencies supplying water level data. The agency code consists of a five-digit number, the first of which is a region number. Thus, 54200 refers to agency 4200 in Region 5. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number.

The first digit of the four-digit agency code designates the type of well numbering system used by the agency as follows:

Code	Well Numbering System
4	Local numbers
5	State or U. S. G. S.
6	U. S. B. R.
7	South San Joaquin Irrigation District
8	Kern County Land Company

The last three digits of the agency code are numbers that designate, within specified serial limits, the type of agency from which the data were obtained, as follows:

Code	Type of Agency			
000-049	Federal			
050-099	State			
100-199	County			
200-399	Municipal			
400-699	DistrictWater,	Irrigation,	Conservation,	etc.
700-999	Private			

In the Central Valley Region, the agency code for <u>districts</u> is further broken down to the geographic areas, as follows:

Code	Area in Central Valley Region
500-599	American River to San Joaquin River
600-699	San Joaquin River to Tehachapi Mountains

In this list of water levels, the agency furnishing the measurement is listed. The agencies and code numbers assigned to them are as follows:

Agency Code	Agency
4200	City of Fresno
4520	Oakdale Irrigation District
4521	Modesto Irrigation District
4524	Turlock Irrigation District
4525	Merced Irrigation District
4636	Consolidated Irrigation District
4637	Alta Irrigation District
4640	Buena Vista Water Storage District

Agency Code	Agency
5000	U. S. Geological Survey
5050	Department of Water Resources
5120	Kern County Surveyor
5529	Poso Soil Conservation District
5631	Fresno Irrigation District
6001*	U. S. Bureau of Reclamation
7518	South San Joaquin Irrigation District
8700	Kern County Land Company

^{*}A large amount of data listed under this agency code has been gathered by irrigation and water districts and compiled by the Bureau of Reclamation for transmittal to the Department of Water Resources.

TABLE C-1

AGENCY SUPPLYING DATA		5050												4520							٠					4520		4520											
WATER SURFACE ELEVATION IN FEET		9•99	66.5	67.2	69.3	68.9	69.2	68.4 4.0	66.4	67.6	67.4			61.0	60.2	61.3	02.0	0 4 6 6	64.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	64.02	63.9	61.8	61.6		97.1	400	9.46	9.46	95.0	96•2	7.96	70.0	96.5	7007	7007	700	0.000	1.00
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.04	10.6	10.7	4.0	7.9	80	0 0	10.3	10.8	9.6	8.6	5-22-06	27-7	58.0	58.8	57.7	2007	74.7	54.8	54.6	54.8	55.1	57.2	57.4	ı	6.74	4 8 9	51.9	51.9	51.5	50.3	49.8	0.00	000	0 0 0 0 0 0	2005	00.0	2000	\$ °06
DATE		7-24-63	8-26-63	10-25-63	11-21-63	12-20-63	1-2/-64	3-23-64	4-24-64	5-25-64	6-23-64	101	į	7-01-63	8-01-63	9-03-63	10-01-63	12-02-63	1-02-64	2-03-64	3-03-64	4-01-64	5-01-64	6-02-64		12-00-63	3-00-6	7-01-63	8-01-63	8-03-63	10-01-63	11-01-63	12-02-63	1-02-64	2-03-04	5-03-64	49-10-4	10-10-0	*0-70-9
GROUND SURFACE ELEVATION IN FEET		77.2										DAKDALF IRRIGATION DISTRICT		119.0												145.0		146.5											
STATE WELL NUMBER	TRACY AREA	35/06E-06N01 M										OAKDALF TRRI		1S/09E-16J01 M												1S/09E-36A01 M		15/10E-19L01 M											
AGENCY SUPPLYING DATA					5050		_								0,00	200											5050			_									
WATER SURFACE ELEVATION IN FEET					1.1	C 0	•	0.7	9•0	1.4	1.1	1.1	0.7	0.8	20.0	19.0	19.0	20.7	20.2	20.3	21.3	20.8	20.7	19.3	21.6	7017	15.9	15.5	15.0	12.0	9 4 5	† • † †							
GROUND SUR. FACE TO WATER SURFACE IN FEET		5-22.00	5-22 04	,	2.9	60 c	7 7	m •	3.4	2.6	2°9	2.9	3.3	3.2	9	13.0	13.0	11.3	11.8	11.7	10.7	11.2	11.3	12.7	4.01	10.0	4.1	\$ ·	2 4 U 4	0 0	0 4	0 • Q							
DATE	REG I ON				7-24-63	8-26-63	10-25-63	11-21-63	12-20-63	1-27-64	3-23-64	4-24-64	5-25-64	6-23-64	27.70	69-47-1	9-24-63	10-25-63	11-21-63	12-20-63	1-27-64	2-21-64	3-23-64	4-54-64	5-25-64	10-67-0	7-24-63	8-26-63	9-24-63	10-23-01	11-21-63	12-20-63	•						
GROUND SURFACE ELEVATION IN FEET	CENTRAL VALLEY REGION	>			0.4										ć	32.0											20.0												
STATE WELL NUMBER	- GE	SAN JOAQUIN VALLEY	TRACY AREA	10000	15/05E-31R02 M											25/05E-15N02 M											25/06E-28J01 M												

> U	SUPPLYING DATA		4520	4520	4520								4520			4521	4521	4	0000												
WATER	SURFACE ELEVATION IN FEET		114.8	146.9	7.4	96.6	6	102.3	103.6	102.9			106.3			59.8	63.3	6 6	47.9	46.6	48.7	46.8	49.9	50.1	44.7	44.2	44.3				
GRDUND SUR-	WATER SURFACE IN FEET	5-22.06	77.2	43.1	54°3	55.4	ם ו	48.8	4 4 0 8 8 0 4 6	49.1	n :	1	55.7	• 00	5-22.07	37.4	37.0	76.7	16.1	17.4	15.3	14.2	14.1	13.9	10.0	19.8	19.7				
	DATE	ICT	12-00-63	12-00-63	7-01-63	9-03-63	11-01-63	12-02-63	2-03-64	4-01-64	5-01-64	70-0	12-02-63	100	ICT	3-00-64	3-00-64	7-00-63	8-05-63	9-04-63	11-05-63	12-04-63	1-07-64	2-04-64	4-02-4	5-05-64	6-08-64				
GROUND	SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	192.0	190•0	152.0								162.0		IRRIGATION DISTRICT	97.2	100•3	0.44	•												
1	STATE WELL NUMBER	OAKDALE IRRIG	25/11E-31ND1 M	25/12E-31K01 M	35/10E-15A01 M								35/11E-18D01 M		MODESTO IRRIC	2S/08E-25P01 M	25/09E-31G01 M	M (0700-1907)													
AGENCY	SUPPLYING DATA		4520	4520						4520	9	4520							000	076#	7 6 7 0	4360									
	SURFACE ELEVATION IN FEET		108.3	;	79.2	80.7	80°8 80°7	79.8	78•3			106.1	107.3	109.0	109.9	109.9	109.1	107.3		105.3	1	122.1	121.6	121.8	124.4	126.5	126.8	126.6	126.3	125.1	,,,,
GROUND SUR- FACE TO	WATER SURFACE IN FEET	5-22.06	84.7	n n '	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51.3	51.2	52.2	53•7 ¤	12		79.4	78.2	76.5	75.6	75.6	76.4	78.2	(59.7	0	0 0 0 0 0 0	96.4	96.2	93.6	92.4	91.2	91.4	91.7	92.9	
	DATE	ſСТ	12-01-63	7-01-63	10-01-63	12-02-63	1-02-64	3-03-64	5-01-64	6-02-64		8-01-63	9-03-63	11-01-63	1-02-64	2-03-64	4-01-64	6-02-64		3-00-64	;	8-01-63	9-03-63	10-01-63	11-01-63	12-02-63	7-03-64	3-03-64	4-01-64	5-01-64	
GROUND	SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	193.0	132.0						132.0	,	185.5								165.0	6	718.0									
3	NUMBER	OAKDALE IRRIG	15/10E-28J01 M	2S/09E-26F01 M						2S/09E-26F01 M		25/10E-04H01 M								2S/10E-33J01 M		25/11E-29801 M									

AGENCY SUPPLYING DATA		4554								4554	4554		4554	4524							4554		5050											
WATER SURFACE ELEVATION IN FEET		96.1 97.5	100.0	101.3	100	100.4	0.66	98.7	98.1	95.0			107.4	47.9	47.0	40°V	40.8	0.94	45.7	45.5	40.3		0.49	65.3	65.0	8.49	0.99	65.4	63.0	65.9	62.1	63.1	4.49	010
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	12.9	0.6	7.7	- C	9 6	10.0	10.3	10.9	14.0	DRY	DRY DRY	22.6	5.1	0.9	3°21	0°0 0°5	7.0	7.3	7.5	9.7		0.9	4.7	5.0	5.2	4.0	4.6	7.0	7.1	7.9	6.9	ი ი ი	8.2
DATE	CT	7-03-63	9-00-63	10-03-63	12-04-63	1-03-64	2-05-64	3-04-64	4-00-4	2-00-64	7-02-63	12-03-63	2-00-64	7-02-63	8-02-63	9-05-63	11-01-63	12-03-63	1-02-64	3-03-64	2-00-64		7-08-63	8-05-63	9-04-63	10-02-63	11-05-63	12-04-63	1-02-64	2-04-64	3-02-64	4-05-64	5-05-64	6 -08-64
GROUND SURFACE ELEVATION IN FEET	TURLOCK IRRIGATION DISTRICT	109.0								109.0	131.0		130.0	53.0							0.03		70.0											
STATE WELL NUMBER	TURLOCK IRRI	45/10E-21R01 M								45/10E-21R02 M	45/11E-29N01 M		45/11E-32P01 M	55/08E-01N01 M							M 10000_300033		55/09E-04A01 M											
AGENCY SUPPLYING DATA		5050		- Harris			_				4521	4521	4521	4521	4521		4521	4521	7.631	1764		4524	!										4554	
WATER SURFACE ELEVATION IN FEET		500.3	48.9	50.1	51.4	51.1	51.3	51.3	51.6	50.9	53.1	68.6	62.2	0.94	91.6		72.2	65.0	F 6.4	• • • • • • • • • • • • • • • • • • • •		46.1	46.8	48.1	48.9	47.6	46.7	46.0	45.0	44.6	45.7			
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.07	13.3	15.1	13.9	12.6	12.9	12.7	12.7	12.8	13.1	50.9	23.9	37.0	36.5	35.5		47.0	58.0	2 4 5	1000	5-22.08	0,0	8.2	6.9	6.1	7.4	. 60	0.6	10.0	10.4	9.3	1	DRY	DRY
DATE	ICT	7-08-63	9-04-63	11-05-63	12-04-63	1-07-64	2-04-64	3-02-64	5-05-64	6-08-64	3-00-64	3-00-64	3-00-64	3-00-64	3-00-64		3-00-64	3-00-64	77-00-6	3-00-64	ICT	7-03-63	8-05-63	9-06-63	10-03-63	11-04-63	12-04-63	1-03-64	2-05-64	3-04-64	4-00-64		12-04-63	3-03-64
GRDUND SURFACE ELEVATION IN FEET	MODESTO IRRIGATION DISTRICT	0 • 4 • 0									74.0	92.5	99.2	82.5	133.1		119.2	123.0	6	0.50	TURLOCK IRRIGATION DISTRICT	55.0											82.0	
STATE WELL NUMBER	ODESTO IRRI	35/08E-22C02 M									35/08E-24C01 M	35/09E-05N01 M	35/09E-21A02 M	35/09E-30P01 M	35/10E-06G01 M		35/10E-29K01 M	35/10E-32G01 M		45/08E-03E01 M	TURLOCK IRRI	45/08F-27001 M											45/09E-21A02 M	

AGENCY SUPPLYING DATA		4554				4554		4554									46.34	+36+											4524											
WATER SURFACE ELEVATION IN FEET		117.1	116.5	117.6)	109.9			137.3			135.0	135.2	135.3			9.75	56.2	57.0	57.6	56.2	57.8	55.2	54.1	53.6	53.9	53.7	04•B	81.7	81.0	81.9	82.8	82.8	83.7	83.5	83°6	0000	0 4 6 0	83.1	83.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	7.9	φ ο Φ C	7.4		10.1		DRY S	DRY 12.7	DRY	DRY	15.0	14.8	14.7	DRY	DRY	3.0	1 e0	3.0	2.4	8 6	2.5	4 4	5.9	6.4	6.1	6.3	2•5	5.63	0.9	5.1	4.2	4.2	3.3	3.0	3° (υ . υ .	0.0	+ C	3.6
DATE	ICT	12-31-63	3-03-64	4-02-64		2-00-64		3-05-63	7-02-63	8-02-63	10-02-63	12-01-63	1-02-64	2-05-64	3-03-64	4-03-64	4-02-63	5-02-63	6-04-63	7-02-63	8-02-63	9-05-63	11-01-63	12-03-63	1-02-64	5-04-64	3-05-64	4-03-64	4-01-63	5-01-63	6-03-63	7-01-63	8-01-63	9-04-63	10-01-63	10-31-63	12-02-63	2-04-64	3-01-64	4-05-64
GROUND SURFACE ELEVATION IN FEET	TURLOCK IRRIGATION DISTRICT	125.0				120.0		150.0									0.04												87.0											
STATE WELL NUMBER	TURLOCK IRRI	5S/11E-21N01 M	CONT.			55/11E-29F01 M		55/12E-31N01 M									65/09F-15R01 M												AS/10F-21A01 M											
AGENCY SUPPLYING DATA		4554									4254	4524	1761									4554	4524	,									4554							
WATER SURFACE ELEVATION IN FEET		68.3	69.6	60.00	68.5	67.8	67.4	67.7	67.0		55•3	70.3	69.1	68.4	68.9	68•6	68.0	69.2	68.6	68.7		81.1	84.5	83.8	83.0	82.3	82.8	83.7	4 4 4	83.8	83.5		118.2	117.8	118.0	118.2	118.7	11/09	11/08	117.6
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	6.7	4.0	2.0	6.5	7.2	7.6	7.3	0 ° 0		7.7	4.7	5.9	9.9	6.1	4.9	0 0 0	 	4.9	6.3		8 6 9	7.5	8 .2	0°6	9.7	9.2	m c	0.0	200	8.5		6.8	7.2	7.0	8.9	6.9	, r	7 - 1	7.4
DATE	וכד	7-02-63	8-02-63	10-02-63	11-01-63	12-03-63	1-05-64	2-04-64	4-03-64		5-00-64	7-03-63	8-02-63	9-09-63	10-02-63	11-01-63	12-03-63	2-04-64	3-02-64	4-03-64	;	5-00-64	7-01-63	8-01-63	69-04-63	10-01-63	10-31-63	12-02-63	2-04-64	3-01-64	4-05-64		4-01-63	5-01-63	6-03-63	7-01-63	8-01-63	9-04-63	10-01-63	12-02-63
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	75.0									63.0	7 3 2									;	0°06	92.0										125.0							
STATE WELL NUMBER	TURLOCK IRRI	55/09E-14R01 M									55/09E-22N01 M	N 10476 2007 20	S/09E=24N01									55/10E-21001 M	55/10E-21R01 M										5S/11E-21N01 M							

AGENCY SUPPLYING DATA		4525								4525										4525		5050														
WATER SURFACE ELEVATION IN FEET		167.2	165.5	164.1	163.6				168.3	166.2	166.6	165.4	168.2	164.7	164.5	162.4	163.4	164.1			79.5	108.0	108.0	107.6	108.9	108.6	108.4	108.4	108.0	107.0	105.8					
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.09	13.5	15.2	16.6	17.1	084 084	ORY ORY	DRY	12.4	11.9	11.5	12.7	6.6	13.4	13.6	15.7	14.7	14.0	1	DRY	11.2	10.0	10.0	10.4	9.1	4.6	9.6	9.6	0 0	10.0	12.2					
DATE		7-31-63	9-06-63	12-02-63	1-06-64	3-02-64	4-01-64	6-01-64	6-29-64	7-01-63	8-05-63	10-01-63	11-06-63	12-03-63	1-29-64	3-04-64	49-80-4	4-29-64		7-31-63	3-03-64	7-02-63	8-05-63	9-03-03	11-05-63	12-04-63	1-02-64	2-05-64	3-02-64	5-04-64	6-04-64					
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	180.7								178.1										7.06		118.0														
STATE WELL NUMBER	MERCED IRRIG	65/13E-19N01 M								65/14E-32N01 M										75/10E-01N01 M		7S/11E-01H01 M														
AGENCY SUPPLYING DATA		4554	4554									4554			-	_										4525			-		_					
WATER SURFACE ELEVATION IN FEET			101.5	101.5	103.6	104.0	104.7	103.6	102.2	101.0		110.1	1110.4	111.2	1110.4	111.6	112.6	112.2	113.1	110.9	110.5	111.0	11100			127.9	128.2	129.1	129.4	129.1	128.8	128.8	128.2	128.0	127.8	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	o	13.5	13.5	12.1	11.0	10.3	11.4	12.8	14.0	DRY	7.9	0 4	9 9	9•9	4.9	t 4.	φ • • • •	6.4	7.1	7.5	7.0	0 ° 0		5-22 • 09	15.0	15.6	14.7	14.4	14.7	15.0	15.0	15.6	15.8	16.0	DRY
DATE	<u>ַ</u>	2-00-64	4-01-63	6-03-63	8-01-63	9-04-63	10-01-63	12-02-63	2-03-64	3-01-64	4-05-64	1-03-63	2-01-63	4-02-63	5-02-63	6-04-63	A-02-63	9-05-63	10-02-63	11-01-63	1-02-64	2-04-64	4-03-64		CT	7-31-63	0-16-7	9-30-63	11-04-63	12-02-63	1-06-64	1-30-64	4-07-64	4-28-64	6-01-64	6-29-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	84.0	115.0									118.0													MERCED IRRIGATION DISTRICT	8 676	0									
STATE WELL NUMBER	TURLOCK IRRI	65/10E-21N01 M	65/11E-08R01 M									65/11E-09N01 M													MERCED IRRI	M 10M10=301797										

AGENCY SUPPLYING DATA		4525			4525							6764								4264								
WATER SURFACE ELEVATION IN FEET		175.8	173.7	183.0								115.8	113.9	112.9	113.0	114.6	115.0	116.2		132.2	131.8	129.4	129.8	129.3	128.3	132.9	132.5	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.09	11.7	13.8	4•5	DRY DBV		DRY DRY	DRY ORY	ORY ORY	DRY DRY	·	7°1	6.3	7.3	7.2	5.6	2.5	գ. ա • •		2•8 1•8	3.2	5.6	5.2	5.7	6.7	2.1	2.5	
DATE	H	1-07-64	4-08-64	6-02-64	8-01-63	10-01-63	12-04-63	1-29-64	4-08-64	6-02-64		9-06-63	11-06-63	1-07-64	1-28-64	4-01-64	4-29-64	6-30-64		8-01-63	9-30-63	12-09-63	1-07-64	3-03-64	49-20-4	6-01-64	6-30-64	
GROUND SURFACE ELEVATION IN FEET	MERCED IRRIGATION DISTRICT	187.5			234.2							120.2								135.0								
STATE WELL NUMBER	MERCED IRRI	7S/14E-16R1 M CONT.			75/15E-36N01 M							8S/12E-01D01 M								85/13E-09R01 M								
																.,									_			
AGENCY SUPPLYING DATA		4525						4525								4525									4525			
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA		97.9 4525 97.5	98.2	101.8	101.7	6 86 86 86	98.2 98.1	135-1 4525	132.4	133.5 133.5	133.6	133.7	132.3	131.1	131•1		140.9	141.4	140.7	140.1	139•6 135•4	135.4	134.5		182.4 4525 183.4	182.7	182.6 178.2	176.6
	5-22.09							135+1	14.4 132.9 13.9 133.4							136.9							17.6 134.5 18.4 133.7	1 1	182.4		4.9 182.6 9.3 178.2	
WATER SURFACE ELEVATION IN FEET		97.9 97.5		5 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- & & - & & - & - - & -	135+1	14.4		13.7			16.2		15.2 136.9		10.7		12.0		16.7			182.4	4 80		10.9
GROUND SUR- FACE TO SURFACE WATER ELEVATION IN FEET IN FEET	MERCED IRRIGATION DISTRICT 5-22.09	8.7 97.9 9.1 97.5		5.2 4.8	4 ተ ው ሳ	8 6 7	- & & - & & - & - - & -	12.2 135.1	14.4	13.8 13.8	13.7	13.6	15.0	16.2	16.2	15.2 136.9	11.6	10.7	11.4	12.0	12.5	16.7	17.6 18.4		5.1 182.4 4.1 183.4	4 80	\$ 6 6 8 6 8	10.9

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TD WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
STREET GENERAL	TERIGATION DISTRICT	Į.	5-22.09			DELTA-MENDOTA	A AREA		5-22.11		
85/14E-01A01 M	196.8	8-01-63	11.8	185.0	4525	35/06E-16001 M	80.0	9-27-63	88.2	- 8.2 18.5	6001
		9-30-63 11-07-63 12-01-63	12.0 9.8 10.2	184.8 187.0 186.6		35/06E-18N01 M	99•3	9-26-63	13.3	86.0	6001
		1-08-64 1-28-64 3-04-64	10.8 11.8	186.0 185.8 185.0		3S/06E-25D01 M	63.5	9-27-63	23.0	40.5	6001
		4-07-64	12.6 12.2 12.2	184.2 184.6 184.6		45/06E-04H01 M	163.3	9-24-63	122.7	40.6	6001
	Ford Montage Contraction	6-30-64	11.0	185.8		45/06E-09R01 M	166•3	9-24-63	137.7	28.6	6001
95/13E-14R01 M	133.0	2-10-64	76.5	57.0	6001	45/07E-27M01 M	68.0	9-26-63	24.8	43.2	6001
95/14E-20801 M	152.0	2-10-64	62.4	87.6	6001	45/07E-31D01 M	185.4	9-25-63	110.6	74.8	6001
DELTA-MENDOTA	TA AREA	9-24-63	5.5	72.5	6001	55/07E-05D01 M	157.4	10-07-63	94.0	72.8	6001
	4 0	3-03-64	7.0	71.0	6001	55/07E-13K01 M	107.0	3-25-64	61.0	0.94	6001
		3-03-64	25.0	55° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8°	6003	55/07E-14001 M	130.4	10-07-63	75.6	- 80	6001
25/U4E=20AU1 m		3-03-64	128•3	58.7			e u	4-10-64	78.8	38.7	6001
25/05E-32A01 M	76.0	9-25-63	21.6 22.0	54.0	6001	55/08E-06KU1 M	20.0	7-01-63) **t		5050
35/05E-08R01 M	195.7	9-25-63	128.4	67.3	6001	S/07E-12P01	248.3	9-26-63	18.4	229.9	5050
35/05E-08R02 M	195.7	9-25-63	131.7 n	0.499	6001	65/08E-12L01 M	6.40	9-27-63	21.8	45.5	5050
35/05E-25001 M	207.0	9-26-63	120.0	87.0	6001	65/08E-16M01 M	129.5	9-26-63	89.2	40.3	5050
35/05E-26K01 M	212.1	9-26-63	126.3	85.8	6001	65/08E-27J01 M	114.5	9-27-63	50.7	63.8 62.0	5050

AGENCY SUPPLYING DATA		5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	6001 5050 6001
WATER SURFACE ELEVATION IN FEET		43.6	138•1	83.7 89.3	79.6	86.7	31.0	93.1 92.4	28.3	101.5	106.4	103.6	110.6	106.0	103.1	134.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.11	44.6	89 • 9 El	83.3	19.9	19.9	160.1 n	5.9	73.0	55.8	140.4	2.4	3.6	13.0	28.9	6 4 8 8
DATE		10-15-63	10-10-63	10-10-63	10-15-63	10-15-63	10-14-63	10-08-63	10-08-63	10-10-63	10-15-63	10-09-63	10-15-63	10-15-63	10-09-63	10-02-63 12-26-63 4-08-64
GROUND SURFACE ELEVATION IN FEET	AREA	90.5	147.0	167.0	5*66	106.6	191.1	0.66	101•3	157.3	246.8	106.0	114.2	119.0	132.0	138.0
STATE WELL NUMBER	DELTA-MENDOTA	95/11E-20J01 M	10S/09E-06A01 M	105/09E-08B01 M	10S/10E-02R01 M	10S/10E-11R01 M	10S/10E-31G01 M	10S/11E-23D01 M	10S/11E-27E02 M	115/10E-11J01 M	115/10E-22001 M	11S/11E-02J02 M	115/11E-22K01 M	115/11E-22003 M	115/12E-31C01 M	125/12E-04D01 M
-																
AGENCY SUPPLYING DATA		5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	2050	9050	5050
WATER AGENCY SURFACE ELEVATION DATA IN FEET		66.8 5050 71.6	78•1 5050	48.9 5050 47.8	62.2	104.9 5050 99.0	99.8 5050 114.2	27.6 5050 53.6	67.3 5050 71.1	66.2 5050 71.2	174.1	121.0 5050 118.5	36.3 5050	80.8 5050 79.3	36.8 5050 33.8	82.5 5050 84.4
WATER SURFACE ELEVATION IN FEET	5-22.11															
WATER SURFACE ELEVATION IN FEET	5-22.11	66.8 71.6	78.1	48.9 47.8	60.9	104.9	99.8 114.2	27•6 53•6	67•3 71•1	66.2	174.1	121.0 118.5	36.3	80.8	36.8	82.5 84.4
GROUND SUR- FACE TO WATER WATER SURFACE IN FEET	DELTA-MENDOTA AREA 5-22.11	123.2 66.8 118.4 71.6	49.8 78.1	16.7 48.9 17.8 47.8	7.5 60.9 6.2 62.2	18.3 104.9 24.2 99.0	73.0 99.8 58.6 114.2	47.4 27.6 21.4 53.6	7.7 67.3 3.9 71.01	8.8 66.2 3.8 71.2	27.5 174.1	32.6 121.0 35.1 118.5	63.7 36.3 55.9 44.1	3.2 80.8 4.7 79.3	50.2 36.8 53.2 33.8	8.5 6.6 84.4

AGENCY SUPPLYING DATA			1000	6001													6001												6001		6001		6001		6001							
WATER SURFACE ELEVATION IN FEET			184.8	16641	152.4	149.7	149.0	148.2	148.0	149.7	145.8	151.5	151.5	145.4	148.4		224.0	223.8	22301	7.4.27	224.9	224.8	224.2	223.9	222.7	221.8	219.7		221.3	223.5	242.6	0 0 7 4 7		311.6	72.3	0.89	61.1	74.5	79.7	81.5	83.1	83.4
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22,12		47.2	0.14		0 00	0 10	80.00	0.09	58.3	62.2	56.5	56.5	9.29	9.69		43.0	43.2	43.9	42.3	42.1	42.2	45.8	43.1	44.3	45.2	46.1	•	7 * 86	96.5	77.4	0.87	п	53.4	7 77	82.0	88.9	75.5	70.3	68.5	6.99	9.99
DATE			11-04-63	7-34-63	0-27-63	10-01-63	10 -22 -63	12-06-63	12-23-63	1-22-64	2-12-64	3-27-64	4-54-64	5-21-64	6-26-64		7-24-63	8-28-63	10-01-63	10-23-63	12-06-63	12-23-63	1-22-64	2-11-64	3-27-64	4-54-64	5-21-64		10-01-63	2-11-64	10-01-63	2-11-64	9-30-63	2-11-64	27-70	8-28-63	10-01-63	10-23-63	12-06-63	12-24-63	1-22-64	2-12-64
GROUND SURFACE ELEVATION IN FEET	TER DISTRICT		232•0	000	70807												267.0												320.0		320.0		365.0		4	150.0						
STATE WELL NUMBER	CHOWCHILLA WATER DISTRICT		9S/15E-25J02 M		95/15E-33BUI M												95/16F-22R01 M												95/17E-21L01 M		9S/17E-35J01 M		94/18F-33001 M			10S/14E-08B03 M						
AGENCY SUPPLYING DATA			2000											1004	0.00	1004	•	6001			6001	5050	6001		6001	5050	6001	_		6001		6001										
WATER SURFACE ELEVATION IN FEET			38°3 37°9	37.4	36.8	36.8	37.4	45.4	45.4	45.4	1074	4.I.e.8	1 • 00	111.6	113.0	111.2	74111	164.2	164.9			137.7			12747	131.6	127.6			106.9	122.0	105.4	96.3	109.0	115.7	122.5	13905	139.0	12403			
GROUND SUR- FACE TO WATER SURFACE IN FEET	22.31	11.77-6	129.7 130.1	130.6	131.2	131.2	130.6	125.6	125.6	125.6	122.9	126.2	13103	45.4	62.1	100	0.00	12.8	12.1		DRY	6.3	> 0	-	26.3	22.4	26.4		5-22-12	78.1	63.0	1111.1	120.2	107.5	100.8	94.0	77.0	77.0	3636	0 101		1
DATE			7-16-63	9-11-63	10-09-63	11-04-63	12-05-63	1-07-64	2-01-64	3-05-64	3-30-64	4-20-64	0-62-04	10-03-63	12-24-63	60-07-71	101011	10-02-63	49-08-64		10-03-63	12-27-63	79-80-7		10-03-63	12-23-63	4-01-64		-	10-31-63	2-10-64	7-24-63	8-27-63	10-01-63	12-06-63	12-23-63	1-22-64	2-11-64	3-27-64	6-21-64	7-21-64	10-07-0
GROUND SURFACE ELEVATION IN FEET		A AREA	168.0											444	7			177.0			144.0	•			0 7 3 1	1540			CHOWCHILLA WATER DISTRICT	185.0		216.5										
STATE WELL NUMBER		DELTA-MENDOTA AREA	12S/12E-16H05 M												125/12E-25001 M			M 50050-3017301			N LUNCTISETIONOL M					125/14E-30001 M			CHOWCHILLA	95/14E-25R01 M		95/15E-22R02 M										

AGENCY SUPPLYING OATA		6001								6001										6001		6001		6001								
WATER SURFACE ELEVATION IN FEET		123.1	120.6	125.6	130.0	131.0	128.8	125.5	123.2	132.8	133.9	136.8	140.4	141.0	142.2	142.9	138.0	134.7	131.7	178.0	0	201•5		202.8	202+4	201.6	199•6	203.8	204.7	202.5	202•8	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.13	72.9	75.4	70.4	0.99	65.0 64.1	67.2	70.5	72.8	72.2	71.1	68.2	600	64.0	62.8	62.1	200	70.3	73•3	72.6	•	72.9	•	81.7	81.6	82.4	84°4	80.2	79.3	81.5	п 81•2	
DATE		7-24-63	10-01-63	10-23-63	12-23-63	1-21-64 2-12-64	3-26-64	5-21-64	6-25-64	7-24-63	8-27-63	10-01-63	12-06-63	12-23-63	1-21-64	2-12-64	3-20-64	5-20-64	6-25-64	12-16-63	10-11-7	12-03-63	, , , , , , , , , , , , , , , , , , ,	7-24-63	69-06-6	10-24-63	12-24-63	1-22-64	2-10-64	4-23-64	5-20-64	
GROUND SURFACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT	196.0								205.0										250.6		274.4		284.0								
STATE WELL NUMBER	MADERA IRRIG	115/16E-06A01 M								115/16F-10N01 M										115/17E-27C01 M		115/18E-20N01 M		115/18E-27M01 M								
AGENCY SUPPLYING DATA]	6001			6001		6001										6001								6001				6001		6001	
WATER SURFACE ELEVATION IN FEET		77.5	72.9	69.9	112.9	129.2	106.4	100.5	109.9	114.5	114.5	109.0	112.4	• • • • • • • • • • • • • • • • • • • •	102.9	,	148.7	147.0	150.9	160.5	162.4	155.8			127.7	134.0			263.3	259•0	365.6	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-12	72.5	77.1	84•1	81.1	64.8	76.6	82.5	73.1	68.5	68.5	74.0	70.6	7 0	80.1		83.3	85.0	81.1	71.5	100/	76.2	3 13	a	81.8	75.5	5-22.12		62.7	67.0	21.4)
DATE		3-27-64	5-21-64	6-26-64	10-30-63	2-12-64	7-24-63	10-01-63	10-23-63	12-06-63	1-22-64	2-12-64	3-27-64	5-21-64	6-26-64		7-24-63	10-01-63	10-23-63	12-23-63	2-12-64	3-27-64	5-21-64	9-56-64	10-29-63	2-11-64		_	69-06-6	2-11-64	9-30-63	
GROUND SURFACE ELEVATION IN FEET	CHOWCHILLA WATER DISTRICT	150.0			194•0		183.0									6	232.0								209.5		MADERA 1881GATION DISTRICT		326.0		387.0	
STATE WELL NUMBER	CHOWCHILLA W	10S/14E-08BO3 M	CONT.		105/15E-23K01 M		105/15E-27D03 M										105/16E-09E01 M								105/16E-29R01 M		MADERA 19916		105/18E-20801 M		10S/19E-16D01 M	

AGENCY SUPPLYING DATA		6001	6001		6001		6001	6001		6001
WATER SURFACE ELEVATION IN FEET		170.5	169.7 171.8 175.9 166.4	180°2 181°2 181°8 180°5 176°7 170°8	207.2 205.0 208.5 208.9	211.5 210.5 210.5 207.5 208.0 208.9	188.2	186.4 186.2 187.0 188.0	1900.1 1910.0 1910.7 1900.7 1890.9 1880.3	224.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-13	65.8	65.3 63.2 59.1 68.6	000000 000 40040 40 ••••••••••••••••••••	80.8 83.0 79.5	8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76.8 72.9	78.0 77.0 77.0 74.0		83.0
DATE	-	5-20-64	7-23-63 8-27-63 10-01-63 10-24-63	12-05-63 12-23-63 1-21-64 2-11-64 3-26-64 4-23-64 5-20-64 6-25-64	7-23-63 8-27-63 9-30-63 10-24-63	12-05-63 12-23-63 12-23-63 1-11-64 2-11-64 3-26-64 4-23-64 5-20-64	12-13-63 2-17-64	7-23-63 8-27-63 10-01-63 10-24-63	12-23-63 1-21-64 2-11-64 3-26-64 4-23-64 5-20-64	2-12-64 2-13-64
GRDUND SURFACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT	235.0	235.0		288.0		265.0	265.0		307.0
STATE WELL NUMBER	MADERA IRRIG	12S/17E-26CO1 M CONT.	125/17E-34R01 M		125/18E-13R01 M		125/18E-21G01 M	12S/18E-21H01 M		125/19E-28A01 M
								_ ,	_	
AGENCY SUPPLYIN DATA		6001	6001	6 00 1		6001		6001	700 9	
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA		306.5 600] 288.0	135.5 6001 138.1		1500-0-1 1490-0-1 1440-0-1 1440-0-1		143.0			171.4 170.3
1	5-22-13							162.0	66.6 168.4 65.4 169.6 62.8 172.2 63.3 171.7 60.0 175.0 59.0 176.5 60.8 174.2	63.6 64.7
WATER SURFACE ELEVATION IN FEET	5-22•1	9-30-63 109.5 306.5 2-12-64 128.0 288.0	135 ₆ 5 138 ₆ 1	142.8 144.8 144.8 144.8 151.4 152.5 153.9	74 78 77 88 81 84 56 56	123.5 131.5 140.2 145.1 149.8 144.9	75.0	66.0 162.0	168.4 169.6 172.2 171.7 175.0 176.0 176.5	63.6 64.7
GROUND SUR- FACE TO WATER SURFACE ELEVATION IN PEET	MADERA IRRIGATION DISTRICT 5-22-13	9-30-63 109.5 306.5 2-12-64 128.0 288.0	69.9 135.5 67.3 138.1 n	86.2 142.8 87.5 141.5 84.2 144.8 81.6 147.4 77.6 151.4 76.5 152.5 75.1 153.9	74 78 77 88 81 84 56 56	94.5 123.5 86.5 131.5 77.8 140.2 72.9 145.1 68.2 149.8 69.0 149.0	75.0	6-25-64 n 12-13-63 66.0 162.0 2-14-64 n	66.6 168.4 65.4 65.4 169.6 62.8 172.2 63.3 171.7 60.0 175.0 59.0 176.5 60.8 174.2	63.6 64.7

AGENCY SUPPLYING DATA		6001	6001				6001				1009	6001	6001					۰
WATER SURFACE ELEVATION IN FEET			121.5	121.2	132.0 131.8 124.9 129.6	126.2 112.5 119.0	135.0	136.2 138.5 141.2	139.0	133.7		123.8	114.5	115.0	136.1	140.5	136.9	118.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.14	0 0	38 1	37.5	28.0 28.2 35.1	33.8 47.5 41.0	15.0	13.8 11.5 8.8	11.0 13.0 19.0	16.3	#	41.3	80.5	80.0	ນ ເກ ໝູ່ ໝູ່ ເ ໝູ່ ເກີ	54.5	58.1 66.2	77.0
DATE	EA	10-03-63	7-24-63	10-03-63	12-23-63 12-23-63 1-21-64 2-14-64 3-26-64	4-24-64 5-20-64 6-25.64	7-23-63	10-03-63 10-23-63 12-05-63	12-23-63 1-21-64 2-14-64	5-20-04 4-23-64 5-20-64 6-25-64	10-03-63	10-03-63	7-23-63	10-01-63	12-05-63	2-11-64	3-20-04 4-23.64 5-20-64	6-25-64
GRDUND SURFACE ELEVATION IN FEET	CHOWCHILLA-MADERA AREA	158.0	160.0				150.0				145.0	165.1	195.0					
STATE WELL NUMBER	WEST CHOWCH	11S/15E-33E01 M	11S/15E-33P01 M				12S/14E-25H01 M				12S/14E-28G01 M	12S/15E-14L01 M	13S/16E-02C01 M					1
A L L		1009	1009	6001	6001				6001		6001			6001				
AGE		9	9	9	9			'	Ĭ		ď	5		99				а
WATER SURFACE SUPPLYING ELEVATION DATA		ğ	99.1 6	97.1 6		106.0 106.0 105.1	104.7		98.2 6(88.2 91.4 89.4		82.0			120.8	122.4	121.8	120.3
	5-22.14	#						102.0 101.2			9 00	82.0	0	116,6	16.8 118.2 14.2 120.8			•
WATER SURFACE ELEVATION IN FEET	5-22.1		99.1	97.1 111.9	19.8 111.2 21.2 109.8 22.7 108.3 25.6 105.4		26.3	29.0 102.0 29.8 101.2	98.2 90.7 89.1		58 4 00 A	82.0		18.4 116.6		12.6	13.2	D 14.7 120.3
GROUND SUR- FACE TO SURFACE WATER ELEVATION IN FEET IN FEET		#	19.9 99.1 20.4 98.6	79.9 97.1 65.1 111.9	19.8 111.2 21.2 109.8 22.7 108.3 25.6 105.4	25.0 25.0 27.8	26.3	5-21-64 29.0 102.0 6-26-64 29.8 101.2	49.8 98.2 57.3 90.7 58.9 89.1		58 4 00 A	3-27-64 69.0 82.0 4-24-64 0		18.4 116.6	14.2	12.6	13.2	14.7 120.3

[AGENCY SUPPLYING DATA		6001	6001									6003		6001									5631					6001	5631					6001					
	WATER SURFACE S ELEVATION IN FEET		154.0	203.8	204.5	202.2	203.8	205.1	205.2	201.3	301.5	204.5		9 6	182.8	181.5	184.6	186.2	185.0	186.3	182.0	183.0	181•8	222.2	222.07	223.2	222.7	221.8	222 • 8	222.1	225.4	219.0	217.3		216.2					
0113	GROUND SUK- FACE TO WATER SURFACE IN FEET	5-22-15	58.0	54.2	53.5	55.8	54.2	52.9	52.8	56.7	E 74	53.5		57.0	62.2	63.5	40.0	58.8	60.0	58.7	63.0	62.0	63.2	0.99	65.05		65.5				62.8	60.0	70.9		73.8					
ľ	DATE		6-24-64	7-22-63	8-26-63	10-25-63	12-04-63	12-23-63	1-20-64	3-25-64	4-25-64	5-19-64		2-12-64	7-22-63	8-26-63	10-25-63	12-04-63	12-23-63	2-11-64	3-25-64	5-19-64	-24	7-29-63	8-28-63	9-26-63	12-02-63	12-27-63	2-12-64	3-05-64	3-27-64	49-87-4			7-22-63					
	GROUND SURFACE ELEVATION IN FEET	TION DISTRICT	212.0	258.0										255.8	245.0									288.2											290.0					
	STATE WELL NUMBER	FRESNO IRRIGATION	135/17E-33D01 M	135/18E-10P01 M										135/18E-16D01 M	135/18E-34D01 M									135/19F-09001 M											135/19E-16K01 M					
	AGENCY SUPPLYING DATA		6001										1696					_			1000	5621	1000									6001								
	WATER SURFACE ELEVATION IN FEET		262.7	262.4	262.0	258.3	257.1	241-3	264.3	253.3	258.6		330.0	329.6	332.3	334.1	334.0	331.5	329.6		446.3	0	182.1	183.4	181.9	181.7	180.5	178.6		180.4	9 • 0 9 1	155.0	159.0	159.7	153.0	160.7	161.0	162.5	159.3	155.8
	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-15	97.3	97.6	98.0	101.7	102.9	9201	95.7	106.7	101.4	2001	58.3	58 • 1 56 • 7	55.4	54.5	53.7	56.2	55.6		26.7		42.6 38.7	37.4				42.2		4.04	7.04	57.0								56.2
	DATE		7-22-63	8-26-63	10-24-63	12-04-63	12-23-63	1-20-64	3-75-64	4-25-64	5-19-64	t0 #7 0	7-31-63	9-30-63	11-27-63	12-31-63	3-05-64	4-29-64	5-28-64		10-04-63	;	7-29-63	9-26-63	10-26-63	12-28-63	1-30-64	3-05-64	4-29-64	5-28-64	6-29-64	7-22-63	8-26-63	10-05-63	10-25-63	12-04-63	1-20-64	2-11-64	3-25-64	5-19-64
	ů	_		_																																				
	GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	360•0										387.7								473.0		220.8									0.212	00717							

AGENCY SUPPLYING DATA		5631		6001	5631							1695							5631						
WATER SURFACE ELEVATION IN FEET		376.3	375°7 375°5		159.4	157.1	166.3	160.4	156.4	153.2		191.4	189.6	194.2	194.5	192.6	195.8	195.0 194.5	213.9	2000	209.7	215.1	217.5	216.6	208.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-15	30.2	30.8	*	68.0	70.3 62.8	61.1	67.0 60.6	71.0	74.2	. ;	52.1	57.6	53.0	52.8	54.6	52.7	52.2 52.7	68.6	73.3	72.8	67.4	65.0	65.9	74.5
DATE	<u>_</u>	2-30-64	5-30-64	7-23-63	7-29-63	9-26-63	11-30-63	3-05-64	3-26-64	5-29-64		8-29-63	9-27-63	11-30-63	12-30-63	3-05-64	4-28-64	5-29-64 6-30-64	7-30-63	8-28-63	10-29-63	12-30-63	1-27-64	4-28-64	5-28-64 6-30-64
GROUND SURFACE ELEVATION IN FEET	FRESNO IRRIGATION DISTRICT	406.5		215.0	227.4						1	247.5							282.5						
STATE WELL NUMBER	FRESNO IRRIG	135/23E-31P01 M CONT.		14S/17E-13H02 M	145/18E-08J01 M							145/19E-20801 M							145/20F-06H01 M						
•																									
AGENCY SUPPLYING DATA		6001					1606							5631								1690			
WATER SURFACE SUPPLYING ELEVATION DATA		216.2 6001 216.9	216.8	217.4 217.5 217.5	215.0		252.8	255.3	258.6 258.4	258.1 258.3	254.3	256.7	257.8	327.8 5631	333.9	335 ₀ 1	332.1	335•8		334.5 333.1			373.2 373.8	375.8	375.9 376.3
WATER SURFACE ELEVATION IN FEET	5-22.15				75.0 215.0 74.5 215.5	215.9	252.8	83.4 81.4 255.3				80.0 256.7	~	327.8	30.1 333.9		31.9 332.1		0 0	29.5 334.5 30.9 322.1		373.1	33°3 373°2		30.6 375.9 30.2 376.3
WATER SURFACE ELEVATION IN FEET		216.2 216.9	73.0		-22-64 75.0 -19-64 74.5	74.1 215.9	83.9 252.8	83.3		78.6	82.4	80.0	~	327.8	30.1		31.9		3-27-64 H 4-28-64 H	29.5	1000	33.4 373.1		30.7	
GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET	FRESNO IRRIGATION DISTRICT 5-22.15	73.8 216.2 73.1 216.9	73.0	72.6	-22-64 75.0 -19-64 74.5	6-24-64 74.1 215.9	83.9 252.8	83.3	78•1 78•3	78.6	82.4	80.0	78.9 2	36.2 327.8	30.1	28.9	31.9	28°2 n		29.5		33.4 373.1	33.3	30.7	30.6 30.2

AGENCY SUPPLYING DATA		4200	4200		4 2 0 0	4200	4200
WATER SURFACE ELEVATION IN FEET		226.3	2339°6 236°7 236°7 237°9 239°0 240°4	234°5 234°5 236°5	2114-4 2112-4 2112-6 2113-6 2114-5 2114-5 215-4 215-4	214.6 213.7 213.7 222.8 222.6 222.6 222.6 222.6 223.6 229.9	230.6 227.8 226.2 211.4 207.7 205.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.16	83.7	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	1 - 0 0 8 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9910-7 910-7 911-6 911-6 911-6 911-7 91-7 9	
DATE		12-01-63	7-01-63 8-01-63 9-01-63 10-01-63 11-01-63 12-01-63	3-01-64 4-01-64 4-29-64 6-05-64	7-01-63 8-01-63 9-01-63 10-01-63 12-01-64 2-01-64	4-101-64 4-30-64 6-30-64 7-01-63 9-01-63 11-01-63 12-01-63 1-01-64 2-01-64	4-01-64 4-30-64 6-04-64 7-04-63 7-31-63 10-02-63
GROUND SURFACE ELEVATION IN FEET	ON	310.0	325°0		e • • • • • • • • • • • • • • • • • • •	303 <u>.</u> 9	291.4
STATE WELL NUMBER	CITY OF FRESHO	135/20E-21J01 M CONT.	135/20E-23801 M		13S/20E-35H02 M	145/20E-01D01 M	145/20E-10M01 M
AGENCY SUPPLYING DATA		5631		5631		5631	4200
WATER SURFACE ELEVATION IN FEET		291.0 288.3 288.7	290.7 291.5 291.9 293.7 293.4 293.4	353.4		8 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	226. 226. 225. 225. 8
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-15	43.0 45.7	444444 4000000000000000000000000000000	44.7 46.6 11	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5-22.16 83.5 83.6 84.2
DATE	t	7-30-63 8-30-63 9-30-63	10-30-63 11-30-63 12-31-63 1-28-64 3-06-64 4-29-64	7-30-63 8-28-63	10-20-63 11-27-63 11-27-63 12-31-63 1-28-64 3-05-64 4-29-64 6-29-64	7-30-63 8-29-63 9-27-63 110-29-63 111-30-63 12-29-64 4-29-64 5-29-64 6-30-64	7-31-63 9-01-63 10-01-63 11-01-63
GROUND SURFACE ELEVATION IN PEET	ATION DISTRI	334.0		0 • 00 4		282,5	310.0
STATE WELL NUMBER	FRESMO IRRIGATION DISTRICT	145/21E-14A01 M		14S/22E-01P01 M		155/20E-13E02 M	CITY OF FRESMO 135/20E-21J01 M

AGENCY SUPPLYING DATA		6001					6001									6001										6001	6001		6001	6001	
WATER SURFACE ELEVATION IN FEET		136.5	140.4	136.4	131.4	127.0	135.2	136.3	144.4	147.4	149.0	144.0	140.5	139.7		126.0	129.5	137.4	141.4	141.5	143.2	132.2	132.9	129.0	0 • 771	143.8		133.8	135•8	144.9	144.1
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-17	23.5	19.6	23.6	28.6 28.5	33.0	44.8	43.7	35.6	32.6	31.0	36.0	39.5	40.3	D	39.0	35 C	27.6	23.6	23.5	21.8	32.8	32.1	36.0	7074	23.2		77.2	35.2 ¤	26.1	56.9
DATE		12-23-63	1-20-64	3-25-64	4-22-64	6-24-64	7-22-63	8-26-63	10-25-63	12-23-63	1-20-64	2-17-64	4-22-64	5-19-64	9-54-94	7-22-63	8-26-63	10-25-63	12-04-63	12-23-63	1-20-64	3-25-64	4-22-64	5-19-64	* 9- * 7-9	10-03-63	10-08-63	2-18-64	10-03-63	7-23-63	8-26-63
GROUND SURFACE ELEVATION IN FEET	SLOUGH AREA	160.0					180.0									165.0										167.0	211.0		171.0	171.0	
STATE WELL NUMBER	FRESNO SLOUGH	145/15E-25H02 M	CONT.				145/16E-03C01 M									14S/16E-08D01 M										145/16E-22N01 M	14S/17E-25A01 M		155/16E-01L01 M	155/16E-12C03 M	
AGENCY SUPPLYING DATA		4500							6001		6001										6001								6001		
AG SUPP D																															
WATER AG SURFACE ELEVATION D IN FEET			215.6	216.7	216.7	213.5	211.3		120.0	15101	96.5	95.2	126.5	133.9	134.8	124.5	1110	109.5	104.0			186.3	186.8	187.3	187.0	186.7 186.1	185.3	184.2		132.5	139.8
	5-22.16	208.5					80.1 211.3	5-22.17		1010					30.7 134.8 32.5 133.0					1	ם מ			17.7 187.3		18.3 186.7 18.9 186.1	7		131.1	27.5 132.5 25.0 135.0	7
WATER SURFACE ELEVATION IN FEET	5-22.16	82.9 208.5		74°7		77.9		5-22.17	42.0		*0*69		39.0	31.6		41.0		56.0	61.5		8-24-63 B	18.7	18.2		18.0		19.7		28.9 131.1 29.4 130.6	27.5	7
GROUND SUR- FACE TO SURFACE NATER SURFACE IN FEET	CITY OF FRESNO 5-22.16	82.9 208.5	75.8	74°7	74.7	77.9	1.08	FRESNO SLOUGH AREA 5-22.17	42.0	6.0	*0*69	70.3*	39.0	31.6	30.7	41.0	54.5	56.0	61.5	6		18.7	18.2	17.7	18.0	18.3 18.9	19.7	20.8	28.9 131.1 29.4 130.6	27.5	20.2

GROUND SURFACE ELEVATION IN FEET
5-22.17
10-02-63 100.0 2-10-64 a 3-02-64 91.5
7-23-63 100.6 84.4 8-26-63 101.2 83.8 83.8 810-25-63 97.1 87.9 92.8 81.9 10.20-64 78.0 107.0 2-10-64 82.9 102.1 3-25-64 82.9 102.1 5-264 85.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 9
7
98.5 102.0
10-22-63 93.2 2-10-64 n 3-03-64 90.8
7-30-63 DRY

AGENCY SUPPLYING DATA		4636		4636			4638		4636	
WATER SURFACE ELEVATION IN FEET		176.3 176.8 171.2 171.2	167.4	207.9 207.5 211.0 212.2	212.8 213.2 213.5 213.7 212.1	208.1 207.9	264.9 264.5 265.2 265.1	266.9 268.6 268.6 268.6 268.6 268.0 267.0	301.0 301.5 304.6 304.6	90000000000000000000000000000000000000
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.18	70°3 69°8 75°4 75°4	79.2	56.9 57.3 53.8 52.6	52.0 511.6 511.3 521.1	0.00 0.00 0.00 0.00	36.3 36.7 36.0	2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
DATE	DISTRICT	1-03-64 2-01-64 3-03-64 4-01-64	5-25-64	7-01-63 7-30-63 8-31-63 10-03-63	11-01-63 12-03-63 1-03-64 2-01-64 3-03-64	4-29-64	7-01-63 7-30-63 8-31-63	11-01-63 11-01-63 11-03-64 2-01-64 3-03-64 4-21-64 5-25-64	7-01-63 7-30-63 8-31-63 10-03-63 11-01-63	1-03-64 2-01-64 3-03-64 4-01-64 4-29-64 5-25-64
GROUND SURFACE ELEVATION IN FEET		246.6		264.8			301.2		337.0	
STATE WELL NUMBER	CONSOLIDATED IRRIGATION	155/19E-24N01 M CONT.		155/20E-28A01 M			155/21E-15D01 M		15S/22E-16A01 M	
AGENCY SUPPLYING DATA		5050	5050			5050	5050	4636		4636
WATER SURFACE ELEVATION IN FEET		76.7 79.7 90.7 91.4	127.9	129.8 134.2 135.1	138.4	78.5	126.7	3229 32210 32210 3220 320 320 320 320 320 320 320 320 3	324.1 324.6 323.7 322.9	166.2 166.8 167.4 171.0 173.2 175.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-17	114.3 1111.3 100.3 99.6	92,1	88 50 8 8 50 8 8 6 9 8 8 2 0 9	81.6 B6.8 103.0	120.5	122.07	3-22.18 36.2 35.6 34.2 33.3 32.7	31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80.4 79.8 79.2 75.6 73.4
DATE		3-31-64 4-27-64 5-25-64 6-24-64	7-29-63	9-27-63 10-28-63 11-27-63 12-30-63	2-03-64 2-24-64 3-31-64 4-27-64 5-25-64	12-19-63	12-19-63 2-07-64	7-01-63 7-30-63 8-31-63 10-03-63 11-01-63	2 - 01 - 64 3 - 01 - 64 4 - 01 - 64 5 - 29 - 64	7-01-63 7-30-63 8-31-63 10-03-63 11-01-63
GROUND SURFACE ELEVATION IN FEET	4 AREA	191•0	220.0			199.0	199.5	355.7		246.6
STATE WELL NUMBER	FRESNO SLOUGH AREA	165/18E-31002 M CONT.	16S/19E-34P01 M			175/17E-12H01 M	17S/18E-23A02 M	CONSOLIDATED IRRIGATION DISTRICT 145/22E-22N01 M 355.7 7-01- 7-30- 8-31- 10-03- 11-01- 12-03-		155/19E-24N01 M

AGENCY SUPPLYING DATA		4636					4636											4636														4637									
WATER SURFACE ELEVATION IN FEET		226.6	227.0	223.1	221.8	220•9	266.3	266.3	267.6	268.1	269.0	260.3	269.2	269.2	269-1	269.1		260.8	262.1	263.9	261.9	261.1	261•3	260.5	260.5	259.2	257.8		253.8			339.9	04040	337.3	334.9	336.5	33505	231.6	226 0	321.9	, , ,
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.18	4.44	0 4 4	47.9	49.2	50•1	31.2	31.2	20.00	29.4	28.5	0.82	28.3	28.3	28.4	28.4		25.2	23.9	22.1	24.1	24.9	24.7	25.5	25.5	26.8	28.2	31.4	32.2	5-22-19	, ,	51.1	\$ 0.0 \$ 0.0	53.7	56.1	54.5	55.5	0 4	79.4	7040	•
DATE	DISTRICT	1-03-64	2-01-64	4-01-64	4-29-64	5-25-64	7-01-63	7-30-63	10-03-63	11-01-63	12-03-63	1-03-64	3-03-64	4-01-64	79-67-7	5-25-64		7-01-63	7-30-63	8-31-63	10-03-63	11-01-63	12-03-63	1-03-64	2-01-64	3-03-64	4-01-64	4-53-64	5-22-64			7-30-63	60-70-6	10-05-63	10-31-63	11-29-63	12-30-63	1-20-64	*0-07-7	3-21-64	10
GROUND SURFACE ELEVATION IN FEET		271.0					297.5											286.0												TOUR DISTRICT	TOTAL CITY NOT	391.0									
STATE WELL NUMBER	CONSOLIDATED IRRIGATION	165/21E-22N01 M	CONT				16S/22E-23R01 M											175/22E-03C01 M												ALTA TRRESATION	ארוש זיאופט	14S/23E-36R01 M									
•																																									
AGENCY SUPPLYING DATA		4636										4636												4636												4636					
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET			282.2	285.3	285.7	286.2 285.8	286.8	285+3	283.0	282.1			14743	156.0	157.8	158.9	160.0	160.8	157.9	154.9	151.0	149.3			184.2	186.0	187.3	186.2	188.9	189.7	189.2	187.0	163.0	180.4			218.4	223.0	0.222	226.0	7 700 7
	5-22.18	281.8	39.7 282.2		36.2 285.7					39.8 282.1	(i				77.7 157.8			74.7 160.8		7	84.5 151.0	149.		183.7	63.5 184.2					58.0 189.7		60.7 187.0	7	67.3 180.4				75.1 218.9			
WATER SURFACE ELEVATION IN FEET		40.1 281.8		36.6	36.2		35.1	36.6		39.8		150.9	93°7	70.5	7.77	76.6	75.5	74.7	77.6	80.6	84.5	149.		64.0 183.7	63.5	61.7	60°4	59.5		58.0	58.5	60.7	1 040	.3		218.3	52.6		0.64		0.64
GROUND SUR. WATER FACE O SURFACE WATER ELEVATION IN FEET	CONSOLIDATED IRRIGATION DISTRICT 5-22.18	40.1 281.8	39°7	36.6	36.2	35.7	35.1	36.6	36.9	39.8		84.6 150.9	93°7	70.5	7.77	76.6	75.5	74.7	77.6	80.6	84.5	86.2 149.		64.0 183.7	63.5	61.7	60°4	59.5	50 60 50 60 50 60 50 60	58.0	58.5	60.7	1 040	67.3		52.7 218.3	52.6	1.76	0.64	0.64	0.64

AGENCY SUPPLYING DATA		4637			4637		4637		4637	
WATER SURFACE ELEVATION IN FEET		301.7	302.4 302.4 301.3	202 294 295 295 295 295 295	311.9 315.9 312.7 313.6 314.8	307.9 306.4 306.5 310.4	238.6 241.0 242.9 244.7	242.5 240.4 241.7 234.4 233.5	237.6 236.6 237.5 239.1 240.9 242.9	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.19	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$50.1 \$50.3 \$50.4 \$70.5 \$70.5	56.1 57.6 57.5 53.6	36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	99999999999999999999999999999999999999	
DATE		8-27-63	10-30-63 11-26-63 12-27-63 1-27-64	2-25-64 3-26-64 4-25-64 5-29-64 6-25-64	7-29-63 8-27-63 10-01-63 10-30-63 11-26-63 12-27-64	2-25-64 3-26-64 4-25-64 5-29-64 6-25-64	7-29-63 8-27-63 10-03-63 11-01-63 11-27-63 12-28-63 1-28-64	2-27-64 3-30-64 4-28-64 6-01-64 6-27-64	7-31-63 9-03-63 10-03-63 11-01-63 11-27-63 12-28-63 1-28-64	
GROUND SURFACE ELEVATION IN FEET	ALTA IRRIGATION DISTRICT	336.0			364.0		275.0		275.0	
STATE WELL NUMBER	ALTA IRRIGA"	165/24E-21J01 M CONT.			16S/25E-29A01 M		175/22E-25A01 M		175/22E-25J01 M	
AGENCY SUPPLYING DATA		4637	4637 6001 4637	4637		4637		4637		4637
WATER SURFACE ELEVATION IN FEET		322.9	349.4 330.1 341.0	305.1 305.1 306.3 309.2	309.9 309.9 309.9 3004.7 297.6	348.8 351.7 344.1 342.2	94444 94444 9446 9416 9416 9416 9416 941	281.4 282.3 284.5 285.1	2885.2 2885.3 2885.3 2885.3 2885.3 2885.3 2885.3	298•2
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22-19	68.1	45.6 64.9 54.0	4 4 5 4 5 4 5 4 5 4 5 5 6 5 6 5 6 5 6 5	744600000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44444 00004 0000000000000000000000000	31.7 29.5 28.9 28.9	99999999999999999999999999999999999999	37.8
DATE		5-31-64	7-30-63 2-06-64 2-26-64	7-30-63 9-02-63 10-02-63 10-31-63	12-30-63 1-28-64 2-26-64 3-27-64 4-27-64 5-31-64	7-29-63 8-31-63 10-04-63 11-02-63	12-31-63 1-30-64 2-28-64 3-30-64 4-29-64 5-29-64	7-30-63 9-03-63 10-03-63 11-01-63	12-28-63 1-29-64 2-27-64 3-28-64 4-28-64 6-01-64	7-29-63
GROUND SURFACE ELEVATION IN FEET	ALTA IRRIGATION DISTRICT	391.0	395.0	358.0		388.0		314.0		336.0
GRO SURI ELEV IN F	TON DI	m	m	М		m				

165/246-21.01 M 336.0

AGENCY SUPPLYING DATA		5050 5129 5050 5129	5050	5050	2050		5050	6001 5129	5050				6001	
WATER SURFACE ELEVATION IN FEET		199.0 197.7 195.3 188.5	188.5 180.2 183.5 176.4	205•3	147.1	146.3 142.0 147.5	201.6	202.8	180.9 179.9 180.7	181.2 181.8 181.7 181.8	181.5		429°0 430°3	430°7 428°8 427°9 426°5 425°7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.20	55.0 56.3 65.3 65.5	65.5 73.8 77.5	2.7	69.9	70.7 75.0 69.5	4 • 4	19.2	30.1 31.1 30.3	29.8 29.2 29.3 29.3	31°1	5-22-21		12.3 14.2 15.1 16.5 17.3
DATE		12-30-63 2-03-64 2-12-64 2-24-64 2-29-64	3-31-64 4-27-64 5-31-64 6-28-64	2-05-64	7-29-63	9-27-63 10-28-63 11-27-63 12-30-63	2-10-64	9-30-63	7-29-63 8-29-63 9-27-63	10-28-63 11-27-63 12-30-63 2-03-64	2-24-64 3-31-64 4-27-64 5-25-64	DISTRICT	7-02-63	9-03-63 10-01-63 12-02-63 1-02-64 2-03-64
GROUND SURFACE ELEVATION IN FEET	RIVER AREA	254.0		208.0	217.0		206.0	222+0	211.0			IRRIGATION DISTRICT	443.0	
STATE WELL NUMBER	LOWER KINGS R	185/21E-10R01 M CONT.		195/19E-25A01 M	195/20E-21A01 M		205/20E-09C01 M	20S/21E-03A01 M	20S/22E-19M01 M			ORANGE COVE	145/24E-20B01 M	
AGENCY SUPPLYING DATA		4637	4637		5050	2050				5050		5050	5050	5050
	1													
WATER SURFACE ELEVATION IN FEET		243.8 242.2 241.6 238.8 237.2	287.4		156.4	159.5 159.5 126.5 157.8	179.6	162.8	155.6 151.3 148.0	212.6	220.2	205.0	222.5	181.6 181.7 186.5 192.9
GROUND SUR. WATER PACE TO SURFACE SURFACE IN FEET IN FEET	5-22-19	31.2 243.8 32.8 242.2 33.4 241.6 36.2 238.8		50	63.6 156.4				67.4 155.6 71.7 151.3 75.0 148.0	6 212• 9* 215•	л 37•0 220•2 #	5.0 205.0	7.5 222.5	72.4 181.6 72.3 181.7 67.5 186.5 61.1 192.9
 	5-22-19			5-22.20		6 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9	56.6 43.4	660 660 140 140 140 140 140 140 140 140 140 14		44.6 212. " 215.	220•		₹.	
GROUND SUR. FACE TO WATER SURFACE IN FEET	ALTA IRRIGATION DISTRICT 5-22-19	8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	47.6	5-22-20	63.6	6 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9	56.6 43.4	600.2	67.4 71.7 75.0	44.6 212. " 215.	37.0 220.	2.0	-05-64 7.5	72.4 72.3 67.5 61.1

AGENCY SUPPLYING DATA		6001	6001			6001	6001
WATER SURFACE ELEVATION IN FEET		4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	348.9			259.0 260.8 263.2 263.2 263.3 261.3 261.2 261.2	2666 2666 2666 2666 2666 2666 2666 266
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.22	1.6 1.5 1.7 2.0	15.1	110000000000000000000000000000000000000	10.4 10.2 9.1 9.2 5-22.23	98889911889919899999999999999999999999	8822 8 8 8 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
DATE	ISTRICT	3-24-64 4-21-64 5-19-64 6-22-64	7-26-63	10-21-63 12-24-63 12-24-63 1-20-64 2-66-64		7-01-63 8-01-63 8-31-63 10-04-63 11-29-64 1-29-64 4-01-64 4-29-64 6-02-64	7-01-63 8-01-63 8-31-63 10-04-63 11-09-63 11-29-64 1-29-64 1-29-64 1-29-64 1-29-64 1-29-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION D	405.0	364.0		SATION DISTRI	350.0	349.0
STATE WELL NUMBER	STONE CORRAL IRRIGATION DISTRICT	165/26E-32R01 M CONT.	175/26E-07R01 M		IVANHOE IRRIGATION DISTRICT	175/25E-27R01 M	175/25E-35M01 M
AGENCY SUPPLYING DATA		6 00 1	6001	6001		6001	6001
WATER SURFACE ELEVATION IN PEET		426.5 427.3 427.4 428.3	475•7 476•1	371.5 373.3 376.2 374.1	377- 3778- 378-2 378-2 378-2 378-2	90000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.21	16.5 15.7 15.6 14.7	34. 33.9	33.72 28.8 20.9 27.7	266.88 266.88 266.88	15.7 115.5 113.9 114.5 114.5 115.6 117.0 117.0	5-22 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATE	STRICT	3-03-64 4-02-64 5-01-64 6-02-64	9-26-63	7-02-63 8-02-63 9-03-63 10-01-63	1-03-64 2-03-64 3-02-64 4-02-64 5-01-64 6-01-64	7-03-63 8-003-63 9-004-63 10-03-63 11-03-64 2-03-64 4-02-64 5-04-64 6-03-64	7-26-63 8-30-63 9-27-63 10-21-63 12-02-64 12-04-64 2-04-64 2-04-64
GRDUND SURFACE ELEVATION IN FEET	ORANGE COVE IRRIGATION DISTRICT	443.0	510.0	405.0		415.0	STONE CORRAL IRRIGATION DISTRICT 6E-32R01 M 405.0 7-26- 9-27- 10-21- 12-02- 12-24- 1-20- 2-04- 2-04-
STATE WELL NUMBER	ORANGE COVE	145/24E-20B01 M CONT.	145/25E-30D01 M	155/24E-14D01 M		165/25E-04C02 M	STONE CORRAL 165/266-32R01 M

AGENCY SUPPLYING DATA		6001		6001	6001			6001		6 0 0 1	6001	6001	6001
WATER SURFACE ELEVATION IN FEET		357.0 378.4 358.8	356.5 357.1 356.3 354.8	304.6 313.4	278.6	270.0 273.4 272.3 271.5	265.7 263.7 263.6 263.6	230.5	7300	368•4 368•9	458.0 458.5	172.2 174.6 174.7	153.5 150.3 150.1
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-23	59.0 37.6 57.2	59.5 58.9 59.7 61.2	58.4 49.6 5-22.24	18.9	22.52.23.25.25.25.25.25.25.25.25.25.25.25.25.25.	200 00 00 00 00 00 00 00 00 00 00 00 00	104.5	O 11 %:	16.6	12.0	78.8 76.4 76.3	91.5 94.7 94.9
DATE	Ħ.	11-29-63 1-06-64 1-29-64	3-04-64 4-01-64 4-30-64 6-02-64	9-25-63 2-03- 64 7 DIST	7-26-63	9-27-63 10-21-63 12-03-63 12-24-63 11-20-64	2-25-64 3-24-64 4-21-64 5-19-64 6-22-64	7-26-63	9-27-63 10-21-63 12-03-63	9-27-63	9-27-63	9-26-63 2-05-64 2-12-64	7-25-63 8-29-63 9-24-63
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	416.0		363.0 WATER CONSERV	297.5			335.0		385.0	470.0	251.0	245.0
STATE WELL NUMBER	IVANHOE IRRI	175/26E-34D01 M CONT.		185/25E-12001 M KAWEAH DELTA	175/24E-34B01 M			175/25E-21A01 M		175/26E-17P02 M	175/27E-34P01 M	185/22E-29A01 M	185/22E-36P01 M
AGENCY SUPPLYING DATA		6001	6001			6001			6001				6001
WATER SURFACE ELEVATION IN FEET			288.7 287.7 290.2	290°8 290°2 290°4 284°3 289°5		375.2 375.0 376.0 376.0	376.0 374.9 373.8 371.4	374.7	314.6	315.6	317.1	317.0	952 952 953 953 953 953 953
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22-23	n	76.3 77.3 74.8	74.6 74.0 74.6 75.5	ם ם	18 0 0 1 18 0 0 1 18 0 0 0 0 0 0 0 0 0 0	18.0 19.1 20.2 22.6 20.8	19•3 ¤	70•4 71•0	69.4 69.1	67.9	0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 0 · 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATE	15	6-02-64	7-01-63 8-01-63 8-31-63 11-04-63	11-29-63 1-06-64 1-29-64 3-02-64 4-01-64	4-29-64	7-01-63 8-01-63 8-31-63 10-04-63 11-04-63	11-29-63 1-06-64 1-29-64 3-04-64 4-02-64	4-30-64	7-01-63	11-04-63	1-29-64	4-02-64 4-30-64 6-02-64	7-01-63 8-01-63 8-31-63 10-04-63
GROUND SURFACE EL EVATION IN FEET	ATION DISTRI	349.0	365.0			394.0			385.0				416.0
STATE WELL NUMBER	IVANHOE IRRIGATION DISTRICT	175/25E-35M01 M CONT.	17S/25E-36G01 M			175/26E-21E01 M			175/26E-32N01 M				175/26E-34D01 M

AGENCY SUPPLYING DATA		6001	6001	6001			6001					6001
WATER SURFACE ELEVATION IN FEET		341.0	175.7	145.5	149.0 150.3 151.3 151.7 148.9	144.4 142.5 136.5	127.3	128.5	131.0	1346	133.0 131.0 129.5	280.4 280.6 280.5 279.4 275.0 274.3 273.6 273.6 267.2 267.2
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.24	26.0	69.3	89.5 91.2 91.3	8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	90.0 92.5 98.5	106.4	105.5	103.0	99.6 100.0	101.0	00000000000000000000000000000000000000
DATE	V DIST	6-23-64	9-27-63 2-05-64	7-25-63 8-29-63 9-26-63	12-02-63 12-23-63 1-20-64 2-04-64 2-24-64	4-20-64 5-18-64 6-23-64	7-25-63	9-30-63	12-02-63	2-05-64	5-23-64 4-20-64 5-18-64 6-23-64	7-25-63 8-30-63 9-24-63 10-21-63 12-03-63 12-24-64 1-20-64 2-24-64 3-23-64 4-21-64 5-18-64
GROUND SURFACE ELEVATION IN FEET	KAWEAH DELTA WATER CONSERV	367.0	245.0	235.0			234.0					320.0
STATE WELL NUMBER	KAWEAH DELTA	185/26E-30N01 M CONT.	195/22E-01N02 M	195/22E-19A01 M			195/22E-36E01 M					195/25E-07K01 M
AGENCY SUPPLYING DATA		6001			6001			5129	6001	6001	6001	6001
WATER SURFACE ELEVATION IN FEET		154.0	165.4	157.2 154.9 149.3	221.4 217.8 217.9 221.8 227.0	230°5 230°5 226°0	224.2	185.5	244.0	289.1	369.0 371.7	######################################
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.24	91.0 83.5	79.6 82.6 87.8	87.8 90.1 95.7	64.04 64.04 60.7 55.5	50.00	58.3 61.9	85.5	68.5	48.9	21.0	25.7 26.3 22.1 22.1 22.1 26.1 26.1 26.2
DATE	V DIST	10-22-63 12-02-63	1-20-64 2-24-64	4-20-64 5-18-64 6-23-64	7-25-63 8-29-63 9-24-63 10-21-63 12-02-63	1-20-64 2-24-64 3-23-64 4-20-64	5-18-64	2-05-64	9-24-63	10-01-63	9-25-63	7-26-63 8-30-63 9-21-63 10-21-63 12-02-64 2-24-64 3-24-64 4-21-64 5-19-64
GROUND SURFACE EL EVATION IN FEET	KAWEAH DELTA WATER CONSERV DIST	245.0			282.5			271.0	312.5	338.0	390•0	367.0
STATE WELL NUMBER	KAWEAH DELTA	185/22E-36P01 M CONT.			185/23E-12H01 M			185/23E-34A01 M	185/24E-26A01 M	185/25E-33F01 M		185 /26 E-30N01 M

AGENCY SUPPLYING DATA		6001	6001	6001				6001			6 0 0 1
WATER SURFACE ELEVATION IN FEET			156.8 153.7	189.7 200.3 206.4	209.7 205.0 210.8 210.0	203.5	503	190.6 194.0 204.6 208.1 207.5	208.8 199.5 197.3 198.0	179.0	266.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-25	_	93°7	100°3 89°7 83°6	80.0 49.2 80.0	86.5 93.4	0 0 0	999.4 96.0 85.0 81.9	81.2 90.5 92.7 92.0	111.0	61.7 558.8 55.0 55.0 55.0 60.5 60.5
DATE		4-28-64	2-05-64 2-17-64	7-25-63 8-29-63 9-25-63 10-22-63	12-02-63 12-23-63 1-24-64 2-10-64	2-25-64 3-30-64 4-28-64	6-26-64	7-25-63 8-29-63 9-25-63 10-22-63 12-02-63	1-24-64 2-25-64 3-30-64 4-28-64	6-26-64	7-25-63 8-30-63 9-24-63 10-21-63 12-02-63 2-06-64 3-30-64 4-21-64 5-28-64
GROUND SURFACE ELEVATION IN FEET	TULARE IRRIGATION DISTRICT	270•0	250.5	290.0				290.0			327.0
STATE WELL NUMBER	TULARE IRRIG	195/23E-14R01 M CONT.	195/23E-32H01 M	195/24E-16P01 M				195/24E-27001 M			195/25E-17J01 M
AGENCY SUPPLYING DATA		6001	6001			6001 5129	6001				6001
WATER SURFACE ELEVATION IN FEET		266.1	227.4	251-1 253-6 231-0	241.0 226.9	102.9	199.7	213.7 219.2 226.0 227.9 228.7 208.3	213.7 214.9 207.4 193.0		16990 178990 178990 178990 17890 18690 19690 19690 19690
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-24	53.9	п п 113•6 109•3	89.9 87.4 110.0	114.1	123•1 n	104.8	9 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	90.8 89.6 97.1 111.5	5-22-25	101.0 100.0 100.0 87.2 89.6 89.9 92.9 83.5
DATE	V DIST	6-23-64	7-26-63 8-30-63 9-25-63	12-02-63 12-23-63 1-20-64 2-24-64	5-23-64 4-20-64 5-18-64 6-22-64	9-30-63	7-25-63	9-25-63 10-21-63 12-02-63 12-23-63 1-20-64 2-24-64	3-23-64 4-20-64 5-18-64 6-23-64	-	7-25-63 8-29-63 9-25-63 10-10-63 12-22-63 12-23-63 2-10-64 2-25-64 3-30-64
GROUND SURFACE ELEVATION IN FEET	KAWEAH DELTA WATER CONSERV DIST	320.0	341.0			226.0	304.5			TULARE IRRIGATION DISTRICT	270.0
STATE WELL NUMBER	KAWEAH DELTA	195/25E-07K01 M CONT.	195/26E-34R02 M			20S/22E-10C01 M	20S/25E-14F01 M			TULARE IRRIG	195/23E-14R01 M

	AGENCY SUPPLYING DATA		6 001	6001		6 0 0 1		6001
	WATER SURFACE ELEVATION IN FEET		127.3 127.8 126.5 123.0	376.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4199.5 4199.8 416.7	271.2 273.1 269.5 276.7 277.7 282.0 283.8
	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.25	94.7 94.5 95.5 99.0 11	59.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.5 27.5 28.3 30.5	103.8 101.9 105.5 98.3 97.3 93.0
	DATE		1-24-64 2-05-64 2-25-64 3-30-64 4-28-64 5-28-64 6-26-64	7-26-63	10-21-63 12-02-63 12-02-64 2-24-64 3-24-64 5-19-64 5-19-64	7-26-63 8-30-63 9-25-63 9-26-63 10-21-63 12-24-63	2-24-64 3-24-64 4-20-64 5-19-64 6-22-64	7-26-63 8-30-63 9-25-63 10-21-63 12-02-63 12-24-63
	GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	3E-05R01 M 222.0 ONT. EXETER IRRIGATION DISTRICT	436.0		447.0		375.0
	STATE WELL NUMBER	TULARE IRRI	21S/23E-05R01 M CONT.	185/26E-25K01 M		18S/27E-29D01 M		195/26E-14E01 M
1	AGENCY SUPPLYING DATA		6 0 0 1		6 001	6001		6001
	WATER SURFACE ELEVATION IN FEET		11126.2 1126.2 1136.2 11386.8 11386.9 11386.9	136.2 124.4 121.5	1553. 1511. 1711. 1850. 1865. 1700. 1700. 1600. 1600. 1600.	1608 4 5064 1608 4 5064 1668 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	154.9	121.4 120.4 121.0 121.3 123.1
)	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-25	126.6 115.8 115.8 1104.2 1001.1 101.1	104.8 116.6 119.5	119.5 121.7 101.9 102.3 87.7 92.6 88.1 1102.7	107.5 127.7 127.7 1112.5 101.9	98 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100.6 101.6 100.7 98.9 96.1
	DATE	_	7-25-63 8-29-63 9-26-63 110-22-63 112-23-63 112-23-64 2-25-64	5-28-64 6-26-64	7-25-63 8-29-63 9-25-63 110-21-63 112-20-63 2-07-64 2-25-64	7-25-64 6-26-64 7-25-63 9-25-63 12-21-63 12-21-63	1-24-64 3-30-64 4-28-64 5-28-64	7-26-63 8-30-63 9-26-63 10-22-63 12-04-63
	GROUND SURFACE ELEVATION IN FEET	TULARE IRRIGATION DISTRICT	241.0		273.0	250.0		222.0
	STATE WELL NUMBER	TULARE IRRIG	205/23E-08B02 M		205/24E-16H01 M	20S/24E-30J02 M		21S/23E-05R01 M

AGENCY SUPPLYING DATA		6001	6001	6001			6 0 0 1		6001	
WATER SURFACE ELEVATION IN FEET		272.0 270.6 257.4	217•6 234•0	275.0	279.0 282.0 285.0	286.0 285.6 284.6 284.6 284.3 284.1 282.6 278.2	194.2 190.9 185.7 201.0 216.5 218.5	216.5 212.9 204.7 198.0	334.3	336.7 338.1 338.1 339.1 338.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-28	88.0 89.4 102.6	123.4	87.5	83.5 80.5 77.5	76.5 776.9 778.2 78.2 8.9	137.3 140.6 145.8 130.5 115.0	115.0 118.6 0 126.8 133.5	57.7 n 56.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATE	101	2-24-64 3-23-64 4-21-64 5-18-64 6-22-64	9-30-63	7-25-63	9-25-63 10-21-63 12-02-63	12-24-63 1-21-64 2-24-64 3-26-64 4-22-64 5-19-64 6-22-64	7-25-63 8-29-63 9-25-63 10-21-63 12-02-63 12-24-64	2-24-64 3-25-64 4-22-64 5-19-64 6-22-64	7-25-63 8-29-63 9-25-63	10-21-63 12-02-63 12-24-63 12-24-64 2-24-64 3-25-64 4-22-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	360.0	341.0	362.5			331.5		392.0	
STATE WELL NUMBER	LINDMORE IRR	205/26E-01P01 M CONT.	20S/26E-22C02 M	20S/26E-24K01 M			205/26E-32A01 M		20S/27E-29E01 M	
AGENCY SUPPLYING DATA		6001	6001		6001	6001		6001	1004	
WATER SURFACE ELEVATION IN FEET		284.2 282.8 279.0 274.6	254.8		310.4	301.1 297.9 307.9 309.9 310.3	309°5 308°0 307°6 307°6 308°1	6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 7 7 7 7 7	[172	259.4 266.9 266.8 277.0 277.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.26	90.8 E 92.2 96.0	104.2	5-22.27	74.6	70.9 74.1 64.1 62.1 62.7 61.3	00000000000000000000000000000000000000	52.7	5-22.28	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATE		2-24-64 3-23-64 4-20-64 5-18-64 6-22-64	9-26-63	TS10	9-23-63	7-26-63 8-30-63 9-25-63 10-16-63 12-02-63	1-21-64 2-04-64 2-24-64 3-23-64 4-21-64 5-18-64	9-23-63 2-04-64 9-23-63	RICT	10-21-63 9-30-63 9-21-63 10-21-63 12-23-63 1-20-64 2-04-64
GROUND SURFACE ELEVATION IN FEET	TION DISTRIC	375.0	359.0		385.0	372.0		414.0	IRRIGATION DISTRICT	0.000
STATE WELL NUMBER	EXETER IRRIGATION DISTRICT	195/26E-14E01 M CONT.	195/26E-23E01 M	LINDSAY-STRATHMORE IRRIG	195/27E-29D01 M	205/27E-06801 M		20S/27E-21F01 M 20S/27E-29J01 M		20S/26E-01P01 M

AGENCY SUPPLYING DATA		6001		6001	6001				6001			6001	
WATER SURFACE ELEVATION IN FEET		361.8	368-1 368-1 372-6 371-0 372-1 371-8	376.9	390.0	393.7 393.6 397.6	390°7 390°6 394°0	391.3	301.0 312.6 307.0	313.2	310•3 309•7 299•7	4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	***
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22-29	47.2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	59.1	30°0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	29.9 26.0 20.0	28.7	9 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	81.8	88 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	119.2 118.5 102.0 141.2*	112.0
DATE	ISTRICT	9-23-63	12-23-63 12-23-63 1-21-64 2-24-64 3-25-64 5-19-64	9-23-63	7-29-63	9-23-63 10-21-63 11-22-63 12-20-63	3-02-64	5-21-64	7-29-63 8-20-63 9-23-63	11-22-63	3-02-64 3-25-64 3-25-64 5-27-64 6-22-64	8-20-63 9-23-63 11-22-63 2-06-64 3-25-64	† 9 - 9 7 L C
GROUND SURFACE ELEVATION IN FEET	IRRIGATION D	0.604		436.0	420.0				395.0			467.0	
STATE WELL NUMBER	PORTERVILLE JRRIGATION DISTRICT	21S/27E-21E01 M CONT.		21S/27E-23N01 M	215/27E-28E01 M				22S/26E-01J01 M			225/27E-10R01 M	
AGENCY SUPPLYING DATA		6001	6001			6001					1000		6001
WATER SURFACE ELEVATION IN FEET		335.1	267.8 257.1 278.1 289.9 300.2 298.8	297.6 280.3 281.7	271.3	390 8 393 7 395 9	393.1 393.7	392.7 393.6 392.2	392.9 396.6 392.6		303.4 303.4 313.8 5.5 5.8	318.0 317.5 317.5 307.9	361.8 360.9
œ													
GROUND SUR FACE TO WATER SURFACE IN FEET	5-22-28	п 56.9	104.2 114.9 93.9 82.1 71.8	91.7	100.7	38 .2 33 .3 1 .	35°9 35°9 11°3	2	36.1 32.4 36.4	5-22.29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		47.2 48.1
GROUND SU FACE TO WATE SURFACE IN FEET		5-19-64 n 6-22-64 56.9								Ş		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	IRRIGATION DISTRICT 5-22.28		104-2 114-9 93-9 82-1 71-8 72-7					2 4 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		N DISTRICT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	47.2 48.1

AGENCY SUPPLYING DATA		6001	6001							6001									,	6001									6001	6001
WATER SURFACE ELEVATION IN FEET		242.0 239.3	205.5	219.5	241.5 243.5	243.5	219.5	220.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			297.0	270-0	277.0	281.0	284.0		286.0		0	124.0	0	120.0	125.0	119.0	131.0	135.0	121.1	96.5	182.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.30	49.0 51.7	116.5	102.5	80.5 78.5	78.5	102.5	101.5	000		9 10	62.0	0 0 0	82.0	78.0	75.0	=	73.0		n , c ,	120.0	- 3	124.0	119.0	125.0	113.0	109.0	122.9	155.0	111.5
DATE	ON DIST	5-01-64 6-03-64	7-02-63	9-30-63 11-08-63	12-02-63	2-01-64	4-03-64	5-01-64	0000	7-02-63	9-03-63	9-28-63	10-21-63	1-05-64	2-01-64	3-02-64	4-03-64	5-01-64		7-02-63	8-04-63	9-28-63	10-27-63	12-05-63	1-02-64	3-02-64	5-01-64	6-03-64	9-26-63	7-01-63
GROUND SURFACE ELEVATION IN FEET	RIVER IRRIGATION DIST	291.0	322.0							359.0										244.0									251.5	294.0
STATE WELL NUMBER	LOWER TULE R	215/25E-16A01 M CDNT.	21S/26E-06G02 M							21S/26E-10H01 M										225/24E-09A01 M									225/24E-15A01 M	225/25E-10E01 M
AGENCY SUPPLYING DATA		6001	6001	6001								6001										6001		6001						
																0												00	000	
WATER SURFACE ELEVATION IN FEET		118•2 137•7		143.5	145.5	146.5	148.5	147.5	148.5	148.5	•	154.0	154.0	154.0	157.0	158.0	161.0	164.0	160.0	159.0	1007	162.5	7.707	253.0	242.0	254.0	255.0	250.0	234.0	244.0
FACE TO SURFACE SURFACE IN FEET	5-22.30	103.3 118.2 83.8 137.7			84.5 145.5 84.5 145.5					81.5 148.5	•	97.0 154.0	-1 -	• ~	-		90.0 161.0			92.0 159.0		122.5 162.5 82.6 202.6				37.04 254.0 23.0* 268.0			, 6, 6	47.0 244.0
-			9-30-63 п	86.5	84.5 84.5		81.5		81.5		C 20	٦,	97.0	97.0	94.0	93.0	90.0		91.0	-1 -	. • > .		650	38.0	0.64		36.0		57.0	47.0
GROUND SUR. FACE TO WATER SURFACE IN FEET	RIVER IRRIGATION DIST 5-22.30	103.3 83.8		86.5	84.5 84.5	83.5	81.5	82.5	81.5	81.5	C 20	97.0	97.0	97.0	94.0	93.0	90.0	87.0	91.0	92.0	10-50-0 10-50-0	122.5	650	38.0	0.64	37.0	36.0	41.0	57.0	47.0

AGENCY SUPPLYING DATA		6001	6001			6001	6001		6001
WATER SURFACE ELEVATION IN FEET			4 4 5 8 8 6 5 8 8 6 5 8 8 8 8 8 8 8 8 8 8 8	415.4 416.0		260.1 277.8 278.6 286.3 279.2 274.8	225. 227. 237. 236. 239. 241. 241. 235. 235.	234.0	1336 1336 1336 1412 1344 1344 1344 1344 1344 1344 1344
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22•31	B	131.3 140.0 137.4 118.2 108.7 105.4 105.2	119.6	5-22-32	135.9 118.2 117.4 109.7 116.8	145.5 143.1 138.3 134.5 131.5 129.3 125.7	137•0 n	204.3 208.6 202.4 207.0 197.5 197.3 203.3
DATE	10.1	6-22-64	7-25-63 8-29-63 9-23-63 10-21-63 12-02-63 12-24-64 2-24-64	5-19-64 5-19-64	RICT	8-20-63 9-23-63 11-22-63 2-07-64 3-25-64 5-26-64	7-25-63 8-29-63 9-24-63 10-21-63 12-02-63 12-24-64 2-24-64 3-25-64	4-22-64 5-19-64 6-22-64	7-25-63 8-29-63 9-24-63 10-21-63 12-03-63 12-24-63 2-24-64
GROUND SURFACE ELEVATION IN FEET	VANDALIA IRRIGATION DISTRICT	524.0	535.0		SAUCELITO IRRIGATION DISTRICT	396.0	371.0		339.0
STATE WELL NUMBER	VANDALIA IRR	225/28E-07001 M CONT.	225/28E-18A01 M		SAUCELITO IR	225/26E-12R02 M	22S/26E-15J01 M		22S/26E-32E01 M
AGENCY SUPPLYING DATA		6001		1009	6001	6001		6001	
`≅					•	•		•	
WATER SURFACE ELEVATION IN FEET			178.5 197.5 185.5 185.5 189.5 179.5	170.0	219.7		215.5 216.5 215.5 213.5 206.5 193.7		3997.00 3997.00 3997.00 3997.00
	5-22.30					225.5 198.5 205.5 203.5 211.5 214.5	115.5 114.5 115.5 115.5 117.5 117.5 124.5 137.3 193.7	394.4 392.6 392.4	
WATER SURFACE ELEVATION IN FEET		174.5 179.5 178.5	115.5 1106.5 108.5 1108.5 1112.5 114.5 114.5	170.0 159.0	219•7 215•5	105.5 225.5 132.5 198.5 127.5 205.5 127.5 203.5 119.5 211.5	-05-64 115.5 -04-64 114.5 -02-64 115.5 -03-64 117.5 -01-64 124.5 -03-64 137.3	129.6 394.4 131.4 392.6 131.6 392.4	
GROUND SUR- FACE TO WATER SURFACE SURFACE IN FEET IN FEET	RIVER IRRIGATION DIST 5-22.30	119.5 174.5 114.5 179.5 115.5 178.5	115.5 1106.5 108.5 1108.5 1112.5 114.5 114.5	130.5 170.0 141.5 159.0	117•3 219•7 121•5 215•5	105.5 225.5 132.5 198.5 127.5 205.5 127.5 203.5 119.5 211.5	115.5 114.5 115.5 117.5 124.5 137.3	129.6 394.4 131.4 392.6 131.6 392.4	126.4 125.2 122.5 127.0 128.2 131.7

AGENCY SUPPLYING DATA		6001		6001		6001		6001	2000	
WATER SURFACE ELEVATION IN FEET		100.3 101.5 97.6 95.9	94.3		1266.5 1228.3 1220.3 1200.5 1020.5	217.0	224.5	899.0 84.9 94.8 96.7 133.3 1129.6 1159.6	66.7	68.6 88.6 107.0 118.4 124.6 102.8
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-33	121.7 120.5 124.4 126.1	12/0/	0RY □ □	171 5 154 6 169 6 169 7 165 6 7 115 6 7	DRY 083.0	75.5	20202020200200000000000000000000000000	196.3	1946.4 1746.4 1186.0 1138.4 1194.3
DATE		1-20-64 2-24-64 3-26-64 4-23-64	5-20-64	7-25-63 8-29-63 9-20-63	10-22-63 11-23-63 11-23-63 11-20-64 2-24-64 4-22-64	6-22-64	1-31-64	7-25-63 8-29-63 10-22-63 12-23-63 12-23-64 1-20-64 3-26-64 4-22-64 5-19-64 5-19-64	7-17-63	9-12-63 10-10-63 11-04-63 12-04-63 1-06-64 2-04-64 3-03-64
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	222.0		278•0		300.0		291.0	263.0	
STATE WELL NUMBER	PIXLEY IRRIG	235/24E-16R01 M CONT.		23S/25E-09G02 M		23S/25E-14C01 M		23S/25E-15J02 M	235/25E-16N03 M	
AGENCY SUPPLYING DATA		6001	6001	6001				6001	6001	6001
WATER SURFACE ELEVATION IN FEET		146.5 135.5 134.8	239.5 248.2	194.4	2088 203.0 203.0 203.0 203.0 203.0 203.0	202.4		1000.3 1000.3 11000.3 1125.0 1123.0 1123.0 1123.0 1123.0 1123.0 1123.0 1123.0 1123.0 1123.0 1123.0		94.2 91.5 91.3 92.0 97.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22•32	192.5 203.5 204.2 n	157.5 148.8	186.6 187.4	188.7 173.0 165.5 165.5 177.2 177.5	178.6 178.6	5-22+33	207.5 209.7 200.3 191.9 181.9 181.0 196.6 196.6 197.8 212.5	0 0	127.8 130.5 130.7 130.0 125.0
DATE	1CT	3-25-64 4-22-64 5-19-64 6-22-64	9-25-63 2-05-64	7-25-63	9-19-63 10-22-63 12-24-63 12-24-64 1-21-64 3-25-64	5-19-64 6-22-64		7-25-63 8-29-63 10-22-63 12-03-63 12-23-63 11-20-64 3-25-64 4-25-64 5-19-64	9-24-63 1-30-64	7-26-63 8-30-63 9-23-63 10-22-63 12-03-63
GROUND SURFACE ELEVATION IN FEET	SAUCELITO IRRIGATION DISTRICT	339•0	397.0	381.0			PIXLEY IRRIGATION DISTRICT	310.0	207.0	222.0
STATE WELL NUMBER	SAUCELITO IR	22S/26E-32E01 M CONT.	235/26E-02R01 M	23S/26E-03R01 M			PIXLEY IRRIC	225/25E-25N01 M	235/23E-02B01 M	235/24E-16R01 M

AGENCY SUPPLYING DATA		6001		6001		6001		6001
WATER SURFACE ELEVATION IN FEET		1000 10407 111108	130.0 131.0 126.8 103.8 99.2 94.7 70.1	196.2 196.3 196.6 196.3	1966.7 1966.5 1966.5 1966.2 1966.2	136.3 134.5 134.5 134.3	1354-3 1354-3 137-8 137-8 137-8	88 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.34	95.0 90.3 89.7	65.0 68.2 68.2 91.2 95.8 100.3 87.3	13.8 13.7 13.7 13.7		73.7 75.2 75.5 75.5	72224	123.0 125.1 127.5 127.0 127.8
DATE		7-26-63 8-30-63 9-23-63 10-22-63	12-04-63 12-23-63 1-20-64 2-25-64 3-26-64 4-23-64 5-19-64 6-23-64	7-26-63 8-30-63 9-24-63 10-22-63	12-23-63 12-23-63 1-20-64 2-24-64 3-26-64 4-23-64 5-19-64	7-26-63 8-30-63 9-24-63 10-22-63	12-23-64 12-23-64 2-24-64 3-26-64 4-23-64 5-19-64	7-26-63 8-30-63 9-24-63 10-22-63 12-04-63
GROUND SURFACE ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	195•0		210.0		210.0		210.0
STATE WELL NUMBER	ALPAUGH-ALL	22S/23E-28L01 M		235/23E-33A01 M		235/23E-33A04 M		235/23E-33A05 M
AGENCY SUPPLYING DATA		2000	2000		5 000		6001	
WATER SURFACE ELEVATION IN FEET		102.8 100.4 82.0	157.7 157.5 159.1 161.8 165.6 165.6	167.5 167.3 166.0 161.2	10660 10660 10660 10663 10663 10683	169.4 169.1 168.2 164.0	1666 1666 1666 1666 1666 1666 1666 166	161.0 165.9 164.7 156.6
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-33	160.2 162.6 181.0	1005.3 1001.2 990.2 990.2	95.5 95.7 97.0 101.8	108.2 108.2 107.4 105.4 103.6 100.4	99.6 99.6 100.8 105.0	1996 19986 19986 18886 18836 1986 1986 1986 1986 1986 1986 1986	1810-1 1700-5 1880-4
DATE	Ε.	3-18-64 3-31-64 5-01-64 6-26-64	7-17-63 8-14-63 9-12-63 10-10-63 11-04-63 12-04-64	3-03-64 3-31-64 5-01-64 6-26-64	7-17-63 8-14-63 9-12-63 10-10-63 11-04-63 12-04-64	3-03-64 3-31-64 5-01-64 6-26-64	7-25-63 8-29-63 9-19-63 10-22-63 12-03-63 12-24-63	21-24-04 31-25-64 41-25-64 51-19-64 6-22-64
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	263.0	263.0		269.0		345.0	
STATE WELL NUMBER	PIXLEY IRRIG	235/25E-16N03 M CONT.	235/25E-16N04 M		235/25E-17003 M		235/26E-08R01 M	

AGENCY	SUPPLYING		6001		6001		6001	6001	6001	6001		
WATER	SURFACE ELEVATION IN FEET		148.5 150.2		988822 1112 1118 1118 1118 1118 1118 111		191.0	158.0	114.1	215.2 216.8 217.0	219.5	219.0 218.4 217.7 217.6
GROUND SUR-	WATER SURFACE IN FEET	5-22 • 34	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		133.3 143.6 136.4 126.2 113.2 100.0 100.0 100.6 1127.1 116.2 127.1	5-22.35	105.0 98.0	198.5 188.5	419.2	104.8 103.2 103.0	100.5	101.6 102.3 102.4
	DATE		10-22-63 12-03-63 12-23-63 1-20-64 2-24-64 3-26-64	4-23-64 5-20-64 6-23-64	7-26-63 8-30-63 9-19-63 10-22-63 12-03-63 1-20-64 1-20-64 2-25-64 3-26-64 4-23-64 6-23-64	ST	9-23-63	9-24-63	9-20-63	7-25-63 8-29-63 9-19-63	12-03-63	1-20-64 2-24-64 3-26-64 4-22-64
GROUND	ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	249.0		226.0	DELANO-EARLIMART IRRIG DIST	296.0	356.5	533.3	320.0		
1 A T T A T T T T T T T T T T T T T T T	NUMBER	ALPAUGH-ALL	245/24E-25F01 M CONT.		245/24E-32K04 M	DELAMO-EARL	235/25E-27J02 M	235/26E-29P01 M	235/27E-28J01 M	245/25E-02H01 M		
AGENCY	DATA		6001	6001	6001	6001	6001				6001	6001
WA SURI	ELEVATION IN FEET		88 88 98 98 98 98 98 98 98 98 98 98 98 9	152.4	1288. 11288. 11288. 11288. 11288. 11288. 11288. 11288. 11288.	43.6 50.6	18.7 - 1.8 8.0	51.6 63.5	73•1 69•3	23.4	188.8	
GROUND SUR. WA		5-22.34	124.9 85.1 122.7 87.3 121.7 88.3 121.2 88.8 121.4 88.6 122.0 88.0	51.6 152.4 52.3 151.7		162.4 43.6 155.4 50.6	7	166.4 51.6 154.5 63.5	144.9 73.1 148.7 69.3	п п 194•6 23•4	46.2 188.8 47.5 187.5	מטמ
	SURFACE IN FEET	5-22.34			76.8 81.7 81.7 81.7 81.2 73.6 73.6 73.6 73.6 80.1 80.1							7-26-63
GROUND SUR.	SURFACE IN FEET	ALPAUGH-ALLENSWORTH AREA 5-22.34	124.9 122.7 121.7 121.2 121.4 122.0	51.6 52.3	7-26-63 76-8 8-30-63 81-7 9-16-63 81-7 10-22-63 81-2 12-23-63 76-0 12-23-64 74-7 2-24-64 74-7 3-26-64 78-9 6-23-64 78-9	162.4 155.4	199.3 1 219.8 – 210.0	166.4 154.5	144.9 148.7 n	п п 194•6	46.2	

AGENCY SUPPLYING OATA		6001	2000				6001	5000			6001		0000
WATER SURFACE ELEVATION IN FEET		157.5	112.0	163.2	159.6	102.5	191.5	270.0 270.9 272.5 273.5	274.7 275.0 274.1	273.4 273.4 275.0 278.5	369.8		11111111111111111111111111111111111111
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-35	396.0	393°5 385°5	342.3	331.0 345.9	403.0 500.6	238.5	118.0 117.1 115.5	113.3 113.0 113.9	115.0 114.6 113.0 109.5	380.2	5-22 • 36	107.2 109.6 110.6 99.5 95.4 87.2 96.6
DATE	3T	9-19-63	7-17-63	10-10-63 11-05-63 11-05-64	2-05-64	5-01-64	9-26-63 2-11-64	7-18-63 8-16-63 9-12-63 10-11-63	11-14-63 1-27-64 2-18-64	3-16-64 4-20-64 5-18-64 6-24-64	9-19-63 1-30-64		7-18-63 8-16-63 9-12-63 11-11-63 11-17-63 12-10-64 1-27-64 3-16-64 4-20-64
GROUND SURFACE ELEVATION IN FEET	MART IRRIG DIST	526.5	505.5				430•0	388.0			750•0	JOAQUIN MUD	253.0
STATE WELL NUMBER	DELANO-EARLIMART IRRIG	245/27E-31P01 M	255/26E-01A02 M				255/26E-10803 M	255/26E-16P01 M			255/27E-22H01 M	SOUTHERN SAN	255/24E-12A02 M
AGENCY SUPPLYING DATA		6001	6001	6001	6001	6001	2000	5000	6001		6001	2000	
WATER SURFACE ELEVATION IN FEET		217.5	163.5 183.5	214.5	186.0	194.0	242.3	250.0 260.5 264.6 260.0	261.4 258.0 257.7	253.1 250.4 244.5 241.5	263.5 270.5	171.4	179.0 189.3 189.3 201.8 208.9 204.9 197.3 189.7 161.1
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.35	102.5	140.5	77.0	190.0 182.0	184.0 156.0	157.7	150.0 139.5 140.0	138.6 142.0 142.3	146.9 149.6 155.5 158.5	132.5 125.5	273.6	2566.0 2243.0 2443.0 2443.0 2255.0 3.0 2555.0 3.0 6
DATE	ST	5-20-64 6-22-64	9-23-63	9-19-63	9-24-63 2-05-64	9-24-63	7-18-63 8-16-63 9-12-63	9-24-63 10-11-63 11-14-63 12-10-63	1-27-64 2-06-64 2-18-64	3-16-64 4-20-64 5-18-64 6-24-64	9-26-63	7-17-63	10-10-63 11-05-63 11-05-63 1-05-64 2-05-64 3-04-64 3-04-64 5-01-64 6-25-64
GROUND SURFACE ELEVATION IN FEET	DELANO-EARLIMART IRRIG DIST	320.0	304.0	291•5	376.0	378.0	0.004				396•0	445.0	
STATE WELL NUMBER	DELANO-EARL I	245/25E-02H01 M CONT.	245/25E-10A01 M	24S/25E-33J01 M	245/26E-05R01 M	245/26E-20H01 M	24S/26E-29R02 M				245/26E-32601 M	245/26E-34F01 M	

AGENCY SUPPLYING DATA		2000		2000	1009	2000		8700	
WATER SURFACE ELEVATION IN FEET		196.1 196.0 174.9	176.5	130 1186.8 1186.5 1186.7 1180.6 120.6 120.6 120.6	135.5	10 10 10 10 10 10 10 10 10 10 10 10 10 1		129.7 84.07 98.07 78.07 183.07	183.7 148.7 173.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-36	139.9	159.5	372.2 384.5 384.5 367.9 362.6 375.2 375.2 375.2	307.5	262.9 276.9 274.8 268.2 262.5 257.1 259.1 259.8	5-22.37	222.6* 267.6* 253.6* 271.6* 273.6*	168.6* 203.6* 178.6*
DATE		2-18-64 3-16-64	5-18-64	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63 12-10-63 2-18-64 4-20-64 5-18-64	9-20-63	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63 12-10-63 1-27-64 2-18-64 4-20-64	5-19-64 DIST	7-01-63 7-15-63 8-01-63 8-19-63 9-04-63	1-15-64 2-03-64 2-17-64
GROUND SURFACE ELEVATION IN FEET	JOAQUIN MUD	336.0		503. • 0	443.0	411.0	STORAGE	352.3	
STATE WELL NUMBER	SOUTHERN SAN	26S/25E-02001 M CONT.		265/26E-10R01 M	265/26E-16P01 M	26S/26E-29C01 M	NORTH KERN WATER	26S/25E-15R01 M	
AGENCY SUPPLYING DATA		2000	6001	2000	6001	0000		2000	2000
7				m a + m > 0 - m a a a a					
WATER SURFACE ELEVATION		156.5	177.7	107.8 90.2 86.4 103.3 1126.7 141.0 152.1 1123.9 1123.9 1118.9	130.0	2117 2218.2 2221.6 2224.6 22318.3 2310.5 2310.5 2310.6 2310.6	229.7	226.0 226.0 208.1 206.9	197.2 198.5 199.7
œ	5-22.36	96.5 156.5	81.3 177.7	178.2 195.8 199.6 182.7 159.3 145.0 133.9 145.0 152.1 162.1 167.1 118.2 174.1 118.2	192.0 130.0 149.6 172.4	176.6 217.4 175.8 218.2 172.6 221.4 169.4 224.6 170.4 223.6 175.7 218.3 163.5 230.5 162.4 231.6 166.1 223.6		125.4 208.1 126.6 206.9	138.8 197.2 137.5 198.5 136.3 199.7
œ <u>ë</u>							170.2	,	444
GROUND SUR. FACE TO WATER SURFACE IN FEET		96•5	81.3	178.2 195.8 199.6 182.7 159.3 145.0 133.9 136.7 167.1 174.1	192.0 149.6	176.6 175.8 172.6 169.4 175.7 163.5 165.1 165.1	5-18-64 164.3 6-24-64 170.2	188.0 2 125.4 2 126.6 2	138.8 137.5 136.3

AGENCY SUPPLYING DATA		2000		8 7 0 0	6001	8700	5000
WATER SURFACE ELEVATION IN FEET			132.5 144.6 152.4 160.4 161.1 142.5	1360.1 1360.1 1370.1 1370.1 1370.1 1580.1 1580.1 1590.1 1590.1		149.0 161.0 165.0 170.0 171.0	175.0 176.0 177.0 152.0 221.9 2219.7 2219.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-37	םם	314.3 3902.2 2904.4 2894.4 2895.7 285.7 304.3	335.6* 209.6* 305.6* 301.6* 318.6* 277.6* 275.6* 276.6*	5 5	212.1* 200.1 196.1* 191.1* 190.1* 187.1*	186.1# 184.1# 184.1# 166.1 168.3 168.3
DATE	DIST	7-18-63	9-12-63 10-11-63 11-10-63 12-10-64 2-18-64 4-20-64 5-18-64 6-24-64	7-05-63 7-18-63 8-06-63 8-06-63 9-09-63 9-23-63 12-00-64 1-06-64 1-06-64 2-06-64 2-06-64 5-05-64	9-18-63 1-27-64	7-08-63 7-16-63 8-06-63 8-26-63 9-04-63 12-00-63	1-15-64 2-03-64 2-16-64 6-15-64 7-18-63 8-15-63 9-12-63
GROUND SURFACE ELEVATION IN FEET	NORTH KERN WATER STORAGE	446.8		4.35.7	527.0	361.1	388.0
STATE WELL NUMBER	NORTH KERN	275/26E-20001 M		275/26E-20E01 M	27S/27E-30H02 M	285/25E-13L01 M	285/26E-21H01 M
AGENCY SUPPLYING DATA		8700	8 700	8700	6001	2000	6001
WATER SURFACE ELEVATION IN FEET		144.7	103. 73.55 64.55 74.55 1256.55 1155.55 1681.55 60.55	135.0 135.0 135.0 126.0 164.0 164.0 163.0	76.0 317.8 327.5	266.3 266.3 272.6 272.6	278.3 278.5 278.5 274.6 274.0 269.3 144.5
GROUND SUR. FACE TO WATER SURFACE	5-22.37	207.6	233. 262. 262. 262. 186. 181. 181. 185. 26. 26. 26.	2557 2557 2559 2666 2266 2228 2238 2239 2239 2239 2239 2239 2239	316.0 83.2 73.5	129.1 129.5 128.9 127.7 121.4	115.7 115.0 115.0 120.0 124.7 124.7
DATE	DIST	4-03-64	7-01-63 8-20-63 9-04-63 9-26-63 1-15-64 2-04-64 2-04-64 6-15-64	7-15-63 8-01-63 8-17-63 8-17-63 9-04-63 12-00-64 1-15-64 2-03-64 2-17-64	6-15-64 9-17-63 1-29-64	7-18-63 8-15-63 9-12-63 10-11-63 11-14-63	1-27-64 2-18-64 3-16-64 4-20-64 5-18-64 6-24-64 9-17-63 1-27-64
GROUND SURFACE ELEVATION IN FEET	NORTH KERN WATER STORAGE	352.3	336. • 6	392.0	401.0	394.0	416.0
	ERN W	265/25E-15R01 M CONT.	26S/25E-31R01 M	26S/26E-30P01 M	275/25E-01A01 M	27S/25E-01N01 M	275/26E-06H02 M

AGENCY SUPPLYING DATA		2000				2000										1	2000											6001						8700
WATER SURFACE ELEVATION IN FEET		161.5	121.9	132.8	106.6	147.7	155.3	150.0	156.3	158.5	158.4	150.1	149.8	142.2			122.6	117.8) • Q T T	125.5	1010	132.0	132.6	126.9	127.9	126.0	110.1	176.0	174.0	168.0	176.0	171.0	177.0	182.9
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22.38	213.5	253.1	247.2	268.4	187.3	179.7	185.0	178.7	176.5	176.6	184.9	183.8	192.8	5-22.40		186.4	191.2	190.3			1,001	176.4	182.1	181.1	183.0	192.9	150.0	152.0	158.0	150.0	155.0	149.0	166.1* 165.1*
DATE	DIST	12-10-63	3-16-64	4-20-64	6-24-64	7-18-63	8-15-63	10-11-63	12-10-63	1-27-64	2-18-64	3-16-64	4-20-64 5-18-64	6-24-64			7-18-63	8-15-63	9-15-63	10-11-63	11-14-63	12-10-63	3-18-64	3-17-64	4-20-64	5-18-64	9-54-94	7-15-63	8-14-63	9-16-63	11-14-63	12-12-63	2-06-64	7-08-63
GROUND SURFACE ELEVATION IN FEET	SHAFTER-WASCO IRRIGATION	375.0				335.0									DELTA ARFA		309.0											0 300	25000					349.0
STATE WELL NUMBER	SHAFTER-WASC	275/25E-28A01 M CONT.				285/25E-16003 M									A AREA OFFITA AREA	NEWN MINEN	285/24E-23D01 M												285/25E-34JUI M					285/26E-29L01 M
AGENCY SUPPLYING DATA		2000						2000										8 700											000	2000				
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA			232•4 232•8	231.4	227.7	224.4			4000	65.9	126.3	133.5	136.4	129•/ 92•8	104.2	53.2	1	73.2 8700	97.2	90•2	77.2	88.2	100.2	128.2	129.2	128.2	127.2	84.2		0.211	170-0	150.4	159.5	
WATER SURFACE ELEVATION IN FEET	5-22.37	224.3	155.6 232.4 155.2 232.8			163.6 224.4	5-22.38	63.0			195.7 126.3			192.3 129.1 229.2 92.8	7			73.2	218.8* 97.2			227.8*	215.8*	18/08	• ~		3*	231.8 84.2		26.0	0.002	222.1	215.5	
R- WATER SURFACE ELEVATION IN FEET		163.7 224.3 159.9 228.1		156.6	160.3		5-22	63.0	268.6		195.7	188.5		192.3	217.8			73.2	218.8*	225.8*		227.8*	- '	18/08	186.8*	187.8*	188.8*	231.8		26.0	0.002		215.5	
GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET	KERN WATER STORAGE DIST 5-22.37	163.7 224.3 159.9 228.1	155•6 155•2	156.6	160.3	163.6	SHAFTER-WASCO IRRIGATION DIST 5-22.38	259.0 63.0	268.6	225.7	195.7	188.5	185.6	192.3	217.8	268-2		242.8* 73.2	7-17-63 218.8*	225.8*	238.8*	227.8*	215.8*	18/08	186.8*	187.8*	188.8*	231.8	1	26.0	0.002	222.1	215.5	

AGENCY SUPPLYING DATA		2000							8700									4640												5120		2000
WATER SURFACE ELEVATION IN FEET		300.5	303.4	307.9	310.2	310.9	310.4	307.0	185.6	203.0	216.6	197.6	233.6	230.6	206.6	220.6	202•6 193•6	246.2	247.7	249.5	249.4	7 6 6 7 7	249.6	255.1	248.0	247.8	245.6	245.0		275.1		258.2 257.1 260.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.40	84.5	81.6	77.1	74.8	74.2	74.6	78.0	133.7*	10%	102.7*	121.7*	85.7*	88.7*	112.7*	*2**	116.7*	62.3	60.8	59.0	59.1	0 • 0	00 CC	53.4	60.5	60.7	62.9	63.5 7.E	1	64.0	•	79.8 80.9 78.0
DATE		8-15-63	10-11-63 $11-14-63$	12-10-63	1-27-64	2-18-64	4-20-64	6-24-64	7-12-63	69-67-1	8-30-63	9-11-63	12-00-63	1-22-64	2-11-64	2-28-64	4-23-64	7-04-63	8-05-63	9-07-63	10-02-63	13 03 63	1-03-64	2-03-64	3-05-64	4-01-64	5-04-64	5-28-64	* 0-06-0	9-19-63	10-07-1	7-17-63 8-15-63 9-12-63
GROUND SURFACE ELEVATION IN FEET	DELTA AREA	385.0							319.3									308.5												339.1		338.0
STATE WELL NUMBER	KERN RIVER DE	295/27E-34N01 M CONT.							305/25E-03H01 M									305/25E-22D01 M												30S/26E-16J01 M		30S/26E-22P02 M
					_					_	_								_		_											
AGENCY SUPPLYING DATA		8700	6001	8700					5 000									5000											9009			
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET					206.9	207.9	192.9	183.9	180.3 5000	179.1	181.7	185.6	188.5	189.8	187.4	185.6	177.2		295.2	303.5	308.6	0 1 10	311.1	307.6	305.4	302.3	288 4	0.007	301.9 5000			
	5-22.40	* 180.9	185.9	* 204.9	142.1* 206.9		156.1* 192.9						141.5 188.5				n eo					, c					23.4 250 4 200 4 2	*				
WATER SURFACE ELEVATION IN FEET	5-22.40	168.1* 180.9 169.1* 179.9	163.1 185.9	144.1* 204.9		141.1*		165.1	180.3	150.0	148.3	144.4		140.2	142.6	.	152.8	87.3 294.7	86.8	78.5	13.4		70.07	74.4	76.6		0.50 L	#00K	301.9			
GROUND SUR- WATER FACE TO SURFACE SURFACE IN FEET IN FEET	DELTA AREA 5-22.40	168.1* 180.9 169.1* 179.9	163.1 185.9	144.1* 204.9	142.1*	141.1*	156.1*	165.1	149.7 180.3	150.0	148.3	144.4	141.5	140.2	142.6	14404	152.8	87.3 294.7	86.8	78.5	13.4	***	70.07	74.4	76.6	1.60	0.50 L	#00K	83.1 301.9			

AGENCY SUPPLYING DATA		5120	8700				2000						5120		6001	8700					
WATER SURFACE ELEVATION IN FEET		233.3	196.5 194.5 194.5	193.5 201.5 226.5 240.5	219.5	218.5 220.5	201.6	216.1	228.1	241.6	223.9	227.2	241.1	247.6		235.7	238.7	236.7	247.7	250.7	244.7
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.40	61.2	144.6*	147.6* 139.6* 114.6	121.6*	122.6* 120.6	108.4	93.9	81.9	68 0 4 0 1	86.1	82.8		64.5	**	79.0*	76.0*	18.0*	110.0*	64.0	*0.07
DATE		9-18-63	7-08-63 7-19-63 8-13-63	8-26-63 9-10-63 12-00-63 1-08-64	1-22-64	2-20-64 5-26-64 6-22-64	7-17-63	8-14-63	10-10-63	12-11-63	3-17-64	5-19-64	18 - 0	1-22-64	9-16-63	7-08-63	8-14-63	9-11-63	10-03-63	12-20-63	1-22-64 2-10-64
GROUND SURFACE ELEVATION IN FEET	RIVER DELTA AREA	294•5	341.1				310.0						1 515	316.1	321.1	314.7					
STATE WELL NUMBER	KERN RIVER D	31S/26E-35D01 M	31S/27E-04L01 M				315/27E-28H01 M						M (0) 00 300	313/2/E+28301 m	315/28E-17P02 M	31S/28E-30M01 M					
AGENCY SUPPLYING DATA		2000			8700			_			5120	.007	7000	2000							5120
₹ 5																					
WATER A SURFACE SUF		267.3	269.9 265.2 261.6	265.5 265.1 258.9	250.0	242.0 254.0 252.0	255.0	255.0	267.0	259.0	255.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	255.0	254.6	256.6	265.8	268.9	261.4	262.4	258.4	247.1
	5-22.40	70.7 267.3 68.5 269.5								89.7* 249.0 79.7* 259.0	104.0 255.0			104.4 254.6					96.6 262.4		85.9 247.1 81.4 251.6
WATER SURFACE ELEVATION IN FEET	5-22.40	70.7	68.1 72.8 76.4		88.7*	*/************************************	83.7*	83.7* 68.7*				0 0 0	4.66	104.4		93.5	90.1	93.1 97.6	96.6	100.6	
GROUND SUR- FACE TO SURFACE WATER ELEVATION IN FEET IN FEET	KERN RIVER DELTA AREA 5-22.40	70.7	72.8 76.4 76.4	72.9 79.1	88.7*	*/************************************	83.7*	83.7*	71.7*	-30-64 89.7* -22-64 79.7*	104.0	0 0 0	1-27-64 99.4	104.4	102.4	93.5	90.1	93.1 97.6	96.6	100.6	85.9

AGENCY SUPPLYING DATA		2000			5050	6001	2000				6001 5050	6001	6001	6001	5120	6001	2000
WATER SURFACE ELEVATION IN FEET		220.6 223.3 225.7	221.6 220.0 217.3	209.3	174.5	172.7	292.2	291°4 290°8 290°8			595.0 598.5	183.1	254.8	139.0	211.5	119.7	151.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.41	151.4 148.7 146.3	150°4 152°0 154°7	162.7	340.5 331.0	455•3 n	128.8	129.6	on t	3 11 %	196.5 193.0	289.4 305.4	145.2 n	397.0 360.5	231.0 181.0	267.0	318.3*
DATE		11-13-63 12-11-63 1-28-64 2-19-64	3-17-64 4-21-64 5-19-64	6-25-64	9-17-63	9-16-63	7-17-63	9-11-63	12-11-63	2-19-64 3-17-64	9-18-63	9-18-63	9-17-63	9-19-63	9-17-63	9-18-63	7-17-63
GROUND SURFACE ELEVATION IN FEET	OPA AREA	372.0			515.0	628.0	421.0				791.5	472.5	0.004	536.0	442.5	386.7	470.0
STATE WELL NUMBER	EDISON-MARICOPA AREA	30S/28E-10N04 M CONT.			30S/29E-05F01 M	30S/29E-26A01 M	30S/29E-31R01 M				305/30E-20R01 M	31S/29E-09A01 M	31S/29E-29A01 M	315/30E-21601 M	32S/25E-35N02 M	325/28E-23R01 M	32S/29E-16R02 M
AGENCY SUPPLYING DATA		8700	5120	8700				1009		6001	6001	2000				2000	
WATER SURFACE ELEVATION IN FEET		162.7 166.7 162.7	201.8 196.8		119.3	115.3	153.3	251.1		125.5		332.7 341.5 341.9	335°4 336°8 747°7	9999 9989 9989	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	212.1	212.2
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.40	152.0* 148.0* 152.0*	176.2 181.2		n n 173,3*	177.3* 109.3	139,3*	51.9	5-22.41	452.5	n n	39.3 30.5 30.1	35.6	34°0 37°0 38°0	333	159.9	159.8 158.0
DATE		2-26-64 6-04-64 6-23-64	9-16-63	7-22-63	8-14-63 8-27-63 1-09-64	1-22-64 2-10-64 2-26-64	6-24-64	9-18-63		9-18-63	9-18-63	7-17-63 8-15-63 9-10-63	10-10-63	1-28-64 2-19-64 3-17-64	5-19-64 5-25-64	7-17-63	9-11-63
GROUND SURFACE ELEVATION IN FEET	KERN RIVER DELTA AREA	314.7	378.0	292.6				303.0	EDISON-MARICOPA AREA	578.0	410.0	372.0				372.0	
	<u>ارا</u>								1.1								

AGENCY SUPPLYING DATA		2000	6001	6001	6001	000 9		8700		6001	8700
WATER SURFACE ELEVATION IN FEET		262.9 261.1 261.5 262.1		735.3	165•1	168.7 209.0 215.2 216.2 216.2 218.4 219.1 219.2 213.1	208.8 212.6 246.2	- 110.6 - 115.6 - 115.6 - 66.4		135.2	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.41	210.1 211.9 211.5 210.9	ממ	114.7	410.8	00000000000000000000000000000000000000	466.2 462.4 428.8	562.9# 567.9# 567.9# 385.9#		349.5	000
DATE		3-17-64 4-21-64 5-19-64 6-25-64	9-17-63	9-17-63	9-18-63	7-17-63 8-15-63 9-11-63 10-10-63 11-13-63 12-13-64 2-19-64 3-17-64	4-21-64 5-19-64 6-25-64	7-24-63 8-15-63 8-28-63 9-13-63	2-12-64 2-27-64 3-02-64 6-03-64 6-10-64	6-24-64 9-16-63 1-27-64	7-10-63 7-24-63 8-15-63
GROUND SURFACE ELEVATION IN FEET	DPA AREA	473.0	657.0	850.0	575.9	675.0		452.3		484.7	730.2
STATE WELL NUMBER	EDISON-MARICOPA AREA	325/29E-21P01 M CONT.	11N/18W-06P01 S	11N/18W-28D01 S	11N/19W-04H01 S	11N/19W-07R03 S		11N/20W-07001 S		11N/20W-18F01 S	11N/20W-24A01 S
AGENCY UPPLYING DATA		2000			5000		5000			2000	
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA			152.2 151.7 150.9	190.1 149.9 148.1		216.0 216.2 216.2 215.8 215.8 216.7 216.7		69.4 90.1 1126.6 122.4 121.4	102-1 102-1 16-8 46-3		262.6 262.4 262.4 262.4 262.4
	5-22.41	149.3 148.5 150.7 151.1	317.8 152.2 318.3 151.7 319.1 150.9		217.1	198.0 218.0 199.9 216.2 199.8 216.2 199.6 216.2 200.2 215.8 199.3 216.0 199.3 216.7	52•2 46•6		325.9 00.1 333.1 82.9 339.2 76.8	259.3 269.7 261.3 260.6	210.4 262.6 210.6 262.4 210.6 262.4 210.6 262.4
WATER SURFACE ELEVATION IN FEET	5-22•41	320.7 149.3 321.5 148.5 319.3 150.7 318.9 151.1	317.8 318.3 319.1		198.9 217.1 189.7 226.3		363.8 52.2 369.4 46.6		325.99 339.1 339.7 369.7	259.3 269.7 261.3 260.6	210.4 210.6 210.6 210.6
GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET IN FEET	EDISON-MARICOPA AREA 5-22.41	320.7 149.3 321.5 148.5 319.3 150.7 318.9 151.1	317.8 318.3 319.1	320.1 321.9	198.9 217.1 189.7 226.3	19860 1998 1998 1998 1998 1999 1999	363.8 52.2 369.4 46.6	346.6 325.9 299.4 294.6 294.6	325.99 339.1 339.7 369.7	213.7 259.3 203.3 269.7 211.7 261.3 212.4 260.6	210.4 210.6 210.6 210.6

AGENCY SUPPLYING DATA		5120		2000						5120		2000								2000								5120
WATER SURFACE ELEVATION IN FEET		229.0		158.4	159.1	167.6	164.8		150.5	200.0	202•0	147.8	138.2	141.7	145.2	144.4	132.0	135.4	137.7	186.5	195.2	196.6	203.2	2002	195.4	195.2	222.1	217.3
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-41	269.0	5-22.42	79.6	78.9	70.4	73.2	םנ	87.5	0.04	38.0	93.2	102.8	99.3	95.8	9.96	109.0	105.6	103•3	58.5	8.64	4.84	42.1	44.8	49.6	49.8	22.9	27.7
DATE		1-21-64	0157	7-17-63	9-11-63	11-13-63	1-28-64	3-16-64	4-21-64	9-25-63	1-27-64	7-17-63	9-11-63	11-13-63	12-11-63	2-19-64	3-18-64	5-19-64	6-25-64	7-17-63	9-11-63	10-10-63	12-11-63	1-28-64	2-19-64	4-21-64	6-25-64	9-25-63
GROUND SURFACE ELEVATION IN FEET	OPA AREA	498.0	BUENA VISTA WATER STORAGE	238.0						240.0		241.0								245.0								245.0
STATE WELL NUMBER	EDISON-MARICOPA AREA	12N/23W-28P01 S CONT.	BUENA VISTA	275/22E-16801 M						275/22E-21F02 M		275/22E-32H01 M								28S/22E-09D01 M								285/22E-10002 M
AGENCY SUPPLYING DATA		8700			8700							8700								6001		6001		5120		5120		
WATER SURFACE ELEVATION IN FEET		219•6	221.6	215.6			45.8						7	1.7	78•7 80•7					121.4				63	m m	205.0		١
		~											ľ	ι •						12	í			100.3	109.3	20		
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.41	510.6	9 4		n 0	ומי	473.1	מכ	םם	00	n	0 0	D D D D D D D D D D D D D D D D D D D		450.3	п	a 2	םנ	n	241.6 12		□ ¥	•		314.0 109	293.0 20		1
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.41		508.6	514.6	7-10-63 n				2-11-64 D 2-28-64 D		п +9-60-9	7-10-63 n 7-24-63 n	0 417.3	467.3			3-02-64 0		6-24-64 п			9-17-63	+0 -0 7 -	323.0				1
	EDISON-MARICOPA AREA 5-22.41	510.6	508.6	514.6									0 417.3	467.3	450.3					241.6			+9-07-T	323.0	314.0	293.0		

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ATOTA ANGUA	BIENA VISTA WATER STORAGE DIST	E DIST	5-22.42			BUENA VISTA	BUENA VISTA WATER STORAGE	DIST	5-22.42		
285/22E-10D02 M CONT.	245.0	1-27-64	26.8	218.2	5120	295/23E-10P01 M CONT.	263.5	10-03-63 11-01-63 12-02-63	42.5 46.9 41.8	221.0 216.6 221.7	4640
28S/22E-36P01 M	253.2	7-03-63 8-01-63 9-06-63 10-03-63 11-01-63 12-02-63 1-03-64	4446666 646666666666666666666666666666	207.8 207.9 206.4 214.5 221.2 219.0 220.7	0494			1-02-64 2-03-64 3-02-64 4-01-64 5-04-64 6-28-64	184 402.4 403.4 10.00 10.00	231.8 220.9 186.1 202.0 219.8 218.2	
		2-01-64 3-02-64 4-01-64 5-04-64 5-28-64	63 4 66 0 4 66 0 3 4 10 0 5	189.8 206.9 206.7		29S/23E-27M01 M	270.0	7-17-63 8-14-63 9-11-63 10-10-63 11-13-63	4444 00440 0000	223.1 223.4 225.0 225.4 227.2	2000
285/23E-31R01 M	257.8	7-03-63 8-02-63 9-06-63 10-02-63 11-01-63	77.00 9.70.00 9.70.00 9.90.00 9.90.00	184.9 208.6 205.4 220.6 214.7 228.5	4640			12-11-63 1-28-64 2-19-64 3-17-64 4-21-64 5-19-64 6-25-64	44 4440 64 6444 70	22 (+5) 225 + 8 223 + 1 223 + 4 224 - 1 215 - 7	
		1-02-10 3-02-164 3-02-164 4-02-164 5-05-164	500.1 500.1 420.2 500.1	215.9 215.6 207.7		295/24E-32001 M	280.7	7-03-63 8-01-63 9-06-63 10-02-63	80.9 62.7 57.1 56.2	199.8 218.0 223.6 224.5	0494
295/23E-08A01 M	260.3	7-04-63 8-06-63 9-06-63 10-03-63 11-02-63 12-03-63	6 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	198.3 208.0 225.2 225.8 222.2	0494			12-02-63 1-02-64 2-01-64 3-03-64 4-01-64 5-04-64 5-28-64 6-28-64	500 57.0 700.0 62.0 62.0 62.0	214.5 223.1 200.8 218.3 218.3	
		3-03-64 4-03-64 4-03-64 5-03-64 5-28-64 6-28-64	444 0 • • • • • • • • • • • • • • • • • • •	212.3 216.9 213.0		30S/23E-01C01 M	276.8	7-03-63 8-02-63 9-06-63 10-02-63	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	207.2 216.0 210.7 226.6 227.0	4640
295/23E-10P01 M	263.5	7-04-63 8-01-63 9-06-63	64.0	199.5	4640			1-02-64	57.9	218.9	

### GROUND PACKET OF THE COUNTY PACKET OF	AGENCY SUPPLYING DATA		9000									5120		5120	5000										5 000										1004	1000
CANADE C	WATER SURFACE ELEVATION IN FEET		150.9	149.4	141.8	143.0	141.5	142.3	142.7	142.2	139.9	28.5	81.0		131.7	127.4	124.4	127.6	131.3	136.6	133.0	132.5	131.6	127.4	48.7			37.0	57.1	68.3	0.49	41.1	48.7	15.6	30 30	00071
CANADE C	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.43	61.1	62.6	×0°69	0.69	70.5	69.7	69.3	8.69	72•1	186.5	133.5	₩	85.3	89.6	95.6	49.68	85.7	80.4	84.0	84.5	85.4	9.68	168.3	213.7	219.5	180.0	159.9	148.7	153.0	175.9	168.3	201.4	103 3	106.62
STA WATER STORAGE DIST STORAGE STORAGE STORAGE STORAGE STORAGE		01ST	7-18-63	9-12-63	10-10-63	12-11-63	1-28-64	3-18-64	4-21-64	5-19-64	6-25-64	9-30-63	1-31-64	10-01-63	7-18-63	8-16-63	9-12-63	11-13-63	12-11-63	1-28-64	3-18-64	4-21-64	5-19-64	6-25-64	7-18-63	8-16-63	9-12-63	11-13-63	12-11-63	1-28-64	2-19-64	3-18-64	4-21-64		0-30-43	60-03-6
STA WATER STORAGE DIST STORAGE STORAGE STORAGE STORAGE STORAGE	GRDUND SURFACE ELEVATION IN FEET	HATER STORAGE	212.0									215.0		209.0	217.0										217.0										0 000	0.623
STA WATER STORAGE DIST STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA DISTA STA DISTA DISTA STA DISTA DISTA STA DIST	STATE WELL NUMBER	SEMITROPIC N																																		
STA WATER STORAGE DIST STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA STA DISTA DISTA STA DISTA DISTA STA DISTA DISTA STA DIST	AGENCY SUPPLYING DATA		0494				0494	!									2000									0000	2000									
STA WATER STORAGE DIST STA WATER STA WATER STA MATER		13.7	20.3	212.7				212.3	216.2	218.7	219.0	209.7	216.0	208•2		214.2	212.8	222.8	222.9	205-7	197.2	208.3	210.9	201.1	, ,	256 1	257.0	248.0	254.7	257.5	259.6	248.1	250.7	255.8		
STA WATER STORAGE DIST M 276.8 2-01-64 5-02-64 5-03-64	SUF.		14 14	0,0																																
STATE WELL GROUND SURFACE ELEVATION IN FEET BUENA VISTA WATER STORAGE 305/23E-01C01 M 276.8 CONT. 305/24E-02C01 M 282.0 315/25E-27F01 M 283.0	οż	5-22.42						ם	74.7	70.8	68•3 68•1	68.0	77.3	71.0	78.8		67.8	62.3	59.2	59.1	76.3	84.8	73.7	71.1	80.9	,	55.0	26.0	35.0	28.3	25.5	23.4	40.45	32.3	27.2	
STATE WELL NUMBER 305/23E-01C01 M CONT. 305/24E-04C01 M 315/25E-27F01 M	GROUND SUR- FACE TO WATER SURFACE IN FEET		63.1	56.5	56. 64.																															
	GROUND SUR- FACE TO WATER SURFACE IN FEET		2-01-64 63.1 3-03-64 72.8	56.5	56. 64.		7-04-63	8-02-63									7-17-63										0-1/-63									

AGENCY SUPPLYING DATA		2000	5120	5120	5120	8700			5120	2000		0006
WATER SURFACE ELEVATION IN FEET		147.4		130.9		60 CA	- 6.3 113.7 129.7	76.7 123.7 61.7 4.7	208.5	154.3 154.0 153.7 153.0 155.0	156.0 155.0 155.1 155.1	153.7 153.7 103.9 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.43	77.6	0 D	104.0	םם	259.8* 273.8* 293.8* 304.8*	301.8* 181.8* 165.8*	218.8* 171.8* 233.8* 290.8*	56.5 52.5	112.7 113.0 113.3 114.0	1111.0 1111.9 1113.2	113.3 114.9 2643.1* 256.5* 250.4 219.3 1183.7
DATE	DIST	6-25-64	9-30-63	10-01-63	10-01-63	7-02-63 7-16-63 8-02-63 8-20-63	9-05-63 1-03-64 1-17-64	2-01-64 2-04-64 4-22-64 6-16-64	9-25-63	7-18-63 8-16-63 9-12-63 10-11-63	12-10-63 1-27-64 2-18-64 3-16-64 4-20-64	5-18-64 6-24-64 7-18-63 8-16-63 9-12-63 10-11-63 11-14-63
GROUND SURFACE ELEVATION IN FEET	WATER STORAGE	225.0	253.0	234.9	258.0	295.5			265.0	267.0		267.0
STATE WELL NUMBER	SEMITROPIC W	265/22E-10G02 M CONT.	265/22E-35E01 M	265/23E-02R01 M	265/23E-36F01 M	265/24E-23H01 M			27S/22E-02001 M	275/23E-01R01 M		275/23E-01R04 M
AGENCY SUPPLYING DATA		6001	2000				6 00 1	2000			5120	
AGI SUP P												
WATER AGI SURFACE SUPP ELEVATION D.		139.9	158.5	159.0	160.9	160.5 159.8 159.8	37.4 62.8	204.9 202.9 205.1 205.7	206.2	205.0 203.1 203.1 205.4 205.5	216.5 225.0	153.2 152.0 151.7 152.6
	5-22.43	88.1 139.9				87.5 160.5 87.6 160.4 88.2 159.8	200.0 37.4 174.6 62.8			39.0 205.0 40.9 203.1 38.6 205.4 38.5 205.5	20.5 216.5 12.0 225.0 u	D D D 1.8 73.0 73.3 72.4 152.6 72.5
WATER SURFACE ELEVATION IN FEET			89.5 90.1		00000	87.5 87.6 88.2			9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 W 4 W W		71.8 73.9 73.3 72.4
GROUND SUR- WATER FACE TO SURFACE WATER SURFACE IN FEET IN FEET	WATER STORAGE DIST 5-22.43	88.1	89.5 90.1	8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	87.5 87.5 88.2	200.0	999.1 988.0 98.0 98.0	9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 W 4 W W	20.5 12.0 u	71.8 73.9 73.3 72.4

AGENCY SUPPLYING DATA		2000		5050	5050	5050	2050	5050	5120	2000						5120	5120		5120
WATER SURFACE ELEVATION IN FEET		7	450 450 450 450 450 450 450 450 450 450						314.2 316.3	351.0	350 1	9000 0000 0000	349.8	349.3	342.4	205.0	747.5	19167	520.0 519.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.44	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	133.7 133.5 133.5 137.7	u	1	*	а	DRY	107.8 105.7	129.0	129.8		130.2	130.7	137.6	63.0	162.5	116.3	165.0 166.0
DATE		9-11-63 10-10-63 11-13-63 12-11-63 1-28-64 2-19-64	3-18-64 4-21-64 5-19-64 6-25-64	1-21-64	1-21-64	1-24-64	1-21-64	1-21-64	9-27-63	7-16-63	10-10-63	12-11-63	2-19-64	3-18-64	5-19-64 6-25-64	1-30-64	9-26-63	*0-67-T	9-27-63
GROUND SURFACE ELEVATION IN FEET	TRICK AREA	9 60 0 0		235.0	267.0	470.0	0.669	625.0	422.0	480.0						268.0	910.0		685.0
STATE WELL NUMBER	AVENAL-MCKITTRICK AREA	235/18E-29E02 M CONT.		235/19E-14R01 M	235/19E-26M01 M	245/18E-11D01 M	24S/18E-30D01 M	245/18E-33N01 M	255/19E-15G01 M	255/19E-20002 M						255/20E-04C01 M	265/17E-13L02 M		26S/18E-16H01 M
AGENCY SUPPLYING DATA		2000	5120	7						0494						5120		5050	2000
WATER SURFACE ELEVATION IN FEET		95.7 85.8 51.8 68.1 57.9	208.0	221.6 224.6	222.6	224.0	224.4	229.2	224•0	124•1	132.1	138.2	131.2	132.6		193.5 191.0		0.96	426.6 426.5
GROUND SUR- FACE TD WATER SURFACE IN FEET	5-22-43	171.3 181.2 215.2* 198.9 209.1 249.1	0.00	0 M M	32.4	31.0	30•6 30•1	25.8 25.0	31.0	n 177.0	169.0	162.9	169.9	168.5	1 12	96.5	5-22.44	159.0	133.4 133.5
DATE	DIST	1-27-64 2-18-64 3-16-64 4-20-64 5-18-64 6-24-64	9-25-63	8-01-63 9-06-63	10-02-63	12-02-63	2-01-64	4-01-64	5-28-64	7-04-63 8-02-63 9-07-63	11-01-63	1-03-64	3-02-64	4-01-64	5-28-64	9-20-63		1-21-64	7-16-63
GROUND SURFACE EL EVATION IN FEET	SEMITROPIC WATER STORAGE	267.0	258.0							301.1						290•0	TRICK AREA	255.0	560.0
STATE WELL NUMBER	SEMITROPIC N	275/23E-01R04 M CONT.	275/23E-06L01 M							28S/24E-28A01 M						295/24E-14R01 M	AVENAL-MCKITTRICK AREA	225/19E-18P02 M	23S/18E-29E02 M

AGENCY SUPPLYING DATA		2000					5050	5050						5050				0404		5050								
WATER SURFACE ELEVATION IN FEET		112.7	105.1	1110.1	109.8			151.8	153.2	153.4	151.3	150.5	148.8	179.8	179.5	179.8				150.7	152.8	15165	157.8	157.9	156.0	157.5	157.5	156.4
GROUND SUR. FACE TD WATER SURFACE IN FEET	5-22.45	104.3	1111.9	105.5	107.2	5-22-46	= *	T.44	43.3	43.1	45.2	40.04	47.7	16.7	17.0	16.7	*		ľ	45.3	43.2	48.0	38.2	38.1	0.04	78.5	9 6 9 6 5 6	39.6
DATE	AREA	8-14-63	11-13-63	2-19-64 3-18-64 3-21-64	5-19-64 6-25-64	11CT	7-29-63	11-27-63	12-30-63	2-24-64	3-31-64	5-25-64	6-24-64	7-29-63	8-29-63	9-27-63	11-12-63	2-05-64	70.00	7-29-63	8-29-63	10-28-63	11-27-63	12-30-63	2-03-64	2-24-64	4-27-64	5-25-64
GROUND SURFACE ELEVATION IN FEET	LAKE-LOST HILLS AR	217.0				CORCORAN IRRIGATION DISTRICT	204.0	196.5						196.5				200-0		196.0								
STATE WELL NUMBER	TULARE LAKE-I	255/21E-22H01 M CONT.				CORCORAN IRR	21S/22E-10J03 M	215/22E-16L02 M						215/22F-16001 M				215/22F=24K01 M		215/22E-27A01 M								
AGENCY SUPPLYING DATA		5120	5120	5120	5120	9050		2000		-		5050	2000				2000					5050	2000					2000
WATER SURFACE ELEVATION IN FEET		715.0	524.5		1182.0 1182.0			1.2	9.1	13.3	24.1	20.7	24.0	17.2	5.5	- 1.5		1 14.5	4.1	10.7	15.8	1000	11.8		- 19.5	- 21.9		112.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.44	160.0 153.0	205.5	D D	38.0*	*	5-22.45	179.8	171.9	167.7 159.8	156.9	155.9	157.0	163.8	175.5	182.5		192.5*	173.9	167.3	162.2	176.5	166.2			183.6		104.1
DATE		9-26-63	9-26-63	9-27-63	9-26-63	7-01-63	REA	7-16-63	9-10-63	10-09-63	12-12-63	1-29-64 2-06-64	2-19-64	3-18-64	5-20-64	6-26-64	7-16-63	8-13-63	10-09-63	11-12-63	12-12-63	2-06-64	2-19-64	3-18-64	4-25-64	5-20-64		7-17-63
GROUND SURFACE ELEVATION IN FEET	RICK AREA	875.0	730•0	530.0	1220.0	370.0	OST HILLS AF	181.0									178.0											217.0
STATE WELL NUMBER	AVENAL-MCKITTRICK AREA	265/18E-19802 M	26S/18E-27F01 M	26S/19E-12L01 M	27S/18E-15R01 M	285/21E-13E01 M	TULARE LAKE-LOST HILLS AREA	215/20E-12M01 M									21S/20E-27A01 M											255/21E-22H01 M

AGENCY SUPPLYING DATA		6001 5050 6001	6001 5050 6001	6001 5050 6001	6001 5050 6001	6001 5050	6001	6001 5050	6001 5050	5050	5000							2000		
WATER SURFACE ELEVATION IN FEET		- 55.0 11.0	91.0 110.3	1.9	179.4 177.6 177.7	- 20.5	- 26.4				133.2 128.0 127.1	129.3	135.2	136.9 136.6	132.5	134.0	133.6	186.0	184.9	185.1
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.47	302.0 236.0	189.0 169.7 n	212.9 210.6	ພບບ • • • ብ 4 ሠ	242.5	248.4	DRY DRY	□ ⊕	ם	87.8 93.0 93.9	91.7	85.8	84.1	88.5	87.0	87.4	62.0	63.1	62.9
DATE		9-03-63	9-13-63 12-23-63 3-17-64	10-01-63 12-20-63 3-18-64	10-01-63 12-20-63 3-18-64	10-01-63	3-18-64	10-02-63	10-03-63	12-27-63	7-16-63 8-13-63 9-11-63	11-04-63	12-19-63	1-07-64	3-05-64	4-30-64	6-23-64	7-16-63	9-10-63	10-09-63
GROUND SURFACE ELEVATION IN FEET	N AREA	247.0	280•0	211.0	183.0	222.0		164.0	225.0	321.0	221.0							248.0		
STATE WELL NUMBER	MENDOTA-HURON AREA	135/12E-05001 M	135/12E-22N01 M	135/13E-10R01 M	135/13E-12A01 M	135/13E-15R01 M		135/14E-09J01 M	13S/14E-32Q1 M	145/13E-15M01 M	14S/14E-05H01 M							145/14E-28E02 M		
AGENCY SUPPLYING DATA		9050	5050			9050	5050					5050		1				1		_
WATER SURFACE ELEVATION IN FEET		155.0	175.2 175.7 173.8 177.3	178.0	177.5		38.5	23.1	25.1	1.40	46.0	55.5 55.1	53.7 55.6	61.3	71.3	70°9 66°5	62.1	48.8		
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.46	41.0	25.8 25.3 27.2 23.7	23.0 23.0	23.6 23.6 24.0 24.0	**	149.5	164.9 166.6 170.3	162.9 133.6	128.9	150.5 142.0 E	135.5	137.3	129.7	119.7	120.1	128.9	142.2		
DATE	101	6-24-64	7-29-63 8-29-63 9-27-63 10-28-63	11-27-63 12-30-63 2-03-64 2-24-64	3-31-64 4-27-64 5-25-64 6-24-64	7-29-63	7-29-63	9-27-63	12-30-63	3-31-64	5-25-64 6-24-64	7-29-63	9-27-63	11-27-63	2-03-64	3-31-64	4-27-64	6-24-64		
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	196.0	201.0			188.0	188.0					191.0								
STATE WELL NUMBER	CORCORAN IRR	215/22E-27A01 M CONT.	225/22E-01802 M			22S/22E-05L01 M	22S/22E-08L01 M					22S/22E-15C01 M								

O SUR- TO WATER AGENCY EN SURFACE SUPPLYING CCE ELEVATION OATA IN FEET
GROUND SUR- FACE TO WATER SURFACE IN FEET
GROUND SURFACE ELEVATION IN FEET
STATE WELL NUMBER
AGENCY SUPPLYING DATA
WATER SURFACE ELEVATION IN FEET
GROUND SUR- FACE TO WATER SURFACE IN FEET
DATE
GROUND SURFACE ELEVATION IN FEET

AGENCY SUPPLYING DATA		2000	2000		5050	2 000	5050	5050	2000
WATER SURFACE ELEVATION IN FEET		224.4 223.3 223.5 223.5 224.0	- 97.8 - 107.2 - 85.7 - 76.2 - 89.4 - 73.0	- 83.0 - 81.9 - 79.1 - 80.9 - 81.3	- 35.0 - 89.0	1	- 66.2	- 160.0	- 116.4 - 141.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.47	65.6 66.7 66.5 66.0	387.8 397.2 375.7 366.2 379.4	373.0 371.9 369.1 370.9 371.3	261.0 315.0	837.2 * 1899.0 * 1899.0 * 1899.0 * 1899.0 * 1899.0 * 1899.0 * 1999	а19•2	465.0 u	483.4
DATE		2-20-64 3-19-64 4-22-64 5-20-64 6-26-64	7-16-63 8-13-63 9-10-63 10-09-63 11-12-63	1-29-64 2-20-64 3-19-64 4-22-64 5-20-64 6-26-64	12-22-63 6-24-64	7-16-63 8-13-63 9-10-06-3 10-09-63 11-12-63 11-12-63 12-12-64 4-22-64 5-20-64 6-26-64	12-17-63	12-18-63	7-17-63 8-13-63
GROUND SURFACE ELEVATION IN FEET	4 AREA	290.0	290.0		226.0	453 . 453.	451.0	305.0	367.0
STATE WELL NUMBER	MENDGTA-HURON AREA	175/16E-30A03 M CONT.	175/16E-30A05 M		175/17E-21N02 M	185/15E-02N01 M	185/15E-13N01 M 185/17E-12N01 M	185/17E-29N01 M	195/17E-35N01 M
AGENCY SUPPLYING DATA		5000 6001	5050	5050 6001 5050 6001	5050	6001 5000 5050 5000	000	200	
WATER SURFACE ELEVATION IN FEET		118.0 113.5 112.9 114.7	18.9 - 20.5 - 20.5 - 20.0 143.0	83.3 51.4 157.2 148.5		2 8 4 0 0 m m m m m m m m m m m m m m m m m	36 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	223.9 223.7	223.2 223.9 224.4
1	5-22.47		111	107.7 83.3 139.6* 51.4 75.8 157.2 84.5 148.5		205.3 193.6* 38.9 197.6 34.9 201.9 34.9 179.2* 55.0 165.5 66.0 167.2 65.3 182.5 56.0	r		66.8 223.2 66.1 223.9 65.6 224.4
WATER SURFACE ELEVATION IN FEET	5-22.47	1 1 1 1 1 1	193.9 195.5 195.0 76.0 1	*	п п		184.2	108.8* 66.1 66.3	
GROUND SUR- FACE TO WATER WATER SURFACE IN FEET	MENDOTA-HURON AREA 5-22.47	193.0 192.0 188.5 187.9 192.8	193.9 195.5 195.0 76.0 1	107.7 139.6* 75.8 1	n n	205.3 193.6 * 201.9 * 187.5 1165.5 1165.5 1162.5 1195.8 *	184.2	8-13-63 108.8* 9-10-63 66.1 10-09-63 66.3	66.8 66.1 65.6

AGENCY SUPPLYING DATA		2000							2000		0	5000			5050	5050	5050		0606	5050	5050	5050	5050	5000	
WATER SURFACE ELEVATION IN FEET				- 158.6			- 183.2 - 185.0	- 162.0 - 163.9		- 34°7 - 34°2		- 27.6		31.3	427.3							- 59.5		24.1	23.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.47	435.4	44898	44/•5	428.2	444.7	453.2 455.0	432.0 433.9	290.7*				292.3	291.3	195.7			1	1	п	п	484.5	п	335.9	
DATE		7-17-63	9-12-63	11-05-63	12-03-63	2-06-64	3-05-64	4-30-64	7-16-63	9-10-63	12-12-63	1-29-64	3-18-64	5-20-64	1-21-64	1-20-64	1-21-64		1-20-64	1-20-64	12-17-63	12-17-63	12-18-63	7-16-63	8-13-63
GROUND SURFACE ELEVATION IN FEET	N AREA	270.0							260.0						623.0	570.0	634.0		682.0	526.0	415.0	425.0	278.0	360.0	,
STATE WELL NUMBER	MENDOTA-HURON AREA	205/18E-11001 M							20S/18E-36D01 M						216/14F_01F01 M				21S/16E-35D01 M	21S/17E-06N01 M	215/17E-11E01 M	215/17E-24G01 M	215/18E-02M01 M	215/18F-28M02 M	
AGENCY SUPPLYING DATA		2000						5050	5000						5050	5050	2000				5050	2000			0503
WATER SURFACE ELEVATION IN FEET		- 122.7	- 111.3 - 114.3		- 131.5 - 128.5			0.06 -	- 73.8 - 82.0	- 83.6 - 85.4		- 84.1 - 92.5		- 78.1 - 84.4		426.0	457.7	456.4	455.9	455.0	455.1 455.1	455.1 454.9	454.7	453.4	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.47	489.7	478.3 481.3	452.6 482.6	498.5	492.5	466.3 481.6	364.0	354.8 363.0	364.6 366.4	361.9 357.7	365.1 373.5	378.7 365.1	359.1 365.4	妆	193.0	217.3	218.6	219.1	220.0	219.9 219.9	219.9	220•3 220•8	221.6	E
DATE		9-12-63	10-09-63	12-05-63	2-06-64	3-31-64	4-30-64	12-18-63	7-16-63	9-10-63	11-12-63	1-29-64 2-19-64	3-18-64 4-22-64	5-20-64	7-01-63	1-21-64	7-17-63	8-14-63 9-12-63	10-09-63	12-05-63	1-06-64	2-06-64	3-31-64	6-25-64	12-18-63
GROUND SURFACE ELEVATION IN FEET	MENDOTA-HURON AREA	367.0						274.0	281.0						806.0	619.0	675.0								0 777

The property and the property are already as a series of the property and the property and the property are already as a series of the property and the property and the property and the property are already as a series of the property and the property and the property and the property and the property are already as a series of the property and the property and the property and the property and the property and the property and the property and the property and the property and the property and the property and the property and the property and the propert	STATE WELL NUMBER	GROUND SURFACE EL EVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
March Marc	MENDOTA-HURC	ON AREA		4			SOIL		ISTRICT	5-22.48		
11-12-05 12-12-12-12-12-12-12-12-12-12-12-12-12-1		360.0	9-10-63	326.5	33.5	5000		126.0	8-19-63	8•6	116.2	5529
12-12-64 324.6	CONT		10-09-63	321.2	38°8 45°6		CONT.		9-24-63	9°6	116.6	
12-25-64 377, 375, 375, 375, 375, 375, 375, 375,			12-12-63	321.6	38.4				11-19-63	9.5	116.5	
Harry 12-16-46 358.7 3			1-29-64	324.9	35.1				12-23-63	8 6	116.2	
H 447.0 12-17-63 12-26-64 333.4 26.65 12-27-64 13.5			2-19-64	327.3	32.7				1-25-64	9.5	116.5	
Harry G-26-64 333-4 28.9 28.9 126-13-01 M 140.0 7-28-63 10.9 115.1			4-22-64	325.6	34.4				5-04-64	10.2	115.8	
H 447-0 12-17-63 1			5-20-64	331.1 333.4	28.9				9-03-64	10.9	115.1	
H 1747.0 12-17-63 10 5050 10 10-26-63 10.8 129-2 L CONSERVATION DISTRICT 5-22-48 10.8 129-2 L CONSERVATION DISTRICT 5-22-48 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.								140.0	7-28-63	11.9	128.1	5529
H 787.0 1-20-64 298.0 489.0 5050 110-20-64 208.0 1-20-64 2		447.0	12-17-63	0		5050			9-24-63	10.8	129.2	
L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L CONSERVATION DISTRICT L C CONSERVATION DISTRICT L C C C C C C C C C C C C C C C C C C		787.0	1-20-64	298.0	489.0	5050			11-19-63	10.1	129.9	
H 110.0 9-24-63 7.2 102.8 5529 H 110.0 9-24-63 7.7 102.3 1.7 102.3 1.28.8 111.2 128.8 111.2 128.8 111.2 128.8 111.2 128.8 111.2 102.3 1.0 1.28.8 11.2 102.3 1.0 1.28.8 11.2 102.2 1.28.8 11.2 102.3 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	POSO SOIL CO	ONSFRVATION	DISTRICT	5-22.48					12-23-63	10.0	130.0	
M 110.0 10-25-63 7.2 1002.8 5529 M 117.0 10-25-63 7.2 1002.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10				,					4-00-4	13.4	126.6	
117.0 117.0 8-19-63 8.4 101.6 101.6 125.2 117.0 117.0 8-19-63 8.4 101.6 101.6 125.2 101.6 101.		110.0	9-24-63	7.2	102.8	5529			5-04-64	11.2	128.8	
12-23-63 8.4 101.6 101.6 101.6 101.6 101.7 101			11-19-63	- v	101.4				t015010	0.11	* • 0 7 T	
The control of the			12-23-63	0 00	101.6		TERRA BELLA	IRRIGATION D	ISTRICT	5-22.50		
4-06-64 6.3 103.7 225/27E-25JO3 M 532.0 7-25-63 140.8 391.2 6-03-64 6.4 104.6 5.4 104.6 5.4 104.6 391.2 6-03-64 6.4 104.6 5.4 104.6 5.2 10.2 4.0 12.2 4.2 7.4 4.0 8.7 4.2 7.2 4.2 7.4 7.2 4.2 7.2 7.2 7.2 7.2 7.2 7.2			1-25-64	φ φ	101.2							
M 117.0 8 19-63 7.6 109.4 5529 M 117.0 8 19-63 7.6 109.4 5529 M 117.0 8 19-63 7.6 109.4 5529 M 117.0 8 19-63 7.6 109.4 5529 M 128.0 9-24-63 109.3 422.7 M 128.0 9-24-63 109.3 422.7 M 128.0 9-24-63 109.3 422.7 M 128.0 9-24-64 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6			4-06-64	6.3	103.7			532.0	7-25-63	140.8	391.2	6001
M 117.0 8-19-63 7.6 109.4 5529 10-21-63 121.2 410.8 10-25-63 6.6 110.4 5529 100.4 424.7 422.7 11-19-63 6.5 110.4 5529 110.4 12-02-63 109.3 422.7 11-19-63 6.5 110.4 5529 110.4 12-02-64 107.8 422.7 11-23-64 10.9 100.4 100.4 100.4 100.4 12-24-64 107.8 424.2 4-06-64 10.0 100.4 100.4 100.4 412.0 412.0 412.0 5-04-64 10.6 100.4 100.4 100.4 100.4 410.5 410.5 410.5 410.5 410.5 410.5 117.0 410.5			6-03-64	7 • 4	104.6				9-24-63	127.5	404.5	
M 117.0 8-19-63 7.6 109.4 55.29 12-02-63 109.3 4.22.7 12-02-63 109.2 4.22.8 11-19-63 6.6 110.4 55.29 12-24-64 109.2 4.22.8 11-19-63 6.6 110.4 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 110.0 12-24-64 14.7 26.8 26.0 26.0 12-24-64 8.9 119.1 110.0 12-24-64 246.8 26.0 26.0 12-24-64 246.8 26.0 26.0 26.0 12-24-64 246.8 246.8 246.8 246.8 26.0 26.0 26.0 22.24-64 246.8 246.									10-21-63	121.2	410.8	
M 128.0 9-24-64 10.05 110.04 424.2 M 128.0 9-24-64 10.05 110.05 412.0 M 128.0 9-24-64 10.05 110.05		117.0	8-19-63	7.6	109.4	5529			12-02-63	109.3	422.7	
M 128.0 9-24-64 10.5 110.5 5529 225/27E-36N01 M 513.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.0 7-25-64 117.0 7-			10-25-63	0.0	110.4				12-24-63	109.2	422.8	
1-25-64 7.3 109.7 1-25-64 111.0 42			12-23-63	9.9	110.4				2-24-64	120.0	412.0	
# 128.0 9-24-64 10.8 106.2 M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-64 117.0 415.0 M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-64 117.0 415.0 10-25-63 10.2 117.8 5529 225/27E-36NO1 M 513.0 7-25-63 294.0 219.0 11-19-63 10.0 1118.3 10.0 117.5 9-24-63 308.0 205.0 118.0 12-23-64 10.5 117.5 118.3 12.2 56.0 255.0 12.2 56.0 12.2 56.0 12.2 56.0 119.1 10.0 117.0 12.0 5.0 4-06.4 8.9 119.1 21.5 5529 7-22-64 246.8 246.0 267.0 22-24-64 246.8 266.2 44.7 268.3 3-25-64 246.8 266.2			1-25-64	7.3	109.7				3-25-64	1110	421.0	
M 128.0 9-24-64 10.6 106.4 6-03-64 138.7 393.3 6-03-64 138.7 393.3 6-03-64 138.7 108.3 6-03-64 138.7 108.3 6-03-64 138.7 108.3 111.5 5529 225/27E-36NO1 M 513.0 7-25-64 117.0 219.0 219.0 112.2 117.8 118.3 10.0 118.3 118.3 117.5 117.5 117.5 117.5 117.5 118.3 117.5 117.5 117.5 117.5 117.0 117.5 117.0 117.5 117.0 117.5 117.0 117.5 117.0 1			79-90-7	10.8	106.2				4-25-64	112.5	419.5	
M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-63 294.0 219.0 110-25-63 10.2 117.8 118.3 111.9 1 111.9 1 126.0 7-28-63 10.2 117.8 118.3 118.3 118.3 119.1 119.1 119.1 119.1 119.1 126.0 7-28-64 246.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12			5-04-64	10.6	106.4				5-19-64	138.7	393.3	
M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-63 294.0 219.0 219.0 10-25-63 10.2 117.8 118.0 11-19-63 10.0 118.0 118.0 11-19-63 10.0 118.0 118.0 118.3 11-19-64 10.0 117.5 118.3 117.5 11				•	•				10-37-0			
10-25-63 10.2 110.8 8-29-63 322.5 8-29-63 322.5 110.0 118.0 110.2 118.0 10-21-63 10.0 118.0 10-21-63 208.0 10-21-63 298.0 10-21-63 298.0 10-21-64 11.0 117.0 117.0 12-24-64 246.0 12-24-64 244.7 117.0		128.0	9-24-63	16.5	111.5	5529		513.0	7-25-63	294.0	219.0	2000
12-23-63 9-7 118-3 1-25-64 10-5 117-5 4-06-64 11-0 117-0 5-04-64 6-5 121-5 6-03-64 8-9 119-1 M 126-0 7-28-63 9-5 116-5 5529			10-25-63	10.0	118.0				8-29-63	322.5	205.0	
1-25-64 10.5 117.5 4-06-64 11.0 117.0 5-04-64 6.5 121.5 6-03-64 8.9 119.1 M 126.0 7-28-63 267.0 12-24-63 258.0 1-20-64 246.0 2-24-64 246.0 3-25-64 246.8 4-22-64 251.1			12-23-63	7.6	118.3	_			10-21-63	298.0	215.0	
4-06-64 11.0 117.0 12-24-63 258.0 12-24-64 246.0 1-20-64 246.0 1-20-64 246.0 1-20-64 246.0 1-20-64 246.7 119.1 126.0 7-28-63 9.5 116.5 5529			1-25-64	10.5	117.5				12-05-63	267.0	246.0	
M 126.0 7-28-63 9.5 116.5 5529			79-90-7	11.0	117.0				12-24-63	258.0	255.0	
M 126.0 7-28-63 9.5 116.5 5529 4-22-64 251.1			6-03-64	0 00	119.1				1-20-64	244.7	268.3	
M 126.0 7-28-63 9.5 116.5 5529 4-22-64 251.1									3-25-64	246.8	266.2	
		126.0	7-28-63	9.5	116.5	5529			4-55-64	251.1	261.9	

AGENCY SUPPLYING DATA		5050	5050							200	0000												6001						1004	>>>>	
WATER SURFACE ELEVATION IN FEET		100.6	127.9 96.1 94.9	96.9	128.4	134.0	130.0	11101	102.4	147.4	147.9	147.8	148.0	146.4	145.5	145.8	145.5	145.5	145.4	14041			274•1 274•8 277•0	275.5	277.7	0.012	274.8	273.3	2,010	211.5	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.54	79.4	52°1 83°9	83.1 58.2	51.6	46.0	50.0	68,9	77.6	33.6	32.1	32.2	32.0	33.6	34.5	34.2	34.5	34.5	34.6	6 + 6	5-22.65		115.9 115.2 113.0	114.5	112.3	112.0	115.2	116.7	105.2	194.0	
DATE		6-04-64	7-02-63	10-04-63	12-04-63	2-05-64	3-02-64	5-04-64	6-04-64	7-03-63	8-05-63	9-04-63	10-04-63	11-05-63	1-02-64	2-05-64	3-02-64	4-05-64	5-04-64	1011010			10-06-63 10-31-63 11-30-63	12-31-63	1-31-64	+0-CI-7	4-01-64	6-01-64	10-07-63	10-31-63	
GROUND SURFACE ELEVATION IN FEET	MS	180.0	180.0							0	0.081										ER DISTRICT		390.0						400)) }	
STATE WELL NUMBER	MERCED BOTTOMS	95/14E-01B01 M CONT.	95/14E-01802 M								45/I4E-DIBUS M										GARFIELD WATER		12S/20E-13A01 M						M 50470_B167361		
AGENCY SUPPLYING DATA		2000	6001		5050									5050								_		5050							
WATER SURFACE ELEVATION IN FEET		254.5	266.0 292.5		74.4	64.9	60.9	67.4	70.0	73.0	73.8	71.3	68.8	76.2	75.5	75.2	75.0	75.3	75.5	75.6	75.7	76.1	76•3 76•2	27.2	94.4	76.5	20.0	27.2	130.5	129.4	121.0 108.6
1	1		77																					-	ο ο	, ,	, ;	· ~			
GRDUND SUR. FACE TO WATER SURFACE IN FEET	5-22.50	258.5 266.0	252.0 2 225.5 2	5-22.54	5.6	15.1	19.1	12.6	10.0	0.7.2	6.2	8.7	11.2	60 00	4.5	4°8	5.0	4.7	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4	4.3	3°0	~ αο • • • •	-	85.6				49.5	50.6	59.0
GRDUND SUR. FACE TO WATER SURFACE IN FEET				5-22.54	7-02-63 5.6 8-05-63 11.9		10-04-63 19-1			3-02-64 7.0			6-04-64 11.2	7-02-63 3.8					12-04-63 4.5					52.8 1			0.09	52.8			4-02-64 59.0 5-04-64 71.4
	TERRA BELLA IRRIGATION DISTRICT 5-22.50	258.5	252.0 225.5	MERCED BOTTOMS 5-22.54											8-05-63								5-04-64 3.7 6-04-64 3.8	52.8 1	85.6		0.09	52.8	49.5		

GROUND WATER LEVELS AT WELLS

AGENCY SUPPLYING DATA		
WATER SURFACE ELEVATION IN FEET		
GROUND SUR- FACE TO WATER SURFACE IN FEET		
DATE		
GROUND SURFACE ELEVATION IN FEET		
STATE WELL NUMBER		
AGENCY SUPPLYING DATA		6001
WATER SURFACE ELEVATION IN FEET		213.7 216.4 218.3 218.8 219.5 221.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.65	191.8 189.1 187.2 186.7 186.0 183.6
DATE		11-30-63 191.8 12-31-64 187.2 2-16-64 186.7 4-01-64 186.0 5-01-64 183.6 6-01-64 184.2
GROUND SURFACE ELEVATION IN FEET	ER DISTRICT	405. 5.
STATE WELL NUMBER	GARFIELD WATER DISTRICT	125/21E-07A02 M CONT.

6001

390.5

125/21E-18A03 M

278.5 278.8 280.3 273.0 280.1 281.5 278.9 275.4

1112.0 1111.0.7 1110.2 1110.4 110.4 110.4 111.6 1111.6

10 - 06 - 63 10 - 31 - 63 11 - 31 - 63 12 - 31 - 64 2 - 16 - 64 5 - 01 - 64 6 - 01 - 64 APPENDIX D
SURFACE WATER QUALITY

Specific conductance is a measure of the capacity of water to conduct a current of electricity.

Coliform is a group of organisms whose presence is an indicator of bacteriological contamination or pollution of water.

Most probable number (MPN) is an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests.

<u>Hardness</u> is a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather.

221

TABLE OF CONTENTS

		Page
INTRODUC	TION	220
Explanat:	ion of Tables	220
Explanat:	ion of Plates	220
Explanat	ion of Terms and Abbreviations	220
	LIST OF TABLES	
Table Number		
D-1	Sampling Station Data and Index for Surface Water	227
D-2	Analyses of Surface Water	228
D-3	Spectrographic Analyses of Surface Water	259
D-4	Radioassays of Surface Water	260
	LIST OF FIGURES	
Figure Number		
D-1	Location of Surface Water Sampling Stations	223
D-2	Weekly Mean Specific Conductance at Selected Stations (3 sheets)	224

INTRODUCTION

This appendix contains data pertaining to the quality of surface waters during the 1964 water year (October 1, 1963, to September 30, 1964). The data are presented as tables and graphs and represent the observed physical, chemical, and bacteriological characteristics of the waters collected at the surface water quality monitoring stations. These characteristics are analyzed according to "standard methods" and accuracy of the measurements are contained therein.

The stations are sampled periodically (monthly, quarterly, or semiannually), depending on past records, need, and the type of data required for each station. Samples collected and the field data obtained at the stations are as follows:

- 1. Partial mineral analysis--1/2 gallon
- 2. Bacteriological analyses (coliform) -- 2 samples in 4 oz., sterilized bottles
- 3. Dissolved oxygen--D. O.
- 4. pH
- 5. Temperature
- 6. Gage height
- 7. Time
- 8. Visual observation of water conditions

In May and September, the partial mineral analysis is replaced by a complete mineral analysis and the following are added to the list above:

- 1. Radiological analysis
- 2. Phosphate, arsenic, and detergents (ABS)
- 3. Spectrographic analysis of heavy metals (for ten selected stations)

Continuous conductivity recorders are installed at nine of the surface water quality monitoring stations. The recorders measure specific electrical conductance, a characteristic of water which provides an approximation of the quantity of minerals in solution.

Explanation of Tables

An alphabetical listing of all stations in the surface water monitoring program is found in Table D-1 along with information concerning station number, location, period of record, frequency of sampling, and agency responsible for collection of samples.

Results of mineral analyses can be found in Table D-2, where mineral concentrations, dissolved oxygen, and ABS are expressed in parts per million (ppm). Discharges are expressed as cubic feet per second (cfs) and bacteriological determinations are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample.

Results of spectrographic analyses for heavy metals, found in Table D-3, are expressed as parts per hillion.

Table D-4 contains results of radiological analyses, expressed as picocuries per liter (pc/1).

Explanation of Plates

Locations of surface water quality stations and recorder sites are depicted on Figure D-1. Figure D-2 presents, in graphical form, data obtained from electrical conductivity recorders in terms of mean weekly values of electrical conductivity (EC \times 10 6 micromhos) plotted against time (week).

Explanation of Terms and Abbreviations

<u>Cubic foot per second (cfs)</u> is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second.

<u>Dissolved oxygen (DO)</u> is the amount of free oxygen contained in water. It is one of the most important indicators of the condition of a water supply.

Total dissolved solids (TDS) represents the quantity of dissolved mineral constituents in water.

<u>Specific conductance</u> is a measure of the capacity of water to conduct a current of electricity.
<u>Coliform</u> is a group of organisms whose presence is an indicator of bacteriological contamination or pollution of water.

Most probable number (MPN) is an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests.

<u>Hardness</u> is a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather.

Station name	Station number
San Joaquin River at Friant Dam Salt Slough at San Luis Ranch San Joaquin River near Mendota San Joaquin River at Fremont Ford Bridge ² San Joaquin River at Maze Road Bridge ² San Joaquin River at Crows Landing Bridge San Joaquin River near Vernalis ² San Joaquin River at Patterson Bridge ² San Joaquin River at Fatterson Bridge ² Stanislaus River at Koetitz Ranch ² Stanislaus River below Tulloch Dam Tuolumne River at Hickman Bridge ² Tuolumne River at Tuolumne City ² Tuolumne River below Don Pedro Dam Merced River near Stevinson ² Merced River below Fxchequer Dam Kings River below Pine Flat Dam Kings River below Poples Weir Kaweah River below Terminus Dam Kaweah River near Three Rivers Kern River near Bakersfield Kern River at Kernville Tule River below Success Dam Tule River near Springville Delta-Mendota Canal near Mendota	24 24 c 25 25 26 26 26 26 27 27 a 29 29 a 30 31 31 a 32 32 a 33 b 33 c 33 d 34 35 36 a 36 b 91 91 b 92
Delta-Mendota Canal near Tracy ¹ , ² Fresno River near Daulton Chowchilla River near Raymond	93 113 114

- 1 Not shown on plate, station is outside of branch boundary. Originally monitored by Delta Branch transferred to San Joaquin District as of July 1, 1963.
- 2 Conductivity recorder installed at this surface water station.

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS
SAN JOAQUIN VALLEY
1964

TUOLUMNE RIVER NEAR HICKMAN BRIDGE STA. No. 30 RIVER MILE 29.3

MERCED RIVER NEAR STEVINSON STA. No. 32 RIVER MILE 1.8

STANISLAUS RIVER AT KOETITZ RANCH STA. No. 29 RIVER MILE 9.5

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY

SAN JOAQUIN RIVER AT MAZE RD. BRIDGE STA. No. 26a RIVER MILE 82.9

TUOLUMNE RIVER NEAR TUOLUMNE CITY STA. No. 31 RIVER MILE 2.9

DELTA MENDOTA CANAL NEAR TRACY STA. No. 93 CANAL MILE 3.5

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS
SAN JOAQUIN VALLEY
1964

SAMPLING STATION DATA AND INDEX FOR SURFACE WATER

Station	Station Number	Location	Period b af Record	Frequency ^C of Sampling	Sampled ^d by	Analysis an page
Big Creek above Pine Flat Dam	33d	125/25E-4	July 1960	М	USACE	224, 256
Chowchilla River near Raymond	114	8s/18E-1	January 1962	s	DWR	225, 256
Delta-Mendota Canal near Mendota	92	13S/15E-19	July 1952	М	DWR	226, 255, 256
Delta-Mendota Canal near Tracy	93	1S/4E-30	July 1952	М	DWR	227, 255, 256
Fresno River near Daulton	113	9S/19E-34	January 1958	s	DWR	228, 256
Kaweah River below Terminus Dam	35	175/27E-25	September 1961	М	USACE	229, 256
Kaweah River near Three Rivers	350	175/28E-27	April 1951	М	USACE	230, 256
Kern River near Bakerafield	36	295/28E-9	April 1951	м	KCPR	231, 256
Kern River below Isabella Dam	36a	265/33E-30	September 1955	Q	USACE	232, 255, 256
Kern River at Kernville	36ъ	25S/33E-15	September 1955	Q	USACE	233, 256
Kings River below North Fork	33c	125/26E-21	September 1955	Q	USACE	234, 256
Kinga River below Peoples Weir	34	175/22E-1	April 1951	М	DWR	235, 255, 256
Kings River below Pine Flat Dam	3310	13S/24E-2	September 1955	Q	USACE	236, 257
Merced River below Exchequer Dam	32a	4s/15E-13	April 1959	Q	DWR	237, 257
Merced River near Stevinson	32	6s/9E-36	April 1951	М	DWR	238, 255, 257
Salt Slough at San Luis Ranch	24c	9S/11E-7	November 1958	м	DWR	239, 257
San Joaquin River at Crows Land Bridge	2610	6s/9E-7	January 1962	м	DWR	240, 257
San Joaquin River at Fremont Ford Bridge	25c	7s/9E-24	July 1955	М	DWR	241, 257
San Joaquin River at Friant Dam	24	115/21E-7	April 1951	Q	DWR	242, 255, 257
Sen Joaquin River near Grayson	26	4s/7E-24	April 1959	м	SF	243, 257
San Joaquin River at Maze Road Bridge	26a	3S/7E-33	April 1951	м	SF	244, 257
San Joaquin River near Mendota	25	13S/15E-7	April 1951	м	DWR	245, 257
San Joaquin River at Patterson Bridge	27a	55/8E-15	January 1962	М	DWR	246, 257
San Joaquin River near Vernalia	27	3s/6E-13	April 1951	м	DWR	247, 255, 258
Stanialaus River at Koetitz Ranch	29	3s/7E-2	April 1951 ^e	м	DWR	248, 255, 258
Stanialaus River below Tulloch Dam	29a	1S/12E-1	July 1956	Q	DWR	249, 258
Tule River near Springville	916	21S/29E-15	November 1963	м	USACE	250, 258
Tule River below Success Dam	91	215/286-35	July 1952 ^f	М	USACE	251, 255, 258
Tuolumne River below Don Pedro Dam	3le	3S/14E-20	April 1951	Q	SF	252, 258
Tuolumne River at Hickman Bridge	30	3S/11E-34	April 1951	м	SF	253, 258
Tuolumne River at Tuolumne City	31	4s/8E-12	April 1951	м	SF	254, 255, 258

a. Locations are in reference to Mt. Diablo Base and Meridian
b. Beginning of record
c. M - Monthly, B - Bimonthly, Q - Quarterly, S - Semiannually
d. DWR - Department of Water Resources
USACE - United States Army Corps of Engineers
SF - City & County of San Francisco
KCPR - Kern County Parks and Recreation
e. Prior to 2-7-64 station was located at river mile 1.9, location 3S/TE-17,
and was called Stanislaus River near Mouth.
f. Formerly called Tule River near Porterville

ANALYSES OF SURFACE WATER TABLE D-2

BIG CREEK ABOVE PINE FLAT DAM (STA. NO. 33d)

	Anolyzed by i		USGS						-								
,	de CaCO ₃ ity MPN/mi		Median	4.5 Maximum	Minimum 0.23												
اِ	- 24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	1		N	н	72		m	~	CV .	N	н	н	ч		CV CV	
	200 N	Edd		0	0	0		0	0	0	0	0	0	0		0	
1	1	₩ DD W		38	33	53		31	32	88	21	17	56	33		45	
8	2 P P P P P P P P P P P P P P P P P P P		_	37	32	36		gg.	38	38	9	37	38	4		37	
Torol	solved solids In ppd			113 ^e	95 e	83.		89	75 ^e	81e	59e	588	16e	95e		124 ⁸	
	Other constituents d											ABS 0.00 Po _t 0.05 As 0.00				ABS 0.0 PO ₁ 0.05 AB 0.00	
	Silica (SiO ₂)	\top										ଥା				প্লা	
lian	Boron (B)			0.0	0.0	0.1		0.0	0.0	0.0	0:0	0.1	0.0	0.0		0.3	
million per mil	Fluo- ride	•										0.01					
parts per million equivalents per million	rote NO.	n i										0.02			DRY	0.0	
equiva	Chlo-			0.31	8.5	4.5		5.0	6.0	6.0	3.5	0.04	4.5 0.13	0.20	TAKEN -	0.51	
<u>=</u>	Sul - fate	1										0.02			SAMPLE T	0.08	
stituents	Bicar - bonate	P. Company		53	148 0.79	42 0.69		0.77	39	41 0.67	33 0.54	30	42 0.69	146 0.75	NO S	0.93	
Mineral constituents	Corbon –	<u> </u>		0.00	0.0	0.00		0.00	0.00	0.00	0.00	0.00	0.0	0.0		0.0	
Min	Patos-											0.03				2.7 0.07	
	Sodium (No)			्रों त	7.1	0.33		8.7	0.32	8.1	6.5	0.22	0.33	9.8		0.57	
	Colcium Magne-	is in				_						0.08				0.10	
	Colcium (Co)			0.76	99.0	0.58		0.62	0.53	0.56	0.42	5.2	0.53	0.62		0.80	
	E al			7.0	7.5	7.0		i.	7.3	7.4	7.0	7.7	7.3	7.7		7.7	
Specific	conductonce (micromhos			132	7	97		104	88	95	69	99	89	Ħ		164	
		1000/		117	101	8		83	98	87	100	105	011	117		104	
		Edd		10.7	10.8	10.7		10.2	10.2	10.4	10.0	10.0 105	10.7	9.0		10.2 104	
	Temp in OF			70	42	94		143	1,2	772	9	79	62	85		70	
	Discharge Temp in cfs in oF			2.0	15.5	94		21	53	1,4	56	52	22.5	~			
	and time	1.5.1	1963	10/1	11/12	12/3	1964	1/13	2/3	3/9	4/13 1120	5/11 0111	6/8 1050	7/13		9/14	

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and pliasphote (PO4)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health, Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Lobarotories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. h Annual medion and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

TABLE D-2 (Cont.)

CHOWCHILLA RIVER NEAR RAYMOND (STA. NC. 114) ANALYSES OF SURFACE WATER

	Anolyzed by i		USGS				
	Hordness bid - Coliform		Median 2.3 Maximum 6.2 Minimum	50.			
	- page 1			н			
	800	D E dd	58	0			
	Hord	Total N.C. ppm ppm	147	56			
	Sod -		04	37.			
	Solved solids	mdd ui	355?	124E			
	Other constituents		ABS 0.0 F04, 0.00 As 0.00	ABS 0.0 PO _L 0.10 As 0.00			
	Shice	3	8	881		 	
	5	6	0.1	0.0			
million	Fluo-	(F)	0.3	0.00			
ports per million	iblo- Ni- Fluo- Boro	(NO ₃)	1.1	0.08			
١	Chlo-	(i)	3.36	12 0.34			
ē	Sul -	(\$0.	2.0	0.12			
stituent	Bicar	(HCO ₃)	109	76			
Mineral constituents	Carbon	((00)	0.0	0,03			
ĕ.	Potas-	(¥	3.0 0.08	0.04			
	Sodium	(NO)	12.04 2.04	14 0.51			
	Mogne-	(Mg)	१.8 ं	3.3			
	Calcium Mogne-	(BD)	2.30	17 0.85			
	F.	ماه	8.1	8.3			
	Specific conductonce pH (micromhos pH C	2 2	577	188			
	P	ppm %Sat	92	ı			
	Dissolved	шdd	т.т				
	Te an		179	99			
	Oischorge Temp in cfs in 9F		1	39.4	Pr		
	Oote ond time	P.S.T.	1963 10/7 0720	1961 5/11 0910	41/6		

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfonote (ABS), and phosphote (PO.)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD), Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Lang Bacch, Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (cont.)

DELLIA-MENDOTA CANAL NEAR MENDOTA (STA. NO. 92)

		Anolyzed by i		USGS													
	A	bid - Coliform		Median	6.2 Maximum	Minimum 90.											
	Tur-	bid- ity nppm			25	15	10		2	15	20	04	8	04	8	91	8
		000 c	N		145	53	51		195	11	29	83	20	16	13	23	24
			Total ppm		161	143	131		284	168	139	120	137	82	85	お	120
	Par	T pos			72	20	52		26	64	94	1	7	77	143	55	55
	Total	spilos solids	Edd u		382°	354°	329°		784°	428°	311 ^e	240°	324 ⁸	159 ^e	174 ^e	261 ^e	335 ^g
		Other constituents											ABS 0.10 Po ₁ 0.35 As 0.00				ABS 0.1 Pol, 0.25 As 0.00
		Silico	2 OIC)										13				村
	Illion	Boron			0.1	0.3	0.3		1.6	7:1	0.2	0.2	0.2	1.0	0:0	0.2	2.0
millio	per m	Fluo-	(F)										0.0				
ports per million	equivolents per million	N-IN-	(NO ₃)										6.8				0.02
٩	• quiv	Chlo-	(i)		2.96	2.54	86		3.50	3.13	76	53 1.50	86 2.43	29.0	34	80 2.26	2.93
	UI S	Sul -											96.0				45 0.94
	stifuent	Bicar-	(HCO ₃)		2.31	011	1.61		1.70	1.93	1.4	1.488	106 1.74	1.3	1.488	1.34	35
	Mineral constituents	Corban-	(co)		0.00	0.00	0.00		2.0 0.07	0.0	0.00	0.0	0.00	0.00	0.00	0.0	0.00
	Win	Potos-	(K)										2.2				0.07
		Sodium	(0 N)		3.13	66 2.87	65 2.83		168	3.26	54 2.35	38	56 2.44	71.1	30	52 2.26	3.04
		Mogne-	(Mg)										1.24				1.25
		Calcium	(00)		3.22	2,86	2,62		5.68	3.36		2.40	30	1.64		1.88	23 1.15
		I o	ماء		7. ¹ / ₈ .1	7.3	8.1		8.7	8.2	7.7	8.0	8.1	8.0	4.7	7.6	4.7
	Specific	(micramhas			678	628	583		1390	759	551	426	559	282	308	1463	599
			%Sot		78	87	95		126	8	96	93	76	85	88	85	8
		Dissolved	mdd		6.9	8.5	9.8		15.2	9.8	10.6	9.0	9.1	7.7	6.9	7.3	7.3
		Temp in oF			7	79	83		54	53	25	63	99	69	=	†L	10
		Orschorge Temp in cfs in oF															
		Oate ond time	P.S.T.	1963	10/8 0710	11/4	12/9	1964	1/13	2/10 0950	3/9	4/13 0900	5/11	6/8 094 5	7/13 0845	8/10 0640	9/14 0700

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfonate (ABS), and phosphata (PO.)

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Beach, Service (USPHS); San Bernardina County Flood County District (SBCFCD); Metropolitan Water District of Sauthern California (WMD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR), as indicated. h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

DELTA-MENDOTA CANAL NEAR TRACY (STA. NO. 93)

		Anolyzed by i		SUSIT													
	-	MPN/ml		Median	23. Maximum	Minimum 2.3											
Tur-Coliformh CO3 11y MPN/mil n ppm				15	6	8		15	2	9	35	9	20	35	20	8	
Hordnass os CoCO3 Total N C		E		26	62	37		777	8	82	04	8	15	6	32	72	
		Edd		186	152	זֶר דר		116	155	157	109	82	98	8	101	180	
Per- cent				20	17	22		73	54	147	Ş.	37	145	775	52	75	
Total dis- a solved In ppm				461e	383	294e		305	392 ^e	389e	216	164 ⁸	17^{h} e	162 ^e	264°	9 ⁴ 181	
Other constituents												ABS 0.00 Polt 0.15				ABS 0.0 PO ₀ , 0.30 As 0.01	
	-	Silico (SiO ₂)	_		o.l		~~		- Lou			011	ᆌ				ri -
parts per million	ilion I	Boron (B)	_		0.2	5.5	0.3		0.3	7.0	0.3	0.2	0.1	<u>0.1</u>	0.1	7.0	्।
	per .	Fluo- ride (F)								_			0.1				
		trote	è c										0.05				0.03
	edniv	Chio-			3.75	3.02	2.12		82 2.31	3.05	59 2.51	1.24	30	36	30	84 2.37	165
9	- 1	Sul - fate	(Page)										27 0.56				63 1.31
tuentite a		Bicar- bonate	(1003)		158 2.54	1.80	94		1.44	98	87	8th 1.38	76	86	85	8th 1.38	132 2.16
Money Constituents		Carbon-	(600)		0.00	0.00	0.0		0.0	8 0.27	2.0 0.07	0.00	0.00	0.00	10.03	0.0	0.00
Ž		Potas- Sium (K)											1.8				3.3
		Sodium (Na)			3.74	73 3.18	57 2.46		2.39	82 3.57	64 2.78	34	23	32 1.39	27	50	100
		Magne-	<u>}</u>										10				1.70
		Colcium (Co)			3.72	3.03	2.28		25.32	3.10	3.14°	2.18	16	1.72	1.80	2.02	38
		H a	۵		8.2	7.4	7.1		8.0	7.4	7.4	8.1	7.6	7.4	8.3	7.14	7.8
	Specific	(micromhos of 25°C)			818	0890	522		537	969	691	383	275	309	287	6911	1798
		Jen Jen	1000/		88	89	35		82	1 00	95	お	94	83	82	81	83
		Disco	mad.		7.8	9.0	4.3		9.5	9.5	10.4	9.5	7.6	7.9	7.1	6.9	7.4
		Ten in PF			20	59	∄		84	50	53	28	28	79	73	75	7.0
		Oischorge Temp in cfs in oF			1640	0	0		0	860	2510	1704	3320	3248	4075	1	2510
		somotimes		1963	10/9	11/5	12/3	1961	1/7	2/5 0930	3/3	11/8 0845	5/6 9/5	6/9	7/7	8/4 1310	9/1 1345

o Field pH

b Laboratory pH.

c. Sum of calcium and magnesium in epm. d. Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO_4).

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Service.
Canneal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureou of Reclamation (USBR); United States Public Health Service (USPHS), Son Bernardino County Flood Canneal District as Southern California (WMD), Los Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LBDPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR), as indicated.

ANALYSES OF SURFACE WATER FRESNO RIVER NEAR DAULTON (STA. NO. 113) TABLE D-2 (Cont.)

	Anolyzed by i	USGS									
4	Hordness bid - Coliform os CoCO ₃ ity MPN/mi fotal N C.	Median .62 Maximum 6.2 Minimum									
1 25	- bid Yti Edd c	н	-								
	200 Ng 00 Ng 00 Ng	-	0								
	Total Ppm	89	7/2				-				
g F	sod -	20	37								
Toto	solide in ppm	201 ^e	249								
	Other constituents	ABS 0.0 P04, 0.00 As 0.01	ABS 0.0 PO ₄ 0.10 As 0.00								
	Silica (SiO ₂)	ଷା	13						 		
Hion	Boron Silico (B) (SiO ₂)	0,0	ं		 						
million oer mi	Fluo- ride (F)	0.0	0.00								
ports per million equivolents per million	Ni- trote (NO ₃)	1.0	1.8								
equiv	Chlo- ride (CI)	53	4.5		 				 		
E .	Sul - fote (\$0 ₄)	\$ <u>.0</u>	0.0								
netifuen	Bicar- bonate (HCO ₃)	68	36								
Mineral constituents	Corbon- ore (CO ₃)	000	0.0								
¥.	Potos- sium (x)	0.0	0.03								
	Sodium (No)	30	6.8						 		
	Magne- sium (Mg)	0.21	0.7		 		 			 	
	Colcium (Ca)	21 0	8 4 0 0 42								
	를 alo	8.0	7-10		 			 			
	conductonce pH (C) a of 25°C) a	592	*								
	gen (98	103			·					
	Dissolved oxygen ppm %Sot	8.7	10.0								
		5,0	5								
	Orschorgs Temp in cfs in oF	ŧ	28	720							
	ond time sampled	1.96 <u>3</u> 0630	5/11 0800	5/1/6							

o Field pH.

b Labaratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.)

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (MWD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Mater Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Divisian of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

KAWEAH RIVER BELOW TERMINOUS DAM (STA. NO. 35)

_		_															
h Anolyzed		USGS															
Tur- bid-Coliform ity MPN/mi		Median	0.62 Maxd mum	Minimum 0.62													
Turning Turnin			-	ч	Q	-	CV	-	2	4	٦	0	٦	-	7		
Γ	N 00 3		S E		0	0	0		0	0	0	0	0	0	٦	0	0
Hordi Totol				<u></u>	145	37		2	45	1171	35	23	15	ನ	32	94	
Per- cent sod -				81	17	27		23	8	22	56	27	25	ದ	8	2	
Totol dis- solved In ppm			19	8 8	174 e		75 ⁸	85e	19 <u>6</u>	999	47 ⁸	31	1 ¹ 1 e	52 ⁸	869		
		Other constituents d											ABS 0.00 PO _t 0.10 As 0.00				ABS 0.0 Po _{tt} 0.05 As 0.00
	ŀ	Silica	(%)										সা				7.9
	6	Boron	<u> </u>		0.1	0.0	0.0		0:0	0:0	0.0	0.0	0.1	0:0	9	0.0	0.3
million	per million	Fluo-Beride (F)											0.00				
ports per million													0.0				4.3 0.07
å	aquivalents	Chio-	(10)		3.2	5.2	3.0		3.5	0.15	5.0	1.5	0.03	1.0	0.03	2.0	3.6
	Ē	Sul -	(80,										0.02				3.0
	tituents	Bicor-	(HCO3)		53	59 0.97	0.77		0.9	0.93	0.92	0.70	33	0.33	25	179°0	53
	Mineral constituents	1	(502)		000	0.00	0.0		0.00	0.0	000	0.00	0.00	0.0	0.0	000	0.0
	Mino		(X)										0.03				2.1 0.05
		Sodium	<u></u>		0.17	4.4	0.50		5.5	0.25	5.8	5.1	2.9 0.13	0.10	2.6	3.7	5.2
			(6Mg)								-		0.0				53 0.20
		Calcium	(င၁)		0.80	0.0	0.74°		0.80	8. 9.	3 <u>88</u> 0	0.64	0.10	0.30	0.12 0.12	0.63	ध छ:0
		Į.	D C		6.9	7.2	7.7		8.1	7.0	7.5	<u>7</u>	7.5	7:0	6.7	7.0	7.5
	Specific	conductance (micromhos	() -62 to		104	7711	8		105	113	TIT	87	89	1 77	45	82	108
			%Sot		55	85	63		95	76	21	Ħ	145	134	125	130	150
		Oissolvs d	maa		5.2	4.8	6.5		n.5	0.11	13.5	13.0	15.0	13.5	9.11	0.11	12.8
			-		62	61	\$ 1		1,5	77	45	74	2.5	9	65	92	92
		Dischorge Temp in cfs in oF			&	;	500		011	170	ঃ	1	1	739	1038	&	9% 98.
Dote ond time sompled P.S.T.		P.S.T.	1963	10/7	11/4	12/5 0915	1964	1/6 51115	2/4 1330	3/13	4/6 1015	5/11 0830	6/10 0715	7/6 1200	8/10 0820	9/1# 60/1#	

o Field pH.

Laboratory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), olkyl benzone sulfonate (ABS), and phosphote (PO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annuol median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lobaratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Sauthern California (WMD); Las Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Water District (SBCFCD); Metropolitan Water District of Sauthern California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

KAWEAH RIVER NEAR THREE RIVERS (STA. NO. 35b)

		Analyzed by i	USGS													
	2	MPN/ml	Median	0.38 Maximum 0.60 Minimum	٥, ٥											
Total Part Cent Hardness bid Coliform Solved sod - Ge CoCO ₃ Ity MPN/mil In ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm			ч	2		0	N	10	C)	Н	0	N	ч	٦,		
			0	0		0	0	0	0	0	0	0	0	0		
				74	35		07	38	0†	33	19	15	54	88	917	
		Sod - Fui		R	8		25	25	25	25	23	25	8	777	55	
	2010	solved solids in ppm		82e	62°		74°	89	20e	57e	108	28e	55 ⁸	a 69	85 ^K	
		Other constituents									ABS 0.0 PO ₄ 0.10 As 0.00				ABS 0.0 PO4 0.00 As 0.00	
		Silica (SiO ₂)									阳				김	
is in aquivalents per million	uoll	Boron (B)		0:0	0.1		0.0	0.0	0.0	0.0	0-1	ं	0.0	0.0	0.1	
	180	Fluo- ride (F)									0.0					
	Slug	rrote (NO ₃)									0.0 <u>7</u>		000		9.3	
	AINDB	Chio-		5.8	2.5		0 14	4.6	0.1	2.5	1.0	0.5	0.03	0.1	6.8	
		Sut - fats (SO ₄)									1.0				1.0	
stituents		Bicor- bonate (HCO ₃)		1.03	1,6 0.75		54	08°0	52 0.85	42	25	21 0.34	33	52 0.85	86.0	
Mineral constituents		Corbon- ofe (CO ₃)		000	000		000	000	0.0	000	000	000	0000	0000	0.00	
Min		Potos- sium (K)									0.0				1.9	
		Sodium (No)		5.2	4.2 0.18		6.1 0.27	5.7	6.0	0.21	2.7	2.4	3.8	5.5	0.32	
		Mogne- sium (Mg)							•**		1.0				0.0	
		Calcium (Ca)		26.0	0.70		08.0	0.70	0.80	0.64	0.30	0.30	0.18°	o <u>.76</u>	17 0.85	
		I alo		- 12: - 13:	7.1		8.2	7:1	7.5	7.7	7:5	6.9	7.3	8.0	7.8	
	Specific	(micromhos) at 25°C)		ाटा	었		109	100	103	₹	20	1,1	99	101	131	
				88	19		76	8	118	114	128	130	123	135	143	
	i	oxygen ppm %Sc		0.6	7.4		12.8	11.0	14.5	14.0	13.2	14.0	11.5	11.3	13.1	
		Eo Eo		28	75		39	77	71	77	59	₹5	99	87	89	
		Oischarge 18mp in cfs in off		8	500		75	170	210	,	1	739	250	&	38	
	400	and time sompled P.S.T.	1963	11/4	12/5	1964	1/6 1025	2/4	3/13	4/6 1055	5/11 0910	6/10	7/6 1240	8/10 0715	9/14 1030	

o Field pH.

b Lobarotory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO.)

Determined by addition of analyzed canstituents. Derived from conductivity vs TDS curves.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernordina County Flood Carrol District (SRCFCD); Metropoliton Water District of Southern California (MWD); Los Angeles, Department of Water and Power (LADMP); City of Los Angeles, Department of Poportment of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Deportment of Public Health, Division of Loborotories, or United States Public Health Service.

KERN RIVER NEAR BAKERSFIELD (STA. NO. 36)

		Analyzed by i		0001	3													
ľ	4	bid - Coliform ity MPN/ml		Moditor	2.4 Maximum	Minimum 0.23												
	Į.	- pid - yti E00			cv .	o,	5		0	CI.	α	C)	<u>-</u>	50	7	m	-	
		800	N P		0	0	0		0	0	0	0	0	0	0	0	0	
L			Totol		36	07	77.7		45	148	53	25	20	7,8	70	7,2	747	
L	9	god -			37	35	37		39	35	37	38	37	37	39	38	38	
L	Total	solved solids	E PPR		75e	81°e	93e		966	102e	108e	111e	866	101	89°	90e	876	
		Other constituents											ABS 0.0 PO ₁ , 0.10 As 0.01				ABS 0.0 PO _{1,} 0.15 As 0.01	
		Silica	(2)										9.3				9.6	
	lion	Boron	(a)		0.0	0.2	0.1		0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.1	
million	er mi	Fluo-											0.02					
ports per million	equivolents per million	Ni-	_										1.0				1.1	
ľ	equivo	Chlo-	<u>(</u>		4.2 0.12	4.2	0.13		5.8	5.8	6.0	5.5	0.20	5.5	0.13	0.11	11.0	
	<u>c</u>	Sul -	(80%)										0.21				0.25	
	Mineral constituents	Bicar-			5.6	59 0.97	68		72 1,18	1.20	1.25	80	1.23	1.18	86.0	11:11	1:15	
	ral coms	Corbon -	(603)		000	0.00	0000		000	000	000	000	000	000	000	000	000	
	Mine	Potas- C	(X										0.05				1.6	
		Sodium	(0 &)		8.6	0.44	12 0.52		13	25.0	14 0.61	15	114 0.61	0.57	0.52	112 0.52	0.61	
		Magne-											0.20				2.9 0.24	
		Colcium	(62)		0.72°	080	0.88		0.0	20.00	1,02	1.01	16 0.80	96.0	0.80	0.84	14 0.70	
		F a	م		7.3 2.8	7.3	7.3		8.2	8.0	8,0	5.7	7.9	7.2	6.9	7.7	8 <u>.7</u>	
	Specific	(micrambos			977	130	144		154	158	168	172	166	157	138	140	158	
		b cad	%Sot		8	93	83		,		1	•	•	ž	•	•	,	
		Dissolved	mdd		÷. ⊗	9.3	10.1		,	r	1	1	•	1	1	*	1	
		Temp in of			19	99	772		742	1,3	94	51	52	1	89	70	20	
		Dischorge Temp in of in of			1405	540	365		318	425	694	444	1447	845	1422	929	218	
		ond time	P.S.T.	1963	1007	11/6	12/9 0950	1964	1/7 0930	2/4 0945	3/5	4/7 0915	5/4	6/1	7/1 0930	8/4	9/3	

a Field pH.

b Lobaratory pH.

c. Sum of calcium and magnesium in epm. d. Arsonic (As), alkyl benzane sulfanate (ABS), and phosphate (PO_4)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Beloagical Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Seological Survey, Quality of Water Branch (USCS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Branch (USPR); San Bernardino Country Flood Cantrol District (SBCFCD); Metropoliton Woter District of Southern California (WMD). Los Angeles Department of Water Resources (UMR); as indicated.

Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

235

TABLE D-2 (cont.)
ANALYSES OF SURFACE WATER

KERN RIVER BELOW ISABELLA DAM (STA. NO. 36a)

		Anolyzed by i	usgs					
		Hardness bid-Coliform as CoCO ₃ ily MPN/ml Totol N C.	Median 0.23 Maximum 7. Minimum					
	Tur-	- piq -	н	72	н	Q	H	
		# 00 × 6 0	0	0	0	0	0	
			36	917	64	94	1	
	Per	eod -	32	36	37	38	38	
	Total	solids solids mdd ul	71 ^e	9.76	988	82 e	948	_
		d Other constituents			7.4 ABS 0.1 PO ₁ 0.05 As 0.03		ABS 0.1 Po _t 0.15 As 0.02	
	ĺ	Silico (SiO ₂)			7.4		멝	
_	lion	Boron (B)	0.1	0.2	0.1	0.1	0.1	
millian	per million	Fluo- ride (F)			0.0			
ě		Ni- trote (NO ₃)			0.02		6.9	
ď	equivolents	Chlo- ride (CI)	3.2	5.0	5.5	3.0	5.1	
,		Sul - fate (SO ₄)			0.0		0.19	
414	181110en	Bicor- banate (HCO ₃)	52 0.85	69 1.13	76 1.25	36.0	86 H	
	Mineral constituents in	Corbon- ote (CO ₃)	0.0	0.00	0.00	0.00	0.00	
3		Potos- sium (K)			1.8		2.5	
		Sodium (No)	7.8	12 0.52	16	1 1 1 1 1 1	0.57	
		Mogne- sium (Mg)			2.2		4.6 0.38	
		Caleium (Ca)	o.n°	26.0	14 0.80	08.0	0.50	
		H ala	6.9	7.2	7.7	7.9	7.9	
	Specific	conductance (micramhos of 25°C)	112	148	161	130	151	
			93	68	†8	84	8	
		Disso osy osy ppm	4.8	10.4	0.6	4.8	4.5	
		7.0 ci	88	Lτ	45	67	7	
		Dischorge Temp in cfs in oF	1525	m	72	190	in.	
		ond time sompled P.S.T.	1963 10/4 1330	1/2	5/1 0915	7/10 1330	9/11 2115	

a Field pH.

b Laboratory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.)

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USCS); United States Department of the Interior, Surreau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USPUS); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Paper Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); os indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Divisian of Laboratories, ar United States Public Health Service.

Control District (SBCFCD), Metropoliton Wolfer

KERN RIVER AT KERNVILLE (STA. NO. 36b)

		Analyzed by i		USGS				
-	4	bid - Coliform An			60.			
-		- Z	_					
H	ToT	P C C	υĘ	0 10		0	0	0
		Hordness os CoCO ₃	Totol N.C.	31		 &	92	23
		sod -		24		37	£4.	%
	Total	Bolved	E 00 E	79e		888	65 e	9111
		of the constant of				ABS 0.00 PO ₁ 0.00 As 0.01		As 0.1 As 0.00 0.00
		Silico	is one			77		15
	lion	Boron Silico	ê	0.1		0.0	0:1	2,0
million	par million	Fluo-				000		
ports per million	equivolents	-iN	(NO3)			0.0		5-4 0-07
ă	equivo	Chlo-	قَ ا	5.0	EIVED	3.5	2.5	0.20
9		Sul -	(80%)		NO SAMPLE RECEIVED	7.0		0.23
1		Bicor-	(HCO ₃)	50.00	NO SA	69.0	39	1.30 1.30
Mineral constituents	10.0	Carban	(co)	0.0		0.0	0.00	0.00
Ž.	HIM	Potos-	ξ			0.03		4.00
		Sodium		10 0.4		8.1	8.8	0.70
		Mogne-	(Mg)			0.9 0.07		9.3.8 3.3
		Calcium	(03)	0.62		9.8	0.51	0.75 0.75
		£ «	ام	12		7.5	7.4	∞ G.
	Specific	(micromhos		77.		93	93	180
			%Sot	8		8	89	8
		Dissolved	mdd	0.6		10.0	8.2	₹ &
		Tamp in OF		3		51	99	ਰੋ
		Dischorgs Tamp in cfs in oF		295		760	320	011
		ond time	P.S.T.	1963 10/4 1300	1961	5/1 0830	7/10	1030

a Field pH.

b Laboratory pH.

c. Sum of calcium and magnesium in epm. d. Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO_4)

Derived from canductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Long Beach, Department of Water Resources (DWR); City of Los Angeles, Department of Public Health (LBDPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

KINGS RIVER BELOW NORTH FORK (STA. NO. 33c)

	Anolyzad by i		USGS					
	د ت د ت	+		η,				
	os CoCO ₃ ity MPN/mi		Median 0.23 Maximum 0.62 Minimum	0				
Tur	- pid ity n pom		Q.	N	7	٦	1	
	COCOS	N P P	0	0	0	0	· · · · · · · · · · · · · · · · · · ·	
			15	17	ω	9		
-	# P 8	E		₹.	36	33	N .	
	solids		 	39e	268			
	Other constituents d				ABS 0.0 POl, 0.10 As 0.00		A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Silico	(2 016)			8.8		3	
illion	Baron		ं	0	0.1	ं।	<u> </u>	
per m	Fluo-	(E)			000			
ports per million equivalents per million	- IN	(NO3)			0.02		18 5'0	
equiv	Chlo-	وَيَ	0.00	2.0	0.5	0.5	20°.	
ni si	Sul -				0.00		200	
nstituent	Bicar-	(HCO3)	% 0.33	23 0.38	0.25	0.20	# To The Table 1	
Mineral constituents	Corban-	(603)	0.0	00	0.00	0.00	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Min	Potos-	ξ.			0.7		0.00	
	Sodium	(0 N)	2.8 0.12	2.6	2.4 0.10	2.3 0.10	0.17	
	Mogns-	(Mg)			0.02		01.00	
	Calcium	(62)	0.30	0 <u>.34</u>	2.8	0.20	0년 *10	
	Ŧ .	امار	19*9	7.7	1:1	6.9	1.0	
Sescritic	(micromhos		L+	55	62	31	<u></u>	
	Dissolved no oxygan	ppm %Sot	77	82	971	95		
		E dd	10.4	10.6	12.2	8.5		
	T OF OF		99	04	95	١,٠	8	
	Dischorgs Tamp in cfs in oF		328	303	2116	968	797	
	Dots ond time	P.S.T.	1963 10/1 1220	1964 1/13 1150	5/11 0945	7/13	3/14	

o Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO,)

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents. g Grovimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metrapolitan Water District of Southern California (AWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Colculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Service.

KINGS RIVER BELOW PEOPLES WEIR (STA. NO. 34)

-			_														
		Anolyzed by 1		11868													
	4	Hardness bid Coliform" as CaCO ₃ ify MPN/mi		Meditor	2.3 Maximum	Minimum .002											
Γ	Tur	o ppm			co.	FI	2		-7	н	5	7	ч	cu .	2	-	٦
		\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00	E B		0	0	0		0	0	0	0	0	0	0	0	0
		S C C	ppd		97	1,5	30		22	23	8	70	38	15	11	12	14
	Per-	sod -			m	23	70		28	31	62	8)	23	23	35	62	25
	Totol	solved			33 ^e	82e	55e		^{††}	12e	41e	133e	999	30e	23 ^e	25e	28€
		Other constituents											As 0.1 As 0.00				ABS 0.0 F0 _{tt} 0.05 As 0.00
		Silico (SiO ₃)											13				7.0
6	llion	Boron (B)			0.0	0:	0:1		0.0	0.0	0.0	0	0.0	0.0	0:0	0.0	0.0
millio	er mi	Fluo-	<u>(i</u>										0.1				
ports per million	equivolents per million	trote.	(NO3)							_			2 4				0.00
od	equivo	Chlo-	\neg		2.9 0.08	5.6	2.0 0.0 6		2.5	3.0	0.00	6.8	1.5	1.5	1.5	1.0	0.0
		Sul - fote	(%)										7.0				3.0
	arit Denis	Bicor- bonote	(HCO3)		0.36	96.0	38		28 0.46	26	26	93	52 0.85	0.31	15	0.26	0.30
	miliaroi constituents	Carbon-			000	0.0	000		0.0	000	0000	2.0	000	000	000	0000	0.00
M		Potos-	(¥										1.5				0.02
		Sodium (No)			3.2	6.1	4.3 0.19		0.17	0.18	3.8	13	6.6	2.6	0.12	2.3	2.4 0.10
		Magne- sium	(Mg)							**			0.34				0.5
		(Ca)			0.31	0.00	09.0		0.44	0.41	0.11	1.10	8.4	0.30	0.22	0.24	4.8 0.24
		E al	٥		7.0	7.8	6.8		7.0	7.2	7.5	8.1	8.0	7.5	7:1	7.1	7.1
	Specific	(micromhos pH of 25°C)			1,8	120	8,1		49	61	59	194	108	43	34	37	017
		9 48	%Sat		8	96	79		66	102	107	109	101	101	107	86	101
	i		₩dd		4.8	4.6	9.5		11.3	11.5	11.5	9.5	8.8	6.6	9.6	9.1	9•1
					99	62	45		148	20	47	72	73	61	69	29	69
		Oischorge Temp			732	95	58		235	361	1	,	126	402	1356	1080	1146
	400	and time sompled	P.S.1.	1963	1250	11/4	12/9 1255	1961	1/13	2/10 1215	3/9 1340	4/13 1215	5/11 1115	6/8	7/13	8/10 0950	9/14

a Field pH.

b Labarotory pH.

c. Sum of colcium and magnesium in epm.

Arsenic (As), olkyl benzene sulfonate (ABS), and phosphote (PO $_{_{\Phi}}$)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernordino County Flood Cannol District (SBCFCD); Metropoliton Water District of Southern California (MMD); Los Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (cont.)

KINGS RIVER BELOW PINE FLAT DAM (STA. NO. 33b)

	•	2	<u></u>				
		Anolyzed by i	nscs				
	-	Hardness bid - Coliform os CoCO ₃ ity MPN/ml Totol N.C.	Median 0.23 Maxdmum 4.5 Minimum				
	- 20	- pid - Ai - Ai - Lib	91	m	N	٦	Q
		N COS	н	н	0	0	0
			∞	य	13	ω	ਬ
_	Per	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52	17	56	32	<u>k</u>
	101	solide in ppm	17e	25 e	308	19e	588
		Other constituents			ABS 0.0 Po ₄ 0.05		ABS 0.0 Po _b 0.05 As
	ŀ	Silico (\$0:5)			7.4		N. V.
	5	Boron (B)	0.0	0.0	0.0	0.0	1.0
million	per million	Fluo- ride (F)			000		
		Ni- trote (NO ₃)			0.00		900 900
8	aguivolents	Chio-	0.0	0.5	0.5	0.5	8.000
2		Sul - fote (\$O ₄)	-		3.0		0.00
tituents		Bicor- bonate (HCO ₃)	0.15	14 0.23	0.31	11.0 81.0	0.25
Mineral constituents in		Corbon- ofe (CO ₃)	0.0	0.0	0.0	0.0	0 8
M		Potos- Sium (X)			0.02		0.00
	Ī	Sodium (No)	1.2	0.05	2.3	1.8	0.00
		Mogne- sium (Mg)			0.02		0.00
		Colcium (Co)	0.15	0.24°	4.8	0.17	0.15
		F alo	6.6	7.5	7.3	7.5	O:
	Specific	conductance (micromhos at 25°C)	23	33	38	25	₹.
		gen (r	102	1 6	96	107	ET .
		Diss	10.2	10.6	12.0	10.5	10.1
		Fo or	99	20	47	8	20
		Dischorge Temp in offs in off	787	615	1565	0194	1781 1
		ond time compled P.S.T.	1963 10/1 1400	1/13	5/11 1310	7/13	9/14 1300

b Labarotory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO,)

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surveau of Rectamotion (USBR); United States Public Health (LADPH); Son Bernardino County Flood County Flood States Department of Water and Pawer (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated.
Public Health (15 Public Health (LADPH); Terminol Testino Laboratories, Inc. (TIL); or California Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Colculated fram analyses of duplicate monthly samples mode by Colifornia Department af Public Health, Division of Loboratories, or United Stores Public Health Service.

MERCED RIVER BELOW EXCHBQUER DAM (STA. NO. 32a)

	9	-					
	Anolyzed	, à	nscs				
	Hordness bid - Coliformh	JE/NAM	Median 1.3 Maximum 62. Minimum				
	- P	E 60 L	50	7	н	N	ର
	ssup	S C C S		-	0	0	ω
_	F.	Totol Bead		56	15	Si .	5
	Can.	9 5 9 5	ਰੈ		-5 	<u> </u>	ਰ ਹ
	9 9 9	solids mag ri	41 41 41	* ‡	338	18	1438
		Other constituents d			ABS 0.0 PO _t 0.05 As 0.05		ABS 0.0 Po ₄ 0.15 As 0.00
		Sitico (SiO ₂)			위		ជា
		Boron (B)	0.0	0.0	0.1	कु	g 0
million		Fluo-			0.0		
parts per million	adainal s line in a la contra la con	trots (NO ₃)			0.0		9.00 0.10
١	n n n	rids (CI)	0.05	2.5 0.07	0.03	0.03	0.19
⊆		Sul - fats (SO ₄)			3.0		0.12
stituents		Bicor- bonots (HCO ₃)		30	0.31	270	1.79
Mineral constituents		Corbon- ots (CO ₃)	30 0.49	0.00	0.0	0.00	0.00
M.		Polas- Sium (K)			0.6		0.00
		Sodium (No)	1.9 0.08	3.2	2.4	1.8	6.1
		Mogns- Sium (Mg)			0.08		96.0
		Calcium (Ca)	0.50	0.52	7.1	0.19	28 1.40
	I	- a o	7.7	7.0	7.0	6.9	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	Spacific	(Micromho) of 25°C)	62	88	O l	23	250
	p # >	98 n %Sot	89	76		101	82
	Dissolved	mad	8.0	11.4		10.4	7.0
			69	74	54	59	02
	Dischorge Tamp	e of o	52	נכ	1327	1816	94
	0018	sompled sompled P.S.T.	1963 10/7 0945 1964	1/13	5/11	7/13	9/14 0910

o Field pH.

Loborotory pH.

Sum of colcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO4)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral Inalyses Backe by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Water and Power (LADWP); City of Los Angeles, Department of Survey, Carrior (MWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Gravimetric determination.

h Annual median and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); San Bernardino County Flood in Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Geological Survey, Quality of Water Branch (USPHS); Las Angeles (LADHP); City of Los Angeles, Department of Mater District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan California (WWD); Los Angeles District (WWD); Los Angeles District (WWD); Los Angeles District (WWD); Los Angeles District (WWD); MWD); MWD (WWD); ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

MERCED RIVER NEAR STEVINSON (STA. NO. 32)

	1	by i	SDSD														
	Æ	bid Coliform Analyzed	Median	32. Maximum	Minimum 2.3												
	- 25	- piq		9	N	2		2	N	O)	-	91	9	2		6	
				0	0	0		0	0	0	0	0	0	0	0	0	_
					95	986		98	83	ద	72	72	%	79	83	26	
	Per	o d o		3	T†	3		2	₫	1,5	143	9	3	91	<u></u>	37	
	Toto	eolids in ppm	:	7117	202 e	185e		191 ^e	181	213	160 ^e	1518	149e	191 ^e	201 ^e	124 ⁶	
		Other constituents d										ABS 0.0 POμ 0.15 As 0.00				ABS <u>0.0</u> PO _{lt} <u>0.15</u> As <u>0.00</u>	
	Ī	Silica (SiO ₂)										ଷ				প্রা	
	lion	Boron (B)		0.0	0.0	0.1		0.0	0.1	0.1	0.0	0.0	히	0.1	ं।	000	
million	per million	Fluo- ride (F)										0.01					
ports per million	equivalents	Nı- trate (NO ₃)										5.8				3.6	
d	squiv	Chlo- ride (CI)		0.37	0.54	14 0.39		18 0.51	16	0.62	의 다.	0.39	0.39	0.28	0.71	0.50	
	ء ا	Sul - fate (SO ₄)										0.21				0.15	
	etituents	Bicar- bonate (HCO ₃)		104	143 2.34	2.11		126 2.07	2.07	138	1.90	1.7	102	20.2	2.13	% 1 :	
	Mineral constituents	Carbon- ate (CO ₃)		0.00	0.0	2 0.07		1, 0.13	0.0	0.03	0.00	0.0	000	000	0.00	0.00	
;	Ē	Potos- sium (K)										0.05				0.07	
		Sodium (No)		20 0.87	1.26	26		26	8 i	1.18g	25	1.00	28.0	31	34,1	0.70	
		Mogne- sium (Mg)										6.6			•••	0.37	
		Calcium (Co)		1.29	1.84			1.72	1.66	1.82			1.32	1.58°		0.75	
		T ala		7.1	7.3 8.0	7.3		7.4	7.4	8.3	7.6 8.1	7.4	7.8	7.3	8.0	7.3	
	Specific	conductance (micromhos at 25°C)		224	37.4	288		297	281	330	248	242	231	297	316	189	
		lved gen %Sof		8	92	92		87	96	ま	100	75	87	98	22	97	
		Discolved oxygen ppm %So		8.2	9.5	4.6		7.6	10.6	10.7	6.6	7.6	η.8	7.7	9.9	9.5	
		Fo ci		88	9	517		22	52	64	19	58	63	72	77	65	
		Discharge Temp in cfs in oF		246.4	977	172		140	103	82	96	103	911	8	93	991	
		ond time eampled P.S.T.	1963	10/8	11/5	12/3	1964	1/7 0950	2/4	3/3	1/4 0945	5/5 0810	6/9 0800	7/7	8/4 0830	9/1 0480	o Field pH.

b Lobaratory pH.

c Sum of colcium and magnessum in epm.

Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

242

Mineral on Orbytes, finds of Mercopoliton Water District of Southern California (M. Canvol District (SECFCD), Mercopoliton Water Lobardaises, Inc. (TTL)) or California Printed Tanton Lobardaises, Inc. (TTL)) or California

SALT SLOUGH AT SAN LUIS RANCH (STA. NO. 24c)

		Analyzed by i		SDSD													
	4	bid - Coliform" ity MPN/ml		Median	Maximum	ž											
Γ	- in	- pid - con			29	15	04		15	8	8	25	20	8	017	25	&
Γ		\$00°	2 6		172	146	197		312	1,22	£443	533	8	158	113	93	87
			70f0 PØ#		340	326	364		525	162h	618	1,58	220	294	549	226	211
	Per	sod -			 2β	58	57		28	61	59	57	23	57	55	55	75
	Total	solids			1064	998e	1124е		1670 ⁸	1791 ^e	1713 ^e	1268°	5818	B35e	673 ^e	631	5896
		Other constituents d	- 1								- "		ABS 0.10 As 0.00 POl, 0.45				ABS 0.00 AB 0.00 PO ₄ 0.35
		Silica	2										97				221
E	Hion	Boron			9.0	8.0	1.9		2.7	3.9	3.3	1.8	2.5	0.9	7.0	7.0	7.0
e lilio	per million	Fluo-	Œ.										0.01				
parts per million	equivolents	Ni	(NO ₃)										70.0				3.3
8	equivo	Chlo-	(Ĉ		9.4 8.19	298 8.41	27.5		370	428 12.07	13,12	355	148	220	180	180 5.08	184 5.19
	<u>-</u>	Sul -	(80%)		3.79		341		350	670 13.95	532 11.08	382	2.54	196	2.60	92 1.92	1.92
	stituents	Bicor- banots	(HCO ₃)		3.38	3.61	3.74		98-1	246	3.51	3.18	2.43	166	166	162	2.47
	Mineral constituents	Corbon-	(00)		000	0.00	0.0		0.00	0.00	000	0.00	000	0.00	000	000	0.00
	Mine	Potas- C	3										1,4				0.11
		Sodium			212	208 9.05	254		338	19.23	415	280	5.00	180 7.83	140 6.09	27.5	119 5.18
		Mogne-	(Mg)				-						2.00 2.00				23 1.92
		Calcium	(00)		9.80 9.80	- 3 <u>2</u> 5.9	7.68		10.50	12.48	12.36	9.16	2.40	5.88	.98°±	4.52	
		F &	م		7.3	8.0	7.9		8.1	8.0	7.8	7.5	7.4	7.4 8.1	1.0	7 8 0 0	7.5
	Soecific	conductance (micromhos			1770	1660	1870	-	2500	2980	2850	2110	166	1390	1120	1050	1000
		- 1	%Sat		7	5	38		62	75	11	72	69	†9	52	56	81
		Dissolvad	moo		6.9	↑° L	7.7		9.5	8.7	0.6	7.5	7.3	4.9	9.4	5.0	7.2
		Tamp in OF			L 9	28	84		14	817	14	26	55	65	22	2	70
		Discharge Tamp			53	94	136		106	105	%	%	145	88	20	T3	221
		Dats ond time sampled	P.S.T.	1963	10/8	11/5	12/3	1964	1/7 0820	2/4 0735	3/3 0740	0080	5/5 0615	6/9	7/7	8/4 0715	9/1

o Field pH.

b Laborotory pH.

c. Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate ($\mathsf{PO_{\bullet}}$)

Determined by addition of analyzed constituents. e Derived from canductivity vs TDS curves.

h Annual medion and range, respectively. Calculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Labaratories, ar United States Public Health Service.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Geological Survey, Quality of Water Magles Department of Water and Power (LADWP); City of Los Angeles, Department of Water Resources (DWR); as indicated.

Public Health (LBDPH); Terminal Testing Lobaratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE (STA. NO. 26b)

	7280	y ₂														
	Analyzed by i	SSSO			1.01											
4	Hordness bid - Coliform se CoCO ₃ ity MPN/ml Totol N.C.	Median	12.	2400.	6.2											
Tur-	- 514 - 741 - 760 n		55	15	20		15	10	00	10	017	8	04	25	8	
	Hordness es CoCO _S Totol N.C. ppm ppm		ನ	105	95		95	149	233	199	8	117	126	110	8	
1			-	566	792		286	320	907	358	214	256	283	792	205	
Par	sod -		22	26	59		55	59	8	53	55	57	5,6	55	- 53	
Total	solids In ppm	ŧ	3708	786e	762°		8878	1000 ^g	1210e	10908	5826	738e	8538	762e	5648	
	Other constituents										POt, 0.50 AS 0.00	: }			AS 0.00 ABS 0.00 Polt 0.50	
	Silica (SiO ₂)										ଥା				53	
lion	Boron (B)		0.1	7.0	0.8		0.8	1:1	1.3	6.9	0.4	7.0	7.0	0.3	6.3	
r million per million	Fluo- ride (F)										0.01					
	Ni- trate (NO ₃)										3.4				4.9 0.08	
ports pe	Chio- ride (CI)		2,60	5.92	150		203 5.73	228 6.43	325	300	150	206 5.81	231 6.52	212 5.98	154	
Ē	Sul - fote (SO ₄)										564 2.37				1.9	
constituents	Bicor- bonote (HCO ₃)		2.39	3.21	3.38		3.80	208	3.38	194 3.18	164	162	181 2.97	188 3.08	17th 2.85	
Mineral con	Corbon- ofs (CO ₃)		000	0.00	0.00		0.00	0.0	4 0.13	0.00	0.0	4 0.13	5	0.00	0.0	
E	Patas- sium (K)										3.4				3.7	
	Sodium (No)		3.04	154	158 6.87		158 6.87	210	280 12.18	186 8.09	5.31	155	164	147	110 4.78	
	Colcium Magne- sium (Co) (Mg)										24 1.93				22 1.80	
	Coleium (Co)		2.82	§ .32	5.28		5.72°	0 <u>1.0</u>	8.16	7.16	2.30	5.12	5.66	5.28	2.30	
	E alo		7.5	7.5	7.3		7.7	0.0	8.2	200	8.0	8.0	8 B. E.	9.2	9.0	
o i jude o	conductance (micrambas at 25°C)		629	1300	1260		1400	1590	2000	1720	456	1220	1320	1260	742	
			83	\$	75		91	22	66	115	96	96	106	66	8;	
	Dissolved oxygen ppm %So		7.5	4.00	9.1		10.5	10.0	11.2	11.0	9.8	9.5	9.5	8.3	9.7	
	Temp in op		66	59	77		84	25	8	₫	58	63	73	72	69	
	Dischorge Tamp in cfs in of Gage off															
	ond time sompled P.S.T.	1963	10/8	11/5	12/3 1035	1964	1/7	2/4	3/3	1010	5/5	6/9	0840	8/14	9/1	

b Labaratory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.)

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labarataries, or United States Belatives, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR); United States Branch (USPB); Son Bernardino County Flood Carter (SBCFO), Metropoliton Water District of Southern California (WMD), Los Angeles Department of Water Resources (DWR), as indicated.

Public Health (LEDPH), Terminal Testing Labaratories, Inc. (TTL), or California Department of Water Resources (DWR), as indicated.

SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE (STA. NO. 25c)

	Pa z															
	Anolyzad by i		D VOII													
	bid - Coliform		Modification	Maxtmum	Minimum 6.2											
	P d d			8	15	35		8	15	8	8	30	30	8	35	30
	Hordness os CoCO ₃	PPC		112	233	203		129	177	1458	325	151	151	164	149	143
		Total		562	752	392		357	8111	0119	764	294	308	317	310	300
				55	29	28		59	8	59	26	277	75	26	56	55
Toto	Police Police	in pp		729 ^e	1318 ^e	1125 ^e		1020 ^g	1259 ^e	1790 ^e	1353 ^e	7968	857 ^e	869 ^e	851e	822 ^g
	d d											ABS 0.1 Po ₁ 0.35 As 0.0				ABS 0.1. Po _t 0.35 As 0.01
	Silico	SiO ₂)										91				윊
100	٦	<u> </u>		ង	0.9	1.3		1.2	2.1	2.3	1.7	540	0.5	100	7.0	1.0
million per million	Ftuo-											0.0				
15.1	1	-										0.05				3.7
ports pe	Chlo-	(0)		230	401 11.31	318 8.97		237 6.69	330	545 15.37	11.85	235	269 7.59	280 7.90	272 7.67	7.84
5	Sul -	(\$0\$)		1.98		302		274 5.70	4.12 8.58	536 11.16	372	3.21	156 3.25	153 3.19	134 2.79	2.75
constituents	Bicar-	(HCO3)		173 2.84	3.77	3.77		3.90	3.41	3.64	3.34	174	192 3.15	186 3.05	3.21	192 3.15
Mineral con	1	(c ₀)		0.17	0.0	0.0		000	4 0.13	0.0	000	000	0.0	0.0	0.0	0.00
, Min	Potos-	(X)										0.11				8.t 0.0
	Sodium	(0 N)		1148 6.11	275 11.96	250 10.88		218 9.48	312	430 18.70	288 12.53	164	166 7.22	186 8.09	18th 8.00	17 ⁴ 7.57
	Mogne-	(Mg)										34 2.79				2.66
	Calcium			° 5.24	8.44	7.84°		0.4B	36.8	12.80	9.84	3.09	6,16	£.9	6.20	67 3.34
	I a	م		4.7	7.5	8.2		7.9	8.3	8.0	7.8	8.1	7.9	8.0	8.0	8.5
Specific	conductonce			1250	2260	1930		1630	2160	3070	2320	1360	1740	1490	1460	0041
		%Sot		82	91	E		88	85	8	107	95	75	99	75	₹.
	Dissolved	mad		7·ħ	9.1	8.5		10.5	9.8	10.5	0.11	9.8	7.7	5.9	9.9	6.9
	Temp in OF			8	58	1,3		94	841	147	57	57	59	73	72	9
	Oischorge Tamp in cfs in oF			94.8	312	126		256	189	122	142	183	155	118	88	106
	Dots ond time sampled	P.S.T.	1963	10/8 0930	11/5	12/3 0910	1961	1/7 0910	2/4 0840	3/3 0830	0780	5/5	6/9 073J	7/7 0715	8/14	9/1 0740

a Freld pH.

b Lobaratory pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO,)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geologicol Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Water Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laborataries, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service.

TABLE D-2 (Cont.)

ANALYSES OF SURFACE WATER

SAN JOAGUIN RIVER AT FRIANT DAM (STA. NO. 24)

	Anolyzed by i	USGS				
	Hordnass bid Coliform as CoCO ₃ ity MPN/ml Total N.C. nppm	Median 0.62 Maximum 62. Minfmum	0.23			
1	- pid -	<u>د</u>	-1	m	77	4
	N C.	0	0	0	0	0
	Hardi DS Cc Total ppm	12	14	12	#	21
	Son in the second	36	38	39	97	£ 17
Total	dis- solived solids In ppm	36.6	39e	38€	34e	388
	Other constituents ^d			ABS 0.00 POL 0.10 As 0.00		ABS 0.0 Pol ₁ 0.05 As 0.05
	Silica (SoS)			9.2		গ্ৰ
Hion	5	0.0	0:0	0.0	0.0	ि
millior er mi	Flub- ride (F)			0.1		
ports per million equivalents per million	Ni- trote (NO ₃)			2.0		00 00 00 00 00 00
equiv		3.8	1.5	4.2	3.0	8.00 0.00
E	Sul - fate (SO ₄)			0.0		0000
nstituents	Bicar- bonate (HCO ₃)	16 0.26	18 0.30	0.25	16 0.26	<u>17</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mineral constituents	Corban- ote (CO ₃)	0:0	0.0	0.0	0.0	0.00
ž	Potas- sium (K)			1.0		00000
	Spdium (Na)	3.3	3.9	3.8	0.19	0.19
	Colcium Mogne- sium (Co)			0.5		0.08
	Calcium (Co)	0.25	0.28	0.20	0.22	3.2.5 0.16
	돌이	7.3	6.8	7.3	7.7	0 P.
Capillip	conductance (micramhos at 25°C)	1.55 d.	87	777	27	ত ব
	Dissolved oxygen	89	17	105	91	N 80
	1	7.7	8.7	10.6	10.0	. 6
	Temp in oF	67	7.5	84	52	51
	Dischorge Temp in cfs in OF	88	51	126	171	120
	Dote and time sampled P.S.T.	1963 10/7 0445	1,713 084.5	5/11 0645	7/13 0820	9/17

o Field pH.

b Laboratory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonate (ABS), and plosphate (PO.)

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MMD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Water Resources (DMR); as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

SAN JOACUIN RIVER NEAR GRAYSON (STA. NO. 26)

	Anolyzed by i	T	uses													
	bid - Coliform ity MPN/mi	1	Median	230. Maximum	Minimum 13.											
	Pid Figure			13	5	10		25	8	200	15	20	35	9	15	15
	800 Z	E do		777	113	911		75	140	592	153	35	87	131	141	7.
		E do		170	298	304		276	330	1,70	324	242	248	313	338	232
	- Po			54	75	57		57	99	96	54	52	53	54	49	52
Total	solved solids in opm			454°	873e	867 ^e		790e	962e	12126	879 ^e	610 ^g	642e	802e	332°	601E
	Other constituents											ABS 0.0 POU 0.60 As 0.00				ABS 0.0 Pop. 0.50 As 0.00
	Silica (SiO ₂)		-									50				81
lion	5			0.0	0.5	0.7		0.1	0	1.1	0.8	0.3	7.0	0.3	0.4	0.4
million	Fluo-	5														
ports per million	rote trote	(MO3)										6.1				3.4
od	Chio-	3		3.24	231	225		186	238	343	240 6.77	155	162	215	218	154
Ē	Sul - fote	(aug)							-			109 2.27				106 2.21
atituents	Bicor - bonate	(E00F)		154 2.52	3.61	3.70		244	224 3.67	250	3.41	164 2.59	3,21	3.64	240 3.93	193 3.16
Mineral constituents	Carbon -			000	000	000		0.00	0.13	0.00	0.00	1½ 0.47	000	0.00	0000	0.00
Mine	Potos-	3										0.10				3.4 0.09
	Sodium (No)			3.96	164	182 7.92		168	230	275	178 7.74	5.35	130	168	152	5.18
	Magne-	(BW)								•		30				2.34
	Calcium (Ca)			3.40	3.96	90.3		5.52	09.9	01.6	84.9	48 2.40	96.4	92.9	21.3	7.30 5.30
	E a	م		8.0	7.9	000		8.0	000	7.7	800		7.5	7 0 B	80 00 101	8.0
	conductonce (micromhos of 25°C)			194 L	1470	1460		1330	1620	2040	1480	1020	1080	1350	1400	1040
		%2ar		79	105	82		83	70	144	ඩ්	©	8	326	178	2.6
		Edd		7.3	10.4	9.1		3.5	7.6	15.0	8.1	8.3	÷ ;	10.3	14.9	8 8
	Temo in OF			29	61	51		1,8	53	56	62	69	72	79	8	69
	Oischarge Temp in cfs in oF			930	570	T35		730	515	250	560	094	362	320	220	005
	ond time sompled	1.5.1.	1963	10/12	11/9	12/9 1555	1961	1/9	2/3	3/9	4/1 1135	5/7	6/4	7/8	7/31	9/3 0845

b Laborotary pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO,)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surceau of Reclamation (USBR); United States Public Health Service (USPHS), Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LBDPH); Try of Long Beach, Department of Water Resources (DWR); as indicated. h Annual median and ronge, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Divisian of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. NO. 26a)

	Analyzed	by 1	USGS													
	Coliform	a nppm MPN/mi	Median	230. Maximum	Minimum 23.											
	Tur- bid-	n ppm		5	-	10		15	ω	ಜ	15	50	25	20	0†	15
	18.8e	ပို့ z ရှိ		8	37	82		36	85	157	121	105	114	126	148	43
				122	101	48		125	8	308	262	5ħ6	568	282	315	232
	Cent	- poe		53	52	53		54	57	54	51	25	45	53	52	25
	-	solide in opm		310e	268e	223e		338°	538 ^e	787°	e ^{†199}	570 ^g	e70°	869	792 ^e	6108
		Other constituents										ABS 0.1 PO ₄ 0.65 As 0.00				ABS 0.1 PO _{1,} 0.75 As 0.01
		Silico (SiO ₂)										ম				গ্ৰ
ا ا		Boron (B)		0.0	0	0.2		0.2	0.5	†·0	0.5	0.3	0	7:0	70	0.4
million		Flua- ride (F)										0.0				
parts per million		Ni- trote (NO ₃)										0.12				0.07
ď	Ainha	Chlo- ride (CI)		89 2,51	8 8 8	60		89	151	27.1 7.64	218	5.11	221	242	289	180 5.08
.5		Sul - fote (SO ₄)					-					81 1.69				81 1.69
stituents		Bicor- bonate (HCO ₃)		1,84	1.28	1.1		108	140 2.29	3.02	172 2,82	156 2.56	3.08	3.11	3.28	187 3.06
Mineral constituents		Corban- ate (CO _S)		000	0.00	000		0.0	000	0.0	0.0	0.27	000	000	000	0.00
Mine		Petos- sum (X)										0.12				0.12
	ľ	Sodium (No)		6h 2.78	50 2.18	1.91		68 2.96	5.31	166	12 <u>7</u> 5.52	5.05	221 6.18	144 6.26	158 6.87	5.22 5.22
		Mogne- sium (Mg)										25.42				1.70
		Calcium (Ca)		2,44	20.5	1.68		2.50	<u>00.4</u>	6.16	5.24	20 2.50	5.36	5.64	2.24	2.94
	:	. e o		7.6	7.8	7.4 7.5		7.5	7.9	8.0	7.7	8.5	8.3	7:9	7.5	7.3
	Specific	(micromhos of 25°C)		925	181	399		605	796	1410	1190	1000	1200	1250	1420	1040
	pay	%Sot		72	8	82		82	89	125	85	93	62	102	100	88
		oxygen ppm %Sot		6.5	8.8	0.6		9.5	7.5	13.0	8.2	8.T	7.0	8.7	8.7	7.3
	, emo	in of		19	62	25		50	22	57	62	99	72	1/2	†L	9
	ischorge	in cfs in ^o F		425	2255	2945		2335	1550	510	755	750	485	455	300	1,775
		and time sompled P.S.T.	1963	10/12	11/9	12/9	1961	1/9 5111	2/3	3/9	1,/1	5/7	6/4	1/8	7/31	9/3

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzeno sulfonoto (ABS), and phosphato (PO.)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laborataries, or United States Bealant Service.

Internal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBPC); United States Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LBDPH); Teminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

SAN JOAQUIN RIVER NEAR MENDOTA (STA. NO. 25)

		Analyzed by i	T	nsgs													
L			+		2.0												
	;	Hordness bid - Coliform" os CoCO ₃ ify MPN/ml		Median	6.2 Maximum	Minimum 0.13											
	T or	- piq - i y - i y - i y			32	8	54		10	ព	22	35	2	25	3	745	e 3
		0000 N	E G		33	<u>بر</u>	8		64	63	47.	3	53	59	20	32	Z Z
			e e		139	113	130		71/1	158	151	#	140	106	145	100	150
_	9	tu pos			L# —	87	20		20	52	L †(4	1,47	145	61	47	₹5
	Totol	solios Eog			#	2T9e	323		361	ηΤη ₀	349e	229 ^e	3188	23¼ ^e	356	270°	407 ⁸
		Other constituents d	- 1										Pol, 0.25 As 0.01 ABS 0.0				ABS 0.1. Pol, 0.15 As 0.01
		Silico (\$,0,0)											阳				16
	lion	Boron (B)			0.2	0.1	0.3		0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.1	ु।
million	er ail	Fiuo-											0.00				
ports per million	equivolents per million	rote.	(No.3)										0.03				0.11
ă	equivol	Chlo-	-+		2.12	1.92	80 2.26		94 2.65	105 2.96	89 2.51	1.35	83 2.34	5 ⁴ 1.52	2.68	82 2.31	3.50
	<u>.</u>	Sul -	\dashv										1.06				<u>77.19</u>
	fituents	Bicor- bonote			128 11.5	103	134		7 1.8 1.8 1.8 1.8	1.90	94	1,41	1.74	94,	1.9	1.36	121 1.98
	Mineral constituents	Corbon - E			00.0	000	0.00		2.0	0000	0.00	000	0.0	000	0 8	000	0.0
	Mine	Potos- C	€ E			-							0.05				3.4
		Sodium			57 2.48	148 2.09	2.61		65 2.83	3.44	61 2.65	36	57 2.48	1.73	64 2.78	53	82 3.57
		Mogne- Sium	(Mg)				_						1.30				1.35
		Colorum			2.78	2.26	2.60		2.88°c	3.16	3.02	2.22	1.50	2.14 2.14	2.90 2.90	2.00	33 1.65
r		I a	ما		8.2	7.3	8.1		7.7	8.0	7.8	7.7 8.0	7.7	7.6	7.7	8.2	7.5
	Specific	(micromhos at 25°C)			595	785	559		η29	717	603	397	547	101	919	79t	21.7
		1	%Sot		88	66	93		105	102	107	108	105	93	95	001	91
		Dissolvad	EGG		7.9	9.95	10.8		13.3	11.5	11.3	10.3	9.T	4.8	7.8	9.6	8.2
					69		<u></u>		24	20	55	79	19	69	78	47	69
		Dischorge Temp in ofs in oF			156	88.50	נגנ		17	109	320	350	2714	384	844	1485	26 th
		ond time	P.S.T.	1963	10/B 0730	1000	12/9	1964	1/13	2/10	3/9	4/13 0930	5/11	6/8 1025	7/13	8/10 0710	9/14 0730

o Field pH.

b Loborotory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phose (PO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health, Service.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of Mater and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Loboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

SAN JOAQUIN RIVER AT PAITERSON BRIDGE (STA. NO. 278)

		Anolyzed by i	SDSA													
	-	bid - Coliform"	Median	Mand mum	Minimum 6.2				-							
	- Ja	- pid - C			t-	90		15	15	6	15	<u>۾</u>	8	15	25	15
	•	P C C S		 72	113	89		16	150	227	151	88	16	119	76	72
			7	134	280	260		280	324	705	302	236	232	2775	256	236
	Par-	sod - ium		20	57	28		57	61	8	57	57	26	2.4	26	25
	Total	solids n ppm	bt.	335	837 ^e	759 ^e		8378	1020 ^g	1240 ⁶	9108	658 ⁸	655 ⁸	795 ⁸	746e	650 ^g
		Other constituents d										ABS 0.1 Pol, 0.55 As 0.00				ABS 0.0 Po ₁ 0.55 As 0.00
		Silica (SiO ₂)										욊				췺
	lion	Boron (B)		0:1	0.5	0.8		0.8	1.2	1:1	0.7	4.0	0.3	4.0	0.3	0.3
million	per million	Fluo- rids (F)										0.1				
ports per million	ır	Ni- trote (NO ₃)										4.3 0.07				0.08
ă	equivolents	Chlo- ride (CI)	d	2.29	228 6.43	187 5.28		189 5.33	240 6.77	325	242 6.83	175	174	238	204 5.75	185
	=	Sul - fote (SO ₄)										128 2.66				12.3 13.3
	STITUENTS	Bicar- bonats (HCO ₃)		2.23	3.34	3.21		3.64	212 3.47	3.51	3.02	180 2.95	172 2.82	3.11	3.18	323
	Minsrol constituents	Carbon- ote (CO ₃)		000	0.00	0.6		μ 0.13	0.00	0.0	0.0	0.00	0.00	0.00	000	0.00
1	CI E	Potas- sium (K)										3.4				0.09
		Sodium (Na)	,	2.65	168	164 7.13		71.0	232	276	186	144	136 5.92	169	34.9	136
		Magne- sium (Mg)										2.18				27.13
		Calcium (Co)		2.67		5.20°		5.60					1.64	5.50 c		2.59
L		E a 0		2. 10. E.	7.5	7.½ 8.3		7.8	8.0	8.2	8.0	7.9	7.8 8.1	8.0	8.2	8.0
	Specific	(micramhas at 25°C)		578	1390	1260		1350	1620	1990	1450	0,111	200	1320	1240	0111
				8	93	11		88	16	104	901	104	8	120	211	95
		Dissolved oxygen ppm %50		7.1	9.5	8.6		10.0	6.6	11.8	10.4	10.5	8.6	10.8	9.8	0.6
		Ten or i		2	59	#		64	53	50	19	65	₫	72	72	65
		Dischorgs Tamp in cfs in oF														
		ond time sempled P.S.T.	1963	10/8 0011	11/5 1100	12/3 1105	1964	1/7 1115	2/4 1100	3/3 1040	1,7 1040	5/5	6/9 0910	7/7 0925	8/1,00945	9/1 0945

250

b Loboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyt benzene sulfanate (ABS), and phasphate (PO.)

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Grovimetric determination.

h Annual median and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); San Bernardino County Flood in Mineral analyses made by United States Geological Survey, Quality of Water Branch (USCS); United States Department of Mater and Prover (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of County Department of Mater Resources (DWR); as indicated.

SAN JOAQUIN RIVER NEAR VERNALIS (SIA. NO. 27)

	Analyzad	by i	11503	3												
	Coliform	E/NAM	Median	620. Maximim	Minimum 50.											
	- piq	n ppu		25	۲	30		15	9	10	8	20	25	2	145	01
	Hordness	S O E		772	32	772		27	53	125	122	85	72	137	144	18
				136	97	87		93	144	264	566	529	808	290	306	234
	Cent	£ 1		87	51	20		12	53	53	53	54	17	53	52	52
	NO - NO - NO - NO - NO - NO - NO - N	solids in pom		323 ^e	251 ^e	146°		245°	363 ^e	9099	671 ^e	5798	505e	705 ^e	784°	6018
	7	Other constituents										ABS 0.1 PO ₁ 0.55 As 0.01				ABS 0.1 PO ₁ 0.55 As 0.00
		Silica (SiO ₂)										22				62
	1	Boron (B)		0.1	0.1	0.2		0.2	0.3	0.3	4.0	4.0	0.3	4.0	0.3	0.3
million		ride (F)										0.1	`			
161	1	trate (NO _S)										5.0				5.8
ports p		ride (CI)		87 2.45	70 1.97	50		58 1.64	2.68	209	223 6.29	171	146	7.00	259 7.31	182 5.13
5	13	fote (SO ₄)										82 1.71				78 1.62
constituents		bonate (HCO _S)		2.23	1.29	1.20		81 1.33	107	166	176 2.88	176 2.88	166 2.72	3.06	3.25	3.11
· I		corbon- ofe (CO ₃)		0.00	0.00	0.00		0.00	0.00	20.07	0.00	0.00	0.00	000	000	0.00
Mineral	1 2	Sium Sium (K)					••					4.4 0.11				5.8
		Sodium (No)		2.52	1,7 2,04	38		1.91	3.22	136 5.92	139	5.18	4.31	3 ¹ 49 6.48	150 6.52	11.9 5.18
		Sium Sium (Mg)										25 2.08				24 1.94
		Calcium (Ca)		2.75	1.94°	1.68		1.86	2.82	5.28	5.32	2.50	4.16	5.80	6.12	55 2.74
	Ī	80		8.1	7.2	7.1		8.2	7.4	7.6	7.7	7.6	7.8	8.1	8.0	7.8
	Conductance	of 25°C)		573	544	258		1435	643	0711	1190	1010	896	1250	1390	1030
		100		78	85	73		87	92	95	104	95	8.	101	75	91
	۵	шдд		7.0	9.8	8.8		10.1	10.3	10.3	6.6	9.6	8.6	8.8	8.5	8.3
	Temp	5		2	59	145		74	77	23	1 9	58	† 9	73	72	88
	Discharge Temp	B		5300	2172	0694		3184	2370	1050	919	248	946	004	337	826
	Oote and time	P.S.T.	1963	10/9	11/6	12/4 0920	1964	1/8	2/5	3/4	4/8 1015	5/6 0830	6/10 04/90	7/8 0715	8/5 0820	9/2 0830

Loborotory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), othyl benzene sulfonate (ABS), and phosphote (PO.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS), Son Bernardino County Fload in Mineral analyses Replayed States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR); United States Branch (USPHS), Son Bernardino County Fload Control District (SEMPH), Carrior (USPHS), Son Bernardino County (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Water Resources (DWR); as indicated.

h Annual median and range, respectively. Catculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); Son Bernardino County Flood i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USSS); United States Department of Mater and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles District of Southern California (WWD); Las Angeles District (SBCFCD); Metropolitan Water District of Southern California (WWD): Las Angeles District (SBCFCD); Metropolitan Water District of Southern California (WWD):

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

STANTSLAUS RIVER AT KOETITZ RANCH (STA. NO. 29)

	Anolyzed by 1		SOSU														
	bid - Coliform ity MPN/mi		Wedian	23. Maximum 7000.	Minimum 2.3			-									
	- Add			٧	2	91		9	60	<u>-</u>	2	25	9	2	4	0	
	000	Z		0	0	0		0	0	0	0	0	0	0	0	0	_
		00 E		 T3	8	92		37	917	105	22	97	8	110	9	8	_
	00.0	_		52	22	55		97	61	- 23	₹.	55	252	₹8	8	%	_
Total	solved solide	u l	٩	131	149e	129 ^e		63 _e	19 <u>6</u>	188	159e	172 ^g	159e	190e	194e	156	
	Other constituents											ABS 0.0 PO _L 0.20 As 0.00				ABS 0.1 PO ₄ 0.30 As 0.01	
	Silico	A COLO										81				티	
- e	5			잉	이	0.1		ं	1:0	100	ं	100	0:0	0.1	0	0.1	
million	Fluo-	E.										0.0					
ports per million	1											1,1 0.07				4° 2° 4° 0° 0° 0° 4° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	
o inc	Chlo-	اق		6.2 0.17	7.0	0 11		3.0	3.4	12 0,34	8.0	0.24	0.21	8.0	0.28	5.5	
.5	Sul -	(80,										0.21				7.0	
tituents	Bicor-			1,62	1.98	1.59		46 0.75	26 0.92	2.30	121	2.13	1.95	2.31	2,43	133 2,18	_
Mineral constituents	Corbon	(co ₃)		000	000	000		000	000	0.03	000	000	000	5,17	0000	0.0	
Min	Potos-	Έ										0.05				3.8	
	Sodium			11 0,48	11 0.48	9.7		3.2	4.9	18 0.78	13	15	14 0.61	16 0.70	18 0.78	15	
	Mogne- S											9.6				8.0 0.66	
	Calcium			2,1,5	1.76	1.52		0.74	26.0	2.10	1.82	23	<u>1.86</u>	ي 20.%	<u>8</u> .8	22 1.10	
	£ «	م ه		8.2	7.3	7.3		8.1	7.5	8.3	7.9	7.9	7.7	8.5	270	7.8	
	Spacific conductance (micromhos	() -C 3 10		194	220	191		93	112	278	235	257	235	281	288	241	
	05	%Sot		8	93	85		83	8	76		8	96	זנו	95	55	
	Olesolvad	mda		8.0	6.9	10.3		10.8	11.11	10.3	4.6	9.3	9.1	p.6	8.6	5.0	
				2	59	4		1,8	20	53	73	59	ή9	75	89	89	
	Oischorge Temp in cfs in 9F			297	281	358		888	606	182	178	137	149	143	101	141	
	Dote ond time	P.S.T.	1963	1230	11/3	12/4	1364	1/8	2/4	3/3	1,77	5/5	6/9 0411	7/7	8/4 110	9/1	

b Loborotory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanato (ABS), and phosphote (PO.)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

²⁵²

STANISLAUS RIVER BELOW TULLOCH DAM (STA. NO. 29a)

	_							
		Anolyzed by i	SDSU					
	4	bid - Coliform'ity MPN/ml	Median 0.23 Maximum 6.2 Minimum 0.23			-		
r	, <u>,</u>	- big	4		m	4	m	A
		S C C E	0		0	н	0	0
		Hordness as CaCO ₃ Total N.C. ppm ppm	ଷ		27	53	19	†ਹ
L	P	- po-	15		17	19	22	1
	Totol	solide in opin	9 7 		98 ⁴	894	37 ^e	877
		Other constituents d				ABS 0.0 Po ₁ 0.10 As 0.0		AABS 0.0 Pol _t 0.00 As
	Ì	Silica (SiO ₂)				띄		킈
	million	Boron (B)	0,0		0.0	0.0	0.0	6,3
ports per million	per mil	Fluo- ride (F)				0.0		
orts per	equivolents	ntote (NO ₃)				0.00		4.5000000000000000000000000000000000000
	equiv	Chio- ride (CI)	0.03		3.5	0.03	0.03	0.00 0.00
٩		Sul - fote (SO ₄)				0.04		0.02
e de la constante	90118	Bicor- bonote (HCO ₃)	86.0 84.0		34 0.56	27 0.4	24 0.39	32 0.52
Month		Corbon- ote (CO ₃)	0.0		0.00	00.0	0.0	0.00
Ž	1	Palos- sium (K)				0.0		0.00
		Sodium (No)	0.08		2.6 0.11	0.11	2.6 0.11	0.13
		Mogne- sium (Mg)				0.18		0.16
		Colcium Mogne- Sium (Co) (Mg)	94.0		0.54		0.38	0.32
		H B D	7.2		7.7	6.9	6.6	7.3
	Specific	conductonce pH (micromhos of 25°C) a	52		65	77	20	79
		gen %Sol	6		8		98	14 L
			6.2		11.2		8,5	φ. •
		F. i	8		91	63	63	8
		Discharge Temp in cfs in aF	930		1600			0000
		ond time eampled P.S.T.	196 <u>3</u> 10/7 1115	1964	1/13 1240	5/11 1245	7/13 1215	9/14 1100
_								

b Loborotory pH.

c Sum of colcium and magnesium in epm.

Arsenic (As), olkyl benzene sulfonote (ABS), and phosphote (FO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survea of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Mater Resources (DWR); as indicated. Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

TABLE D-2 (Cont.)

TULE RIVER NEAR SPRINGVILLE (STA. NO. 91b) ANALYSES OF SURFACE WATER

	Analyzed by i	USGS													
	Hordness bid - Colitorm ^N os CoCO ₃ ity MPN/ml Totol N.C. ppm	No Samples Taken													
	- Piq		CI .	٦		н	Н	н	н	-1	н	CV	~	Н	
	N.C. Ppm.		0	0		0	0	0	0	0	0	0	0	0	
			176	131		158	14.5	145	úL	92	19	135	150	169	
	Sod -		23	ส		22	22	27	23	8	22	22	772	56	
Totol	solved solids in ppm		280°	206°		245e	230 e	226 ^e	133 ^e	1248	108	213 ^e	246e	2718	
	Other constituents ^d									ABS 0.0 FOL 0.10 As 0.00				ABS 0.0 PO _{l,} 0.15 As 0.00	
	Sinco (SiO ₂)									ଷ				었	
Hion	Baran Silico (B) (SiO ₂)		0.1	0:1		0.1	0.0	0:1	0.1	2.0	0,0	0,1	0.2	0.2	
millio m	Flug- ride (F)							_		0.01					
ports per million	Ni- trote (NO ₃)	mber								1, 1 0,07				0.02	
Po	Chio- ride (CI)	of Nove	14 0.39	10 0.28		12 0.34	10 0.28	0.28	0.07	0.06	3.5	8.5	0.34	14 0.39	
.5	Sul - fate (SO ₄)	ted as								0.4				6.0	
etituents	Bicar- bonate (HCO ₃)	Sempling started as of November	254	17 ⁴ 2.85		3.44	3.38	3.11	1.92	103	2.54	3.05	3.59	240 14.06	
Mineral constituents	Corbon- ote (CO ₃)	Samp	000	0.20		8 0.27	0.0	8 0.27	0.0	3 0.07	0.0	0.0	0.03	2 0 <u>007</u>	
Win	Potas- sium (K)									1.6				4.5	
	Sodium (No)		25	16 0.70		19 0.83	18 0.78	18 0.78	31	8.8 0.38	8.8	17 0.74	22 0.96	1.22	
	Coleium Magna- (Co) Sium									0.22				12 0.98	
	Coleium (Co)		3.52	2.62		3.16	28.5	2.8	1.58	26	1.34	2.70			
	E elo		8.2	8.5		8.6	7.5	8.5	7.8	8.7	7.6	7:7	8.3	, 8 , 3	
	Conductance (micromhos pH of 25°C) a		#5 #	312		37.1	348	342	202	183	191	323	372	1,29	
			98	88		1	89	'	98	102	ėj	5	÷-	136	
	Dissolved oxygen ppm %50		80	10.6		1	1.11	'	10.0	11.2	₹°5	٠٠. ت	6.0	13.5	
			58	14.5		147	7:5	777	58	52	89	72	&	6	
	Discharge Temp in cfs in oF		27	63		141	94	26	139	711	131	23	5-	m	
	Dote ond time sompled P.S.T.	1963	11/4	12/2 0950	1961	1/6	2/14 1050	3/5	1,78	5/4	6/1	7/6	8/5 1230	9/9	

o Field pH.

Derived from conductivity vs TDS curves.

b Laboratory pH.

Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphota (PO_4)

Determined by addition of analyzed constituents.

Grovimetric determination.

Mineral analyses made by United States Geological Survey, Ovality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Water Department of Water and Power (LADMP); City of Los Angeles, Department of Survey, Ovality (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TIL); or California Department of Water Resources (DWR); os indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

TULE RIVER RELOW SUCCESS DAM (STA. NO. 91)

parts per million
4
To a contract of

		Anolyzed by i		11959	3					_							
	4	ily MPN/mi		Moditor	Nextmum	Minimum .02											
	2	P P P P			н	CV .	α		ч			9	ч	7	Q	4	н
	0	00 CO CO 3	Total N.C.		0	0	0		0			0	0	0	0	0	0
	3	50	Tota PPm		86	109	11.		123			108	100	91	83	98	8
	Par	- pos			72	23	23		23			23	22	55	8	22	ដ
[]	9.5	solved	nda u		210 ^e	173 ^e	182		196 ^g				163 ⁸	142 ⁶	133 ⁶	136¢	147
		Other constituents d											ABS 0.00 PO ₄ 0.10 As 0.00				ABS 0.1 As 0.00 Polt 0.05
	ľ	Silica (SiQs)	2										ଷ୍ଠ				81
		Boron (B)			0:0	0.1	0.1		11			0.1	0.1	0.7	0.2	0:1	7
million		Fluo-											0.2				
ports per million		Ni- trote	_										3.1				0.02
0		Chio-	(î)		0.20	0.80	9.8		0.11 0.31	TAKEN	SAMPLES TAKEN	0.21	2.5 0.07	6.0	5.0	0.1	0.15
Ē		Sul -	(\$0\$)							SAMPLES	AMPLES		6.0				0.10
Mineral constituents		Bicar bonote	(HCO ₃)		1 ⁴ 1 2.31	156 2.56	162		162 2.66	ZS OM	NO S.	156	2.23	2.13	1.95	121	2.21
eral con		Carbon -	(00)		0.0	0.0	0.0		7.0			0.00	0.10	0.0	0.00	0.07	0.00
ž		Potas-	ĵ.										0.06				2.6
		Sodium (No)			0.52	13	16		17 0.74			15	0.57	25.0	110	다.	0,52
		Calcium Magne-	(Mg)										5.5				0.34
		Calcium (Co)			3 <u>96.1</u>	2.18°	2.28		2,46			2.16	31	1.82	1.66	1.72°	30
		표 리			7.2	7.8	8.0		8.8			1.8	8.4	7.5	7.3	8.4	8.0
3	Specific	(micromhos			329	270	285		305			273	247	227	208	212	235
	200		ppm %Sat		88	8	91		118			115	126	29	99	75	92
	Diego	osygen	E dd		7.5	7.3	10.2		13.8			12.2	13.5	4.9	6.1	6.5	8.
	Temo	.E			75	89	84		64			96	55	1 9	99	72	72
	Dischorne	in of a in of			œ	904	83		53			83	94	115	172	112	L1
		sompled	P.S.T.	1963	10/8	11/4	12/2 1415	1964	1/6			1100	5/4 1525	6/1	7/6	8/5	1030

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino Country Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MWD), Las Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); os indicated. h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

TUOLUMME RIVER BELOW DON PRDRO DAN (STA. NO. 31a)

	Anolyzed by i	USGS				
	Hardness bid-Coliform A oe CaCO ₃ ity MPN/mi Total N.C.	No Samples			-	
	n ppm	CU	4	rl	N	N
	0003 N.C.	0	0	٦	0	0
	Hordr Co Co	€ ∞	10	16	10	Ф
	a na	2,5	13	21	8	53
Total	solids in ppm	17 ^e	- 51 _e	348	22e	196
	Other constituents			ABS 0.0 PO _t 0.05 As 0.00		Ass 0.0 Pol ₁ 0.00 As 0.00
	Silice (SiO ₂)			7.8		8 - 17
no lilion	Boron (B)	ं	0.0	2,0	0.1	ી
multic per m	Fluo- ride (F)			0.00		
parts per million equivolents per million	rotor (NO.)	,		1.5		0. 0.0
viupe	Chlo Pig Sign	0,1	0.10	1.5	0.5	9000
<u>e</u>	Sul - fote (SO.)			0.0		0.02
atituent	Bicor - bonete (HCO-)		्रा ह	30	0.20	00.16 0.16
Mineral constituents	Cerbon-	000	8 0		000	0000
M	Potos- sium (K)			1.2		0 8:00
	Sodium (No)	H (6 8	0.00	1.9	00.00
	Calcium Mogne-			1.0		00.00 00.00
	Calcium (Co)	٦	را.	2.2	0.0	00.12
	돌	9-9	6.7	7.5	6.8	90 - 140 - 1
Chacific	(micromhos of conductance of micromhos of 25°C)	52	88	07	%	12
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	72	73	87	72	4-
	Oiceo	7.0	7.8	6.	7.2	7.1
	Ten Peri	3	₹.	t	99	29
	Dischorge Temp in ofe in of	0721	730	1440	2410	1510
	ond time sampled	1963	1310	5/7 1325	7/8	1330

o Field pH.

b Laboratory pH.

c. Sum of calcium and magnesium in epm. d. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO_4)

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annual median and range, respectively. Calculoted from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPKS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health, Service (USPKS); San Bernardina County Flood Canner (SBCFCD); Metropoliton Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health, Cappeth, Carlo of California Department of Water Resources (DWR); as indicated.

TUOLIDMINE RIVER AT HICKMAN BRIDGE (STA. NO. 30)

Γ		Anolyzed by i		900	200			-							<u> </u>		
	4	bid - Coliform" ity MPN/mi			Samples Taken									-			
	T or	Pid- Pode				m	5		Q	m	CV .	-7	-	m	5	15	7
		20°	2 g		9	0	0		N	-	28	25	27	34	31	30	%
			Totol		90	177	18		22	77	105	105	108	121	124	123	119
L	-	1 00 E			75	28	77		39	37	811		£-	55	20	51	20
	100 P	oolved oolide	E 44 c		-69	56e	31e		47e	88	- 50g	%e	3038	322 ^e	322 ^e	340e	350 ^g
		Other constituents											ABS 0.0 PO ₄ 0.20 As 0.00				ABS 0.0 PO ₄ 0.10 As 0.01
		Silico	/3 OIC)										긔				13
	ion	Boron	9		0.0	0	0.0		0.0	0	0	0.1	0.1	0.1	0.1	0.1	0.4
noillie.	er Bil	Fluo-											0.0				
ports per million	equivalents per million	Ni-	(NO ₃)										6.0				0.0
ě	equiva	Chlo-	(ij)		18	5.1	3.5		0.31	20	2.54	86	92 2.60	3,10	3.16	3.13	104 2.93
	ءِ ا	Sul -	(\$0\$)										0.08				0.10
	Tituents	Bicar-	(HCO ₃)		87.0	17	22 0.36		24 0.39	41 0.67	1.54	93	1.56	102	1.79	1.87	11.85
	Mineral constituents		(00)		000	0.0	000		0.0	000	000	2 0.07	0.07	ار 0.13	2 0.07	000	0.00
:	Mine	Potas-											0.10				0.13
		Sodium	(ou)		00.11	2.6	2.8		6.5	0.48	1.91	2.04	1,7 2,04	58	58 2.52	2.52	2.52 2.52
		Mogne-	(Mg)										9.2				8.9 0.73
		Calcium	(82)		09.0	0.28	0.37		0.14 0.14	0.82	2.10	2.10	28	2,18	2 48	2,46	33
		Ŧ.	مار		7.2	7.1	6.9		7.3	7.7	7.9	88	8.6	8 4 8 5	8.3	8.1	8.1
	Specific	(micromhos			119	77	53		8	141	450	911	465	552	558	578	546
			%Sot		85	79	88		76	82	112	68	80	122	108	110	125
		Dissolved	Edd		7.9	8.0	4.6		10.4	9.1	11.3	8.5	7.8	10.2	9.1	0.6	11.0
					29	59	נג		51	51	59	75	17	76	92	62	73
		Discharge Temp in cfs in oF			1,88	1636	2170		999	695	121	73.7	70	25	82	8. 44	100
		and time	P.S.T.	1963	10/11	11/9	12/10	1964	1/9	2/3 1445	3/9	1,/1	5/7 1425	6/4	7/8	7/31	9/3 1230

o Field pH.

b Laboratory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DWR), as indicated. h Annual median and range, respectively. Calculated fram analyses of duplicate manthly samples made by California Department of Public Health, Division af Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

TUOLUMME RIVER AT TUOLUMME CITY (STA. NO. 31)

	Analyzed by i	nsgs														
4	Hordness bid Caliform os CaCO ₃ ity MPN/ml Total N C. spm ppm	Median	Meximum	Minimum 6.												
, 2 1	- pid -		9	α	91		10	4	25	٧.	1	7	9	0	CV .	
	N C.		8	12	11		12	56	7	17	69	17.	81	92	59	
	Hard as Co Total		H	37	35		L 17	85	189	192	180	282	220	224	808	
- i	eod -		20	4.5	141		748	64	52	54	50	42	23	52	12	
Total	solved solids in spm		202e	932	726e		121 ^e	206°	163e	522 ^e	523 [©]	583 ^e	583 ^e	595 ^e	5848	
	Other canetituents										ABS 0.1 PO ₄ 1.2 As 0.01				ABS 0.2 POl, 1.3 As 0.00	
	Silico (SiO ₂)										윘				양	
lian	Baron (B)		0.0	0.0	0.1		0:0	0.0	0.0	0.1	0.2	0.2	0.2	0.2	0.2	
million er mil	Fluo- ride (F)					- :					0.02					
garts per million equivalents per million	Ni- trate (NO ₃)										5.3		,	-	1.3	
equiva	Chia- ride (CI)		1.95	31 0.87	21		38	70 1.97	185	192	172 4.85	5.78	222	223 6.29	5.70	
. <u>c</u>	Sut - fate (SO ₄)										0.23				0.23	
stituents	Bicar- bonate (HCO ₃)		70	31	29 0.48		43 0.70	72	144 2.36	2.43	2.29	2.56	166 2.72	2.95	182 2.98	
Mineral constituents	Carbon- ofe (CO ₃)		0.00	0.00	000		000	000	000	000	000	000	0.07	000	0.00	
Mine	Potos- Sium (X)										6.0				7.6 0.19	
	Sodium (No)		36	177	11.0		% 0.87	38	93	102	3.78	108	5.05	113	102	
	Magne- sium (Mg)										1,25				17	
	Calcium sium (Ca)		1.54	0.74 0.74	0.70		<u>16.0</u>	1.70	3.78	3.84	2.35	10° 1	7.40	1.18°	25.74	
	F e		7.0	6.9	7.5		7.7 8.0	7.1	7.5	7.4 7.7	7.3	7.8	000	7.5	7.2	
	Conditions of H Control of Contro		353	163	127		212	360	862	912	835	1020	1020	1040	982	
	yed gen %Sat		57	F	87		81	68	92	19	75	73	103	83	50	
	Dissolved oxygen ppm %Sc		5.2	7.7	9.5		0.6	7.6	4.9	4.9	5.1	₹ •9	8.3	7.5	5.4	
	Te ai		99	9	52		51	17	57	63	179	72	&	69	69	
	Discharge Temp in cfs in 9F		00	1550	2150		1450	760	335	300	300	191	800	195	235	
	Date and time compled P.S.T.	1963	10/12	11/9	6/21	1964	1/9	2/3	3/9	4/1	5/7 0850	6/4	7/8 1405	7/31	9/3	Ho Sie

b Labaratary pH.

d Arsenic (As), alkyl benzone sulfanate (ABS), and phasphate (PO.) c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surreau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardina County Flood Cantrol District (SBCFCD); Metropolitan Water District of Southern California (MWD); Las Angeles Department of Water California Department of Water California Department of Water California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

TABLE D-3
SPECTROGRAPHIC ANALYSES OF SURFACE WATER

			Constituents in	n ports per billion	
Station	Sto	1964	Alumi- Beryl- Bismuth Codmium Cobalt Chra- Capper iron num (Ai) (Be) (Bi) (Cd) (Co) (Cr) (Cu) (Fe)	Gallium Germa- Manga- Malyb. Nickel Le nium nese denum (Ga) (Ge) (Mn) (Mo) (Ni) (R	Lead Titanium Vanodium Zinc (Pb) (Ti) (V) (Zn)
San Josquin River at Fremont Ford Bridge	55c	9-1-6	3.1 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 22 < 3.1 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.5 < 3.1 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4	5.7 < 0.29 22 7.4 1.8 < 5.7 < 0.29 < 1.4 8.6 1.7 <	1.4 < 0.57
San Joaquin River near Vernalis	521	5-6	1.8 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 < 2.9 10 < 2.1 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 < 1.4 < 3.4 11 <	5.7 < 0.29 1.7 4.0 1.6 < 5.7 < 0.29 < 1.4 3.1 1.3 <	1.4 < 0.57
Stanislaus River at Koetitz Ranch	82	5-5	1.9 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 < 1.4 16 < 3.1 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 3.7 7.7 <	5.7 < 0.29	1.4 < 0.57 5.1 < 5.7 1.4 < 0.57 4.0 < 5.7
Tuolumne River at Inclumne City	33	7 - 2	νη 2. ο. 4.	5.0 < 0.25 < 1.2 < 0.25 1.1 < 5.7 < 0.29 4.6 1.8 1.3 <	1.2 < 0.50 2.1 < 5.0 1.4 < 0.57 5.4 < 5.7
Merced River near Stevinson	R 	9 2 4	## 1.4 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1	5.7 < 0.29 < 1.4 1.4 = 0.29 < 5.7 < 0.29 < 1.4 1.4 0.57 <	1.4 < 0.57 $3.4 < 5.7$ $1.4 < 0.57$ $4.3 < 5.7$
Kings Edver below People's Weir		5-11-6	3.7 < 0.50 < 0.25 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 1.5 < 1.2	5.0 < 0.25 < 1.2 2.0 0.38 < 5.7 < 0.29 < 1.4 2.3 0.34 <	1.2 < 0.50 0.98 < 5.0 1.4 < 0.57 0.74 < 5.7
Kern River near Bakersfield	× ×	5- 4	2.5	5.7 < 0.59 < 1.4 6.0 0.40 < 5.7 < 0.29 < 1.4 6.3 0.49 <	1.4 < 0.57
Tule River below Success Dam	16	5- 4	4.0 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4	5.7 < 0.29 < 1.4 1.4 = 0.29 < 5.7 < 0.29 < 1.4 1.6 = 0.91 <	1.4 < 0.57 2.6 < 5.7 1.4 < 0.57 7.4 < 5.7
Delta-Mendota Canal near Mendota	8	5-11 9-14	2.3 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4	5.7 < 0.29 < 1.4 1.9 1.0 < 5.7 < 0.29 < 1.4 1.4 1.3 <	1,4 < 0.57
Delta-Mendota Canal near Tracy	8	9 7 6	8.3 4 0.57 6 0.29 4 1.4 4 1.4 4 1.4 2 1.4 22 4 8.3 4 0.57 6 0.29 4 1.4 4 1.4 4 1.4 4 1.4 4.9 6.3 6	5.7 < 0.29 < 1.4 1.0 0.89 < 5.7 < 0.29 < 1.4 2.4 1.2 <	1,4 57 < 0.29 < 5.7 1,4 < 0.57 7.1 < 5.7

< = less than the amount indicated

= equal to, but slightly less than the amount indicated</pre>

TABLE D-4 RADIOASSAYS OF SURFACE WATER

	Sta	0,00			Picocuries		per liter		
Signion	No.	חחות	Dissolved Al	Alpho	Solid Alpha		Dissolved Beta	Solid Be	ta
Big Creek above Pine Flat Dam	33d	5/11 9/14	0.17 + 0.	88	0.01 + 0.	0.20	5.46 + 10.54 3.91 + 10.85	1.48 +	9.13
Chowchilla River near Raymond	114	5/11	- 0.02 + 0	<u>-</u>	0.13 + 0.	29	11.21 + 24.61	- 4.26 +	8.73
Delta-Mendota Canal near Mendota	92	5/11 9/14	1.47 + 1	1.68	1.28 + 1.0.59 + 1.	1.24	12.31 + 13.08	2.40 +	9.86
Delta-Mendota Canal near Tracy	93	5/6	- 0.80 + 0. 3.10 + 4.	.53	0.51 + 0. 2.18 + 1.	0.67	156.80 + 10.21 6.19 + 13.61	7.66 +	9.79
Fresno River near Daulton	113	5/11	0 + 80.0 -	. 61	0.27 ± 0.	 ₫	3.56 ± 9.67	2.51 +	9.02
Kaweah River below Terminus Dam	35	5/11	0.13 + 0	0.74 -	0.34 + 0.	0.46	8.26 + 9.95	- 4.62 + 5.00 +	8.55
Kaweah River near Three Rivers	35p	5/11 9/14	0.18 + 0	0.81	0.70 + 1.	1.00	0.79 + 11.46	4.84 +	9.92
Kern River near Bakersfield	36	5/4 9/3	1.68 + 1	1.56	0.31 + 0.	0.65	15.29 + 11.35 3.35 + 10.84	- 6.44 +	7.67
Kern River below Isabella Dam	36a	5/1 9/11	1.49 + 1	1.36	0.84 + 1.	10 82	7.99 + 10.15	- 5.93 + 7.83 +	9.74
Kern River at Kernville	36b	5/1 9/11	0.07 + 0	0.7 ⁴ 2.0 ⁴	0.07 + 0.0	.73	4.07 + 10.86 5.36 + 10.61	-11.38 +	9.98
Kings River below North Fork	33c	5/11 9/14	0.69 + 1	1.04	0.59 + 0.	39	4.61 + 10.23 9.14 + 10.55	- 2.87 + 7.53 +	8.31
Kings River below Peoples Weir	34	5/11 9/14	0.85 + 1	1.08	0.71 + 1.0	82	7.81 + 11.56 4.20 + 9.46	13.25 + 10	10.25

TABLE D-4 (Cont.)
RADIOASSAYS OF SURFACE WATER

	Sto	0 0 0		Picocuries	per liter		
1011010	o Z	מוֹש	Dissolved Alpha		solv	Solid Beta	
Kings River below Pine Flat Dam	330	5/11 9/14	- 0.53 + 0.74 1.94 + 1.51	0.49 + 0.74 - 0.35 ± 0.45	10.43 + 10.94	0.48 + 7.6 - 8.28 + 7.6	19 67
Merced River below Exchequer Dam	32a	5/11 9/14	- 0.38 + 0.23	- 0.21 + 0.67 - 0.74 + 0.27	10.73 + 9.84	3.69 + 8.9	8,5
Merced River near Stevinson	32	5/5	1.49 + 1.64	- 0.53 + C.73 - 0.20 + 0.73	12.06 + 11.26	4.01 + 9.4 - 2.14 + 7.8	53 84
Salt Slough at San Inis Ranch	54c	5/5	7.77 + 6.25 8.67 ± 5.34	0.32 + 0.86 0.89	- 4.71 + 13.62 -22.81 + 13.34	10.74 + 9.2	38
San Joaquin River at Crows Landing Bridge	95	5/5	3.05 ± 3.93	0.80 + 1.17	4.55 + 12.35	11.03 + 9.5	55
Sen Joaquin River at Fremont Ford Bridge	25c	2/5	8.15 ± 6.97	1.98 ± 1.49	12.38 + 14.94	5.52 + 9.0	10
San Joaquin River at Friant Dam	77	5/11 9/14	0.19 ± 0.95	0.31 + 0.65	5.26 + 10.97 - 1.77 + 10.45	- 0.34 + 7.6 - 1.62 + 8.5	61
San Joaquin River near Grayson	92	5/7	9.12 + 7.40 1.31 + 4.07	1.25 + 1.56	1.63 + 17.96	1.18 + 10.6	99
San Joaquin River at Maze Road Bridge	26a	5/7	1.09 + 1.76	0.26 + 0.93	9.37 + 12.94 5.14 + 10.92	8.31 + 10.0 - 4.76 = 7.8	 88
San Joaquin River near Mendota	25	5/11	0.47 + 2.18 5.15 ± 5.00	- 0.13 + 0.80 1.24 + 1.13	3.19 + 12.32	12.70 + 10.3	34
San Joaquin River at Patterson Bridge	27a	5/5	0.15 + 1.65	0.07 + 0.70	-18.62 + 10.44 15.61 + 14.15	- 1.44 + 7.1 7.54 ± 10.5	44 50

TABLE D-4 (Cont.)
RADIOASSAYS OF SURFACE WATER

	Oto				Picocurie	m	per liter		
Station	No No	Date	Dissolved Alp	ha	Solid Al		1 1	Solid B	e: ı
Sen Joaquin River near Vernalis	27	5/6 9/2	4.71 + 4. 5.15 + 5.	1, 04 5, 00	1.24 +	0.89	19.42 + 12.98 9.50 <u>+</u> 12.42	27.68 +	11.49
Stanislaus River at Koetitz Ranch	59	5/5	0.21 + 0.	0.69 0	0.82	0.98	13.36 + 10.48	8.96	10.25
Stanislaus River below Tulloch Dam	29a	5/11 9/14	- 0.49 + 0. 14.19 + 9.	29 0	0.01 +	0.00	-11.71 + 10.33	7.94 +	9.28
Tule River near Springville	916	5/4 9/9	5.88 + 3.	79 0	0.05 +	0.85	4.76 + 9.88 2.78 + 12.53	4.36+1	8.80
Tule River below Success Dam	16	5/4 9/9	0.91 + 1.	177	0.00	0.28	14.18 + 12.21 - 5.26 + 11.11	+ 94.0	8.21
Tuolumne River below Don Pedro Dam	31a	5/7	- 0.41 + 0. 0.29 + 1.	22 08 08	0.32 +	0.82	2.94 + 9.84 3.36 + 10.60	5.38 +	9.81
Tuolumne River at Hickman Bridge	30	5/7 9/3	- 0.51 + 1. 2.86 + 3.	95 0	0.39 +	1.11	12.56 + 12.19	4.60 +	9.21
Tuolumne River at Tuolumne City	31	5/7 9/3	0.44 + 2. 6.73 ÷ 5.	13 -	0.78 +	0.09	11.07 + 14.84 - 2.21 + 11.88	11.97 +	9.50

APPENDIX E GROUND WATER QUALITY

The contribution of mineral constituents from major tributaries was also appreciably higher than it was the previous year. The increase in mineral concentration was most noticeable during the irrigation season when the streamflow regimen was at its lowest stage for the entire year. The incremental change in mineral constituents over the previous year's concentrations increased significantly from Fremont Ford to Vernalis. This accumulation of minerals is attributed to the lack of available streamflow sufficient in quantity to dilute accretions affluent to the lower reaches of the San Joaquin River.

The U. S. Bureau of Reclamation supplemented the flow in the San Joaquin River to aid the migration of fish from the Sacramento-San Joaquin Delta to the lower reaches of the San Joaquin River. Approximately 45,000 acre-feet were diverted from the Delta-Mendota Canal through the Newman and Westley Wasteways from September 23 to November 1, 1964, to provide adequate streamflow and dissolved oxygen content necessary for fish migration up the San Joaquin River.

TABLE OF CONTENTS

		Page
INTRODUC	CTION	267
Explanat	tion of Tables	267
Explanat	tion of Plates	267
Explanat	tion of Headings and Symbols Used in Table E-l	267
_	ate Well Number	267
Age	ency Supplying Data	267
	LIST OF TABLES	
Table Number		
E-1	Mineral Analyses of Ground Water, San Joaquin District	269
E-2	Mineral Analyses of Ground Water, Fresno-Madera Area	299
E-3	Trace Element Analyses of Ground Water	375
E-4	Analyses of Miscellaneous Constituents	376
E-5	Kern County Piezometer Sampling Program	379
E-6	Wells Indicating Significant Deviation in Quality from Surrounding Area	381
	LIST OF PLATES	

(Bound at end of volume)

lumber	
E-1	Location of Selected Observation Wells, Ground Water Quality
E-2	Location of Selected Wells, Fresno-Madera Area
E-3	Ground Water Quality, Fresno-Madera Area
П 4	Witnests Compenhantions in the San Joaquin Valley

INTRODUCTION

This appendix contains data pertaining to ground water quality in the San Joaquin Valley area. The data consist of the chemical characteristics of those waters sampled. The analyses represent the constituents which were most significant for the evaluation and/or surveillance of ground water quality. These data appear on the tables and plates. Additional supporting information is available in the office of the San Joaquin District, Fresno, California.

Explanation of Tables

Table E-1 lists mineral analyses of selected wells for the area reported in this volume excluding analyses for the Fresno-Madera area which are listed on Table E-2. Table E-2 lists the analyses used in the preparation of Plate E-3 for the Fresno-Madera area, and those analyses are listed by the aquifer from which the samples came.

A standard mineral analysis is made on the samples of wells either new to the program or whose previous analyses have varied from year to year requiring a more complete history before partial analysis would be suitable. A partial mineral analysis is suitable when a satisfactory history on the well has been established and a detailed analysis is not required to maintain surveillance.

Trace element analyses and other important constituents not determined in a standard mineral analysis are shown in Table E-3. These constituents, though small in quantity, can be significant for various types of water usages. Three constituents not normally determined, ABS (detergents), nutrients, and lithium, were analyzed in selected samples, and are shown on Table E-4.

Where mineral analyses of water from a well were found to differ significantly from those of other wells in the surrounding area, the deviations were recorded and are given in Table E-6. Such deviations may be either in a single constituent or the complete analysis. Special effort is made to investigate these wells to determine the reason for the observed deviations.

Explanation of Plates

The locations of the selected sampling wells are shown on Plate E-1 except those for the Fresno-Madera area which are shown on Plate E-2. Plate E-3 illustrates, by aquifer, the chemical character of the water in the Fresno-Madera area. The chemical character of the water is illustrated by mineral type and by contours of electrical conductivity. The mineral type was determined by the use of the hypothetical salt method.

The mitrate concentrations of ground water in the San Joaquin Valley are illustrated on Plate E-4 and are represented by contours of equal parts per million of mitrates.

Explanation of Headings and Symbols Used in Table E-1

<u>State Well Number</u>--The well numbering system used in this report for the location of wells is explained on page 160.

Agency Supplying Data--The numbers in this column are the code numbers for the agencies who sampled the well.

The agencies, and code numbers assigned to them, are listed in the following tabulation:

Agency Code	Agency
5000	U. S. Geological Survey
5001	U. S. Bureau of Reclamation
5050	Department of Water Resources
5060	Department of Public Health
5124	Kern County Farm Advisor
5125	Fresno County Farm Advisor
5128	Madera County Farm Advisor
5200	City of Fresno
5521	Modesto Irrigation District
5631	Fresno Irrigation District
5641	Central California Irrigation District
5645	Arvin-Edison Water Storage District
5702	Individual Owner
5703	Valley Waste Disposal Company

MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT

	M				.0							
	TOTAL	 G.CO 3	46	104	116	54	56	152	170	153	82	161
ents in lian	TDS	Evap 180 C		249	246	135			355	348	192	301
neral constituents parts per millian	ii 8	SiO 2	1	32	4	11	t	ł	6 0	774	93	45
Mineral constituents in parts per millian	Baron	80	0.10	0.05	0.05	0.05	00.00	00.0	0.05	0.05	0.05	0.05
	Fluo-	ıL	1	ł	ł	!	ì	ŀ	1	1	-	1
	rote.	ε 0 2	1	1	1	1	1	1	l	1	1	ì
	Chlo-	Ū	15	21	14	0.20	0.06	15	14 0 • 39	18	14 0 39	14
milligrams per liter equivalents per million percent reactance value	Suifate	504	1	0.23	19	0.04	1	1	21	0.19	40.	16
milligrams per liter equivalents per mil percent reactance v	Bicar- bonate	нсо з	114	162	152	1.56	Į	1	244	256	128	217
	Carban- ate	co 3	i	0	C	C	1	į	0	0	C	0
_	Potas- sium	¥	-	1	1	1	1	1	-	1	1	1
Mineral Constituents in	Sodium	Z	0.70	32	1.00	0.74	0.38	1.13	34	1.87	0.96	1.13
Mineral C	Magne-	Wg	-	10	13	0.33	1	1	1.40	1.15	9 0 74	16
	Calcium	გ	-	1.25	1.25	15	ļ	ł	2.00	38	0.90	38
Specific conduct-	(micro-	mhos at 25°C)	279	1	1	1	149	408	}	1	1	ţ
	Ŧ		7.6	7.8	7.2	7.6	7.1	7.9	7.6	7.7	7.4	7.7
Темр.	Sampled	٠,	56	1	1	1	69	99	1	1	1	1
State Well	. -	Date Sampled Agy. Time Coll.	1N/10E-17G 1 M 3-26-64 5050	2S/ 8F-27N 1 M 8-11-64 5521	2S/ 9E-28N 1 M 8-11-64 5521	25/ 9E-31G 1 M 8-11-64 5521	25/10E-10B 1 M 4-15-64 5050	25/10E-27H 1 M 5-29-64 5050	35/ 8E-12H 1 M 8-11-64 5521	3S/ 8E-29E 1 M 8-11-64 5521	35/ 9E- 3D 1 M 8-11-64 5521	3 <pre>3</pre> / 9E- 9J 1 M 8-11-64 5521
		Õ	1 N	2.5	25.8	2.8	2.5	25.	30	00 W	35	ω ω

269

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

	TOTAL hordness		125	107	82	993	w w	199	10	ų,	~	(L)
	te or					J,	184			258	929	130
ents in Iion	TDS Computed		226	253			345			521 554		
neral canstituents parts per million	i 8	510 2	23	46	1	1	1	ł	1	1	ł	1
Mineral canstituents in parts per million	Boron	ά	0.05	0.05	00•0	0.40	00 • 0	0.10	0.20	0.40	0.80	00.0
	Fluo-	u.	1	;	ł	-	ł	1	ł	1	1	1
	N:-	N O N	1	1	1	}	60 • 0 0 • 97 16	ì	1	12.0 0.19	 	1
	Chlo	ū	0.31	0.59	0.39	1330	31 0.87	1.13	39	3.41 3.41	181	16
milligrams per liter equivalents per million percent reactance value	Sulfate	504	0.25	0.35	1	1	0.46	;	-	1,98	1	1
milligrams per liter equivalents per mill percent reactance v	Bicar- bonote	HCO ₃	183	143	1	1	235 3 85 63	317	ł	228 3•74 40	381 6•24	1
E & G	Carbon-	000	0	0	ł	1	0		1	0	ł	1
	Potos-	×	1	1		1	0.10	1	1	0.03	1	1
Mineral Constituents in	Sodium	ž	1.04	1.17	18	415	50 2.17 36	3.35	2 55	4.22	152	1.87
Mineral C	Magne-	6 W	0.90	0.99	1	1	18 1.48 25	1	1	2.71	}	}
	Colcium	3	1.60	1.15	;	1	2.20	1	l	2.45	1	
Specific conduct-	(micra-	mhos at 25°C)	1	1	255	4190	578	707	297	947	1750	443
	I	r	7.5	7.1	7.5	7.8	7.8	7.6	7.9	8 • 1	0 • 0	0 •
Темр.	Sompled	ш.	1	+	72	73	1	99	76	11	88	80
State Well Number		Date Sampled Agy.	35/10E-17K 1 M 8-11-64 5521	3 3 10	35/11E+ 4N 1 M 4-15-64 5050	35/12E-35C 1 M 2-2n-64 5050	45/ 9F-22C 1 W 6-3n-64 5050	45/ 9F-30R 1 W 3-26-64 5050	45/11F- 5M 2 M 7-29-64 5050	5S/ 7E-35A 1 W 7-29-64 5050	55/ 8E- 8G 1 M 3-26-64 5050	55/10E-28H 1 W 5-29-64 5050

	TOTAL	nardness os CaCO 3	240	118	161	445	370	80	107	356	370	452	
ants in	TDS	Evop 180°C										825	
neral canstituents parts per millian	Sili	SiO 2	1	1	1	-	ł	1	-	1	i	ŀ	1
Mineral canstituents in parts per millian	Baron	6	0.30	0.10	0.10	0.40	0.60	00.00	00.0	1	2.70	0.70	
	Fluo-	ш.	ł	1	1		1	1	1	1	i	1	
	Z t	ε ο χ	1	1	ł	1	<u> </u>	ì	1	36.0	1	15.0	FSOURCES
	Chlo-	ō	16	58	16	304	2.12	0.14	10	13	0. 8.4. 8.4.	111 3•13 23	OF WATER P
milligrams per liter equivalents per millian percent reactance value	Sulfate	50 4	}	1	l I	1	1	ļ t	ł	1	1	217	STATE OF CALIFORNIA - THE RESOLIBEES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOLIBEES
milligrams per liter equivalents per mill percent reactance v	Bicar-	HCO ₃		1	171 2.80	ł	1	1	1	1	ł	354	PANIA D
	Carban-	° 0	1	1	1	1	1	1	ł	į	1	0	OF CALIF
_	Potes.	×	1	1	j I	1	ł	1	1	1	1	0.03	AGENCY
Mineral Constituents in	Sodium	ž	1.74	106	1 6 0 80 10	136	100	0.87	1.00	2.57	341	110	PECOLIPCES
Mineral C	Mogne-	Wg	-	-	-	1	-		1	}	-	54 4°44 32	PNIA THE
	Colcium	ß	-	1	1	1	1	1		}	1	92 4 . 59 33	OF CALIFO
Specific conduct-	ance (micra-	mhas at 25°C)	625	869	511	1550	1140	279	325	879	2370	1280	STATE
	I	۵	8 • 2	7.8	7.9	8 • 0	2 • 8	7 • 8	7.5	7.6	& •	φ •	
Temp.	when	. F	-	67	99	1	1	67	89	89	-	99	
State Well	Jacobs	Date Sampled. Agy. Time Coll.	65/ 9E-18F 1 M 7-16-64 5641	65/10E-28K 1 M 7-29-64 5050	65/11F- 9C 1 M 2-20-64 5050	75/ 8E-23R 1 M 7- 1-64 5641	75/ 9E-32H 1 M 7- 2-64 5641	75/12E-19A 1 M 5-29-64 5050	75/13E- 4P 1 M 5-28-64 5050	75/15E-30E 1 M 7-29-64 5050	85/ 95-12E 1 M 7-16-64 5641	85/ 9E-16E 1 M 7-30-64 5050	DWR 1982
													J

-
U
_
œ
\vdash
်
υ,
-
0
_
Z
_
~
00
JOAC
\sim
O
7
_
SAN
d
10
J,

	TOTAL	CoCO 3	242	403	164	146	60 80 80	1380	129	174	65	293
	\vdash			661				H	239	288		
lian	Computed	Evap 180°C		- V					17 (7)	NN		
neral canstituents parts per millian	:ijs 8	SIO 2	1	1		1		-	4.2	67	1	!
Mineral canstituents in parts per millian	Boron	80	1.20	0.07	0.00	0.30	0.70	1.80	00.0	0.10	00•0	0.10
	Fluo-	ш	1	1	1	1	1	-	0•0	0.1	;	-
	i.i.	0 N	ł	0.1	1	1	1	94.0	17.0 0.27 8	2.7 0.04	1	+
	Chlo	ō	3.16	124 3•50 30	3.55	3.95	507	754	0.34	0.23	9.14	2.31
milligrams per liter equivalents per millian percent reactance value	Sulfote	\$04	1	226 4•71 40	1	1	ļ	1	0.25	13	0.15	18
milligrams per liter equivalents per millian percent reactance value	Bicar-	HCO 3	1	210	ł	ł	1	ł	166 2•72 76	3.77	1.31	304
- + -	Carbon	S	1	0	1	i	1	ł	0	0	0	0
c	Potos-	*		0.05	!	1	1	1	0.13	0.08	0.03	0.05
Mineral Constituents in	Sodium	Z	4.22	3.35	3.96	114	266	422	1.04	0.87	0.26	65 2.83
Mineral C	Magne-	6 W	1	50 4.11 36	-	1	1	1	10 0.82 22	1.07	0.25	25 2 06
	Colcium	3		3.94 3.94	;	1	1	}	35 1.75 47	2.40 54	21	3.79
Specific conduct-	ance (micro-	mhos at 25°C)	919	1120	773	88 31	2120	4270	375	401	150	857
	I	۵.	8 1	8 • 2	8 • 1	& •	8 • 2	0 •	7.6	7.6	8 • 2	7.6
Тепр.	when	o F	1	1	}	1	1	ł	1	1	5	69
State Well		Date Sampled Agy. Time Coll.	95/ 9E-21F 1 M 7- 1-64 5641	95/10F-36P 1 M 7- 7-64 5641	95/13F-31D 1 M 8- 7-64 5641	105/12E- 6K 1 M 7- 9-64 5641	105/12E-35K 1 M 7-13-64 5641	115/10E-23K 1 M 7-20-64 5641	155/25E- 3DS1 M 6-10-64 5000	155/26E- 5CS1 M 6-24-64 5000	175/22E-19H 1 M 10- 7-63 5000	175/23E- 1D 2 M 10- 7-63 5000

State Well Number	Temp.		Specific canduct-		Mineral Co	Mineral Canstituents in		e d	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	nts in on	
	when Sampled	Ŧ	(micro-	Calcium	Magne-	Sodium	Patos-	Carbon-	Bicar- banate	Sulfate	Chloride	rota frota	Fluo- ride	Boron	Sil:	TDS	TOTAL
Date Sampled, Agy. Time Call.	, щ	2.	mhas at 25°C)	კ	₩ W	Z	×	0,0	HCO 3	504	ō	ο 2	<u> </u>	60	SIO 2	Evap 180°C	0300 CaCO 3
175/23E- 8J 2 M 3-26-64 5050	49	C •	1080	-	+	104	1	1	1	1	3.24	1	1	0.10	1		321
175/25E-34P 1 M 3-26-64 5050	73	7.7	551	1	1	33	1	ŀ		1	0 8 % 8 %	1	1	0000	1		206
185/19E- 4J 1 M 3- 3-64 5000	69	6	1170	0 • 20	0.08	270 11.74 97	0.08	10	348 5 • 70 4 9	125	100	9•2 0•15	2 • 6	1.30	22	719	14
18S/24E-34L 1 M 9-30-64 5050	99	8 2	676	88 4 • 39 64	0.58	1.83	0.05	0	305 5 • 00 73	12 0 25	52 1.47 22	6 • 8 0 • 11	1	00.0	1	360	249
185/26E-36C 1 M 9-30-64 5050	67	9 4	921	3.75	3,70	2.61	0.10	0.13	360	102 2•12 21	1.21	44.0	ł	3 - 80	1	55 88 55 88	372
18S/27E-10C 2 M 9-3n-64 5050	6	0	986	101 5.04	9. 4. 6. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	1.91 1.91	0.08	0	384 6 • 29 60	117 2.44 23	31	52.0 0.84	•	0.01	1	583 656	441
195/21E- 3B 1 M 5-21-64 5050	70	20.7	259	1	1	2.48	1	1	+		0.11	1	1	0.30	1		13
195/26E- 2K 2 W	%	80 • 3	1000	109 5 • 44 5 3	26 2.14 21	58 2.52 25	0•10 1	0	330 5.41 53	1.50	2.62	38.0 0.61 6	1	1.00	ł	563	379
205/16F-20L 1 M 3-16-64	76	-	1	1		1	1	1	1	968	185	-	1	2.10	1		
20S/16E-28F 1 M 3-17-64 5050	9	1	1	-		ł	1	;	ł	952	3.64	1	1	2.50	1		
DWR 1982			STATE	OF CALIFOR	NIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES]

Fluo- Sili: 1DS TOTAL ride Boron as Computed hardness	B SIO ₂ Evap 180°C CoCO ₃		702		113	25	808 396 813	30 1538	1096	454	275
Boron ca	SIO 2		-				13	30	41		
Boron	Si		1				ω ω	3530	1054		
	83	0		1	1	1	1	1	43	1	!
Fluo-		1.40	2.20	0.70	0.70	1.50	0.20	3.60	09•0	0.50	1.10
	ш	;	;	1	1	1	Ì	1	0.2	1	1
Ni- trate	NO 3	1	1	1		1	0.0	36.0 0.58	0 • 0	1	
Chlo- ride	Ū	146	1	88 2 • 48		36	233 6•57 45	1420 40.04 78	1.33	205	1
Sulfate	50 4	1049	1918	719	531		92 1•92 13	0.87	192	1140	803
Bicar- bonate	нсо з	į	3.56	1	107	ł	378	592 9.70 19	170 2 • 79 34	1	167
Carban- ote	co 3	ì	C	ł	0	1	0	0	0	1	0
Potos- sium	¥	1	}	1	1	1	0.03	0.26	0.33	1	ł
Sodium	Z	ţ	472	1	265	186	154 6 70	431 18•74 38	325 14•13 39	226	263
Mogne- sium	Mg	1	1	1	1	1	2.22 2.22 15	216 17•76 36	11.27	1	
Calcium	3	1	281	1	2.25	-	114 5.69 39	12.97 26	213	182	110
(micro-	at 25°C)	1	3750	1	1480	833	1430	5170	2250	1	1860
I.		1	7.3	ł	7.9	3.	7 .8		7.7	1	7.4
Sampled		7.1	49	1	78	7.1	76	72	72	73	1
\vdash	Coll.	5050	5050	5050	3 1 M 5050	5050	4 1 M 5050	5050	1 M 5050	\$ 1 M 5050	4E 1 M
Date Sampled	Time	0S/16F-32E 3-17-64	05/16E-32N 2-29-64	0S/16E-36A 3-18-64	05/16E-36G 2-29-64	05/20E-10L 5-21-64	0S/21E-12A 7-29-64	3	15/16E- 1N 3-17-64		215/16E- 4E 2-29-64
	Sampled p H micro- Calcium sium ote bonate Sulfate ride hate	Sampled PH pH micro- Calcium Calcium sium sium colo Sodium sium sium colo Colo Photos- Soulfate colo Chlo- ride ride ride ride ride ride ride ride	Agy. or mhos at a colium sium one bonate and micro. Calcium sium one bonate at a colium at a coliu	Agy. Sampled of Imicro- Colcium Colcium sium sium Sodium sium one bondre sium Sodium sium one bondre sium Sodium sium one bondre sium Sodium sium one bondre sium No. Riborate ride No. Fluorities 1 M 71 1049 1466 5050 1 M 64 7.3 3750 281	Sumpled pH (micro- Golcium sium ore bonate ore bonate sum) At 25°C Ca Mg Na K CO3 HCO3 SO4 CI NO3 F T1 1049 146 T2	Sampled pH (micro- Calcium sium Sodium contents of the content	Sampled pH (micro. Calcium iron bolas. Carbon Binor. Sulfate Chlo. Ni: Fluoros rido mhos calcium iron so bonate sulfate close rido rido rido rido rido rido rido rido	Figure 1 by micro- Galeium Magnes Sadium Paleta Galeium Bisari Carlos Misses Galeium Magnes Sadium Paleta Galeium Magnes Sadium Paleta Galeium Magnes Sadium Paleta Galeium Magnes Magne	Fig. 1. Solution Sol	The contact of the	The contract of the contract

	Specific conduct-		Mineral Co	Mineral Canstituents in		Eĕ	milligrams per liter equivalents per millian	er liter ser millian				Mineral constituents in parts per million	neral constituents parts per million	ents in ion	
auce	_l_		Magne-		Potas-	Carban-	Bicar-	Bior-	Chlo	ż	Fluo		Sili	IDS	TOTAL
	micro- mhos at 25 C)	Calcium Ca	sion Mg	Sodiu a	e si	e e	bonate HCO 3	Sulfate SO 4	ride D	rote NO S	eb r	Boron	SIO 2	Computed Evap 180°C	hardness as CaCO 3
	1	1	1	1	1	1	1	1243 25•88	152	1	1	1.50			
18	1800	103	1	247 10.74	1	C	184 3 • 02	16.03	1	ł	1	1.10	1		257
2.1	2100	142 7•09 24	107	315 13.70 46	0.20	0	213 3•49 12	1014 21•11	182 5•13	0.01	0 • 2	1.30	<i>w</i>	2002	795
19	1950	105	1	240	1	0	217	675	1		1	06.0	1		262
21	2150	166		253 11•00	į į	0	116	961	142	1	1	0.50	1		414
12	1250	83 4 • 14 24	4.03	200 8.70 51	0.08	0	175 2•,87 17	503 10.47 62	3.58 2.58	1.1	0 • 1	0.60	40	1087	409
1750	20	145	-	202	1	0	120	864	102	1	1	0.50	1		362
1110	10	3.09	1	153	1	C	155	417	}	-	İ	0.50	1		155
1200	00	ł		118	!	1	å	1	26 0 . 73	1	1	0.40	ł		374
11	1160	1	1	209	1	ł	1	1	154	1	1	0.40	I		121
S	TATE	OF CALIFOR	INIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT (STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES					7

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

	_											
	TOTAL hardness	os CoCO 3	18	233		260						138
ents in Ion	TDS Computed	Evap 180°C	104			356 391						348
neral constituents parts per million	Silit	SIO 2	}	1	1	1	-	1	1	ł	1	-
Mineral constituents in parts per million	Boron	80	00.0	0.00	1	0•10	1	1	}	ł	ŀ	09•0
	Fluo- ride	u.	;	1	l	1	1	-	ł	}	1	1
	rate.	NO 3	0.8	17.0	41.0 0.66	36 • 0 0 • 58 9	24.0	18.0	5.2	0.8	7.6	43.0 0.69 12
	Chloride	Ū	0.17	0.62	1	34 0.96 15	1	ł	1	1	1	43 1•21 21
milligrams per liter equivalents per million percent reactance value	Sulfate	50 4	0 0 0 0 0	1	1	0.35	1	1	1	}	;	30
milligrams per liter equivalents per mill percent reactance ve	Bicor- banate	нсо з	1.34 84	284	1	288 4•72 71	1	1	1	1	1	203 3•33 57
ال ق ف	Carbon- ale	8	O	;	1	0	1	1	ł	ţ	ł	0
u	Patas- sium	×	0.03	1	- 1	0.08	1	- 1	1	ł	1	0.18
Mineral Constituents in	Sodium	ž	31 1•35 78	1.17	1	31 1,35 20	1	1	1	ł	;	3.09
Mineral C	Mogne- sium	Wg	0	l	1	1.40	1	1	1	-	1	0.16
	Colcium	S	0.35	1	1	3.79	1	1	1	1	ł	52 2.59 43
Specific canduct-	(micro-	mhas at 25°C)	165	ري در در	1	642	1	1	1	}	1	608
	Ξ ₀		Ç • &	7.8	1	& •	;	!	1	1	-	7.8
Тетр.	Sampled	<u>د</u> د	70	69	64	64	72	73	99	67	6.8	72
Vell	- [-	ed Agy. Coll.	27L 2 M	15P 2 M	21K 1 M 4 5050	22E 1 M 4 5050	22J 1 M 4 5050	23L 1 M 4 5050	26F 2 M 4 5050	26P 1 M	27C 1 M 4 5050	27F 1 M 4 5050
State Well Number		Date Sampled Time	215/25E-27L 3-26-64	21S/27E-15P 2 M 3-26-64 5050	21S/27E-21K 1 M 8-11-64 5050	215/27E-22E 1 M 8-11-64 5050	215/27E-22J 1 8-11-64 505	21S/27E-23L 8-11-64	215/27E-26F 8-11-64	21S/27E-26P 1 8-11-64 509	215/27E-27C 8-10-64	215/27E-27F 8-12-64

No K CO3 HCO3 SO4 C1 NO3 F 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Specific Aineral C and uct- when ance Sampled p (micro- Coleium sium	Specific canduct- ance P (micro- Cokium mhoc	Colcium		Mineral C	0 1	Mineral Constituents in	Potas-	Carbon-	milligrams per liter equivalents per million percent reactance value Sicar- Sultate	er liter ance value Sulfate	Chlo-	Ni. trate	Fluo-	Mineral constituents in parts per million Sili.	park per million	ion TDS Camputed	TOTAL
68 —		L		at 25°C)	ů	Wg	Š	¥	co 3	нсо з	SO 4	ū	NO 3	u.	æ	SIO 2	Evop 180°C	03EO
74 8.0 36.3 4.9 0 12.6 2.69 0.25 0.37 0.26 0.10 72 71 72 72 66 67 72 66 72 72 72 72 72	5050	80	1	1	-	1	1	1	ł	ŀ	1	1	13.0	-	ł	1		
72 <	215/27E-27L 1 M 8-10-64 5050	74	& C •	363	2.49	0	26 1•13 31	0.05	0	164 2.69	0.25	13	16.0	-	0.10	-	199	123
71	215/27F-27R 1 M 8-11-64 5050	72	1	İ	-		ł	l	1	1	1	-	7.6	1	1	1		
72 <td< td=""><td>21S/27E-28A 1 M 8-10-64 5050</td><td>7.1</td><td>1</td><td>1</td><td>1</td><td>-</td><td>1</td><td>ł</td><td>1</td><td>ŀ</td><td>1</td><td>ŀ</td><td>18.0</td><td> </td><td> </td><td>1</td><td></td><td></td></td<>	21S/27E-28A 1 M 8-10-64 5050	7.1	1	1	1	-	1	ł	1	ŀ	1	ŀ	18.0			1		
66	21S/27E-28K 1 M 8-11-64 5050	72	1	1	1	1	1	1	1	1	1	-	20.0	1		1		
67 0.09 <	3N 1 M 5050	99	1	-	1	1	1	1	1	1	}	1	14.0	1	1	-		
72 9.55 9.55 9.55 9.55 <td>21S/27E-34B 1 M 8-11-64 5050</td> <td>67</td> <td>-</td> <td>ļ</td> <td>1</td> <td>-</td> <td>!</td> <td>1</td> <td>ŀ</td> <td>ŀ</td> <td>}</td> <td>1</td> <td>0.0</td> <td>1</td> <td>1</td> <td>- </td> <td></td> <td></td>	21S/27E-34B 1 M 8-11-64 5050	67	-	ļ	1	-	!	1	ŀ	ŀ	}	1	0.0	1	1	-		
8.2 439 111 2 83 0 0 173 50 14 1.00 0.20 13 13 559 1.0 0.20 14 1.00 0.20 13 559 1.0 14 1.00 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	21S/27E-34D 1 M 8-11-64 5050	72	1	ļ ļ	1	1	1	1	-	1	1	1	9.5 0.15	-	1	-		
79 7.8 559 86 73 5.06	5050	69	8 • 2	439	0.55	• 1	•	0	0	173 2.84 66	1.04	14 0 39	1.0	i	0.20	!	246	36
	5050 5050	79	7.8	559	1	1	3.74	-	1	1	1	•	1	1	0.20	1		7.7.

	,											
	TOTAL	CoCO 3	1170	1120	1270	16	4	7	720	279	108	35
ents in ion	TDS	Evap 180°C						94	1190			312
neral constituents parts per million	Sili	SIO 2	1	1	1	1	1	1	1	-	1	;
Mineral constituents in parts per million	Boran	æ	ì	i	1	ĺ	ł	0.10	00•0	11	1	00.0
	Fluo-	<u> </u>	ł	1	i i	1	1	1	1	1	1	1
	i Sr	, o	1	1	1	l	!	0 • 3	22.0 0.35	1		7.8 0.13
	Chlo-	ō	593 16•72	518	424	19	0.11	0.08	189	1.49	30	86 2.43 49
milligrams per liter equivalents per millian percent reactance value	Sulfate	\$04	1	}	}	1	\ \	0.04	580 12.08 66	1	1	15 0.70 0.70 0.03 0.03 0.51 1.92 2.43 0.13 3 1.4 85 1.4 85 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.
milligrams per liter equivalents per mill percent reactance v	Bicar.	HCO 3	112	130	155	1.26	1.29	48 0•79 44	39	118	119	0.51
E & &	Corbon-	S	O	0	0	0.23	0	26 0 87 49	0	0.13	0	0
	Patas-	×	I	1	1	1	1	0	0.03	1	1	0.03
Mineral Constituents in	Sodium	ž	ľ	1	1	1	1	37 1.61 93	92	1	1	96 4.17 85
Mineral Co	Magne-	6W	1		1	1	1	0 0 0 8	0.16	1	1	0
	Colcium	კ	1	1	1	1		0.05	285	1		14 0.70 14
Specific canduct-	ance (micro-	mhas at 25°C)	3470	4270	5220	383	161	192	1700	873	419	615
	I	2.	8.2	8 • 2	ش •	80	0 • 80	9.1	7.1	4.8	8 . 2	7.4
Temp.	Sampled	· L	74	42	78	70	1	69	69	80	73	70
		Agy.	5050 5050	2 M	1 M	5050	J 1 M 5050	5050	1 1 M 5050	5050	5050	5050
State Well		Date Sampled Time	255/18E- 3N 8-27-64 5	255/19E- 6D 2 M 8-27-64 5050	255/19E- 7P 1 M 8-27-64 5050	255/22E- 2P 8-26-64 5	255/23E-11J 1 8-26-64 509	255/23E-28D 5- 6-64 5	25S/24E-15H 1 5- 5-64 505	255/24E-27R 1 8-27-64 509	255/25E- 40 8-26-64 5	255/25E-22D 5- 5-64 5

1101e ride Boron as Computed has No.3 F 8 S10.2 Evap 180°C Co. 23.2	Specific Mineral Canstituents in equivalents per liter conduct. Mineral Canstituents in percent reactance value ance Manage Balas Carbon Bisar	Mineral Canstituents in	Potos. Corban.	Potos. Corban.	Potos. Corban.	Corban	1 .	lligrams per uivalents pr rcent reacto		r liter er millian ence value	Chio	Ż	Fluo	Mineral constituents in parts per million	neral constituents parts per million	nts in no TDS	TOTAL
0.00 3.60 0.00 0.80 1.40 1.20 1.38 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.			0	Calcium	siom siom	Sodium	sion s	ate ate	bonate	Sulfate	a pir	# tot	- P	Baron	8		hardness
0.08 3.00	at 25°C)	_	1	3	Mg	o Z	¥	CO 3	HCO 3	SO 4	ŭ	NO 3	<u>.</u>	۵	sio 2	_	CoCO 3
0.16 2.26 0.03 1.62 1.71 0.27 0.10 1.72 0.10 1	7.8 368 0.		o	4 50 6	0.08	3.00	0	0	49 0 • 80 25	1.02	1.38	1.2	-	0.10	-	197	14
0.58	8•4 362	362		1	1	1	1	0.03	1.62	-	23	1	1	-	1		50
0.16 2.26 0.05 0.56 0.54 0.09 0.00 149 205 205 0.26 0.85 0.59 0.87 17.23 0.87 3.19 0.87 3.19 0.96	7.8 428 27 1.35		•	33	0.58	2.17	0.05	0	137 2•25 53	82 1•71 40	0.20	6.5 0.10 2	;	0.10	1	249	97
0.20 2.64 1.38 0 1.39 0 1.39 0.59 0.59 0 1.33 17.23 0.87 11.3 0.87 13.3 11.3 0.27 0.95 0.28 0.28 0.33 0.28 1.33 0.33 0.28 0.33 0.28 0.33 0.33 0.33	7.2 292 2 2 4		0	7 0 4	0.16	2.26	0	0		0.56	•	0.01	1	00.0	1	149	<u>.</u>
0 185 6111 6111 6111 0 1.33 17.23 113 0 0.87 113 0 0.87 113 0 0.87 113 0 0.87 1.33 0 0.28 0.28 1.33	8.6 492		' 	1	1	-	1	0.20	161	P.	38	<u> </u>	1	1	1		52
0 81 17.23 11.3 0 0.87 11.3 0 0.87 11.3 0.28 0.28 1.33 0 1.57 1.33	8 • 2	·	i 	4	i	1	1	0	1 • 39	1	•		1	1	1		12
0 0.83 113	8+1 2530		i 		1		-1	0	1.33	}	6111		}	ŀ	1		264
0 0 58 10 0 0 58 10 0 0 6 58 10 0 58 10 6 58 10 6 58 10 6 58 10 6 58 10 6 58 10 6 58 10 6 58	7.9 565		i		•	1	1	0	53	<u> </u>	3.19		;	1	1		102
1.33	9.0		i 		l l	}	1	0.27	58		10	1	1	;	1		27
	8.2 564	_	i		<u> </u>	1	1	0	1.57	1			1	i	-		139

MINERAL ANALYSES OF GROUND WATER

Specific conduct-	Specific conduct-	Specific conduct-		Mineral Constit	Mineral Constit	nstit	vents in			milligroms per liter equivalents per milli percent reactonce vo	milligroms per liter equivolents per million percent reactonce value	-			Mineral constituents in parts per million	neral constituents parts per million	ents in lion	2
Orto Sampled Ac	1	Sampled	I.	(micro-	Calcium	Magne. sium	Sodium	Patas- sium	Carbon- ate	Bicar. banate	Sulfate	Apir epir	rate F	Fluo-	Boron	i∯ 8	TDS Camputed	hardness
	Coll			at 25°C)	3	Wg	Š	×	003	нсо з	504	ō	s on	L.	80	SIO ₂	Evap 180°C	် ပိ
26S/27E- 9G 1 M 8-26-64 5050	ΣO	82	O •	1720		ļ	103	ł	1	+	1	210	0.7	ŀ	1	1		659
275/19E-28H 1 M 8-27-64 5050	Σ O 3	;	8 • 2	10500			1	1	0	132 2 16	-	1800		1	1	1		2420
275/20E-34G 1 M 8-27-64 5050	¥ 0 ₹	;	4	558	1		1	1	0.07	128	1	1.97	1	1	1	ŀ		
275/22E- 20 2 M 9-15-64 5050	₹ 0 Z	78	° 2	2480	1	1	1	1	0	1.05	1	698	1		ł	- 1		194
275/22E-21P 2 M 8-26-64 5050	ΣC	69	7.9	4000	1	1	1	ì	0	76	1	1010	1	1	1	1		760
27S/23E- 1R 1 M 5- 6-64 5050	₹ 0	69	7.4	3360	317 15.82 46	0.66	418 18•17 52	0.05	0	1.43	994 20.70 59	461 13.00 37	13.0 0.21	1	0.10	1	225 6 2390	825
27S/23E- 1R 3 M 5- 6-64 5050	ΣC	70	8 • 2	218	0.75	0	1.35	0	0	115 1 88 90	0.06	0.14	0.0		0.10	}	112	
27S/23E- 1R 4 M 5- 6-64 5050	ΣC	70	7.6	184	0.20	0.08	37 1.61 85	0	С	84 1•38 76	0.25	0.17	0.01	1	00.0	ł	102	
27S/23E- 1R 5 M 5- 6-64 5050	ΣC	70	8 • 2	549	0.05	0	2.26	0	0	92 1.51 64	0	0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.01	ł	0.20	1	129	
275/23E-27J 1 M 9-15-64 5050	¥ 0	81	8 . 2	1500	1	1	!	1	0	1.26	1	105	1	i	1	1		187
DWR 1982				STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	ESOURCES	AGENCY C	OF CALIFO	DRNIA - DE	PARTMENT	OF WATER R	ESOURCES	ı	I			1

State Well	Temp.		Specific canduct-		Mineral Co	Mineral Constituents in		e d	milligrams per liter equivalents per millian percent reactance value	er liter er millian ance value				Mineral constituents in parts per million	neral constituents parts per million	ints in	
Lagen I	Sampled	I	ance micro-	Colcium	Mogne-	Sodium	Potos-	Carbon.	Bicar. bonote	Sulfate	Chlo- ride	Ni- trote	Fluo- ride	Boron	ij 8	Computed	TOTAL
Date Sampled Agy. Time Call.	o H		mhas at 25°C)	ß	Wg	ž	¥	003	нсоз	504	Ū	NO 3	u.	83	SIO 2	Evap 180°C	as CoCO 3
275/24E- 1L 2 M 5- 7-64 5050	68	0.8	442	2.25	0.41	1.35	0.03	0	95 1.56 39	40 0.83 21	41 1•16 29	28.0 0.45 11	1	00•0	1	238	133
275/24E- 1L 3 M 5- 7-64 5050	69	8.7	155	0.20	0.08	1.17	0.03	0.07	0.89	0.27	0.14	0.01	!	00.00	1	986	14
275/24E- 1L 4 M 5- 7-64 5050	68	0.8	140	0.10	0.08	1.17	0	0	0.98	0.21	0.14	2.0	1	00.0	1	104	6
275/24E- 5R 1 M 9-15-64 5050	76	8.1	150	1	-	1	1	O	58	-	0.17	1	1	1	1		14
275/24E-31E 1 M 8-27-64 5050	78	4.6	676		-	1	ł	0.07	1.05	1	1.97	1	ł	ł	1		103
275/24E-34F 1 M 9-15-64 5050	74	7 8	210	1	-	1	1	0	0.0		18	1	}	1	1	-	28
275/25E- 1N 1 M 5- 6-64 5050	65	7.4	407	35	0.58	1.61	0.05	0	158 2.59 66	44 0•92 24	0.31	5.4	1	0.10	1	219	117
275/25E- 1N 3 M 5- 6-64 5050	99	6.2	131	0.05	0.08	1.04	0.03	0	47 0•77 69	0.12	0.20	1.0	1	00.0	ł	70	7
275/25E- 5R 1 M 9-15-64 5050	80	φ •	352	1	1	1	1	0.13	138	1	0.25	1	å i	1	-		104
275/25E-34A 2 M 9-15-64 5050	72	αρ •	415	0 135 14 2 2 2 1 0 3 9	1	1		0	2.21	1	0.39	l	1	1	1		140

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

TOTAL	CaCO 3	186	ω 80	97	99	781	704	840	197	101	208
TOS	Evap 180°C	396	169	419	251	1017	2438	3032			679
Sili:	s ő	1	ł	l	1	1	ł	1	i	l	1
Boran	60	0.79	0.36	0.15	0.28	90.0	3.30	4.30	1	1	00.00
Fluo-	ш.	0.0	0 • 2	0.1	0 8	0.0	1	1	ł	}	1
ž	o N	1	}	1	1	1	0.01	0.8	1	1	17.0 0.27 2
Chlo	<u> </u>	164	34	130	1.55	411	776 21.88 55	846 23.86 49	3.58	58	228 6.43 56
Sulfate	Ş	15 0 31	0.29	1.60	0.19	3.08	731 15•22 38	983	1	1	202 228 17.0 4.21 6.43 0.27 37 56
8icar-		122	91	1.80	137	218	166	277	95	127	51
ė	ီး ဝွ	, 0	0.27	0	0.53	0	0	0	0	0.13	0.03
Potas-	E >	0.10	0.08	20	0.10	0.13	0.13	0.15	ł	l I	0.03
Sodium	ž	3.65	51 2.22	108	84 • 80	2.70	588 25.57 64	752 32.70 66	!	1	2 134 16 5.83 2 58
Magne-	E 2	10	0.41	1.23	0.41	3.87	3.78 10	50 4.11 8	1		•
Calcium	3	5.89	7	0.70	0.70	235	206 10•28 26	254 12•67 26	1	!	3.99
ance (micro-	mhos at 25 C)	769	303	581	909	2500	3920	4650	1410	712	1090
Ξ	<u>a</u>	7.7	8 • 6	8 0	& • •	7.5	6 • 9	7.2	8 • 1	4 •	8 • 1
Sampled	ь.	1	1		1	1	67	67	1	82	1
IAGIIDAI	Date Sampled Agy.	75/26E-22H 1 M 9-24-64 5703	75/26E-22Q 1 M 9-21-64 5703	75/26E-25J 1 M 9-16-64 5703	75/26E-27A 1 M 8- 6-64 5703	75/26E-27R 1 M 8- 6-64 5703	85/22E- 9D 1 M 5- 7-64 5050	85/22E- 9D 2 M 5- 7-64 5050	35/22E-10R 1 M 8-27-64 5050	35/22E-26J 1 M 9-14-64 5050	28S/23E-25H-2-M 5-29-64 5050
	when ance when Garban Bicar Carban Sicar Sulfate 105	when when when the continum sign Sompled by Collinum sign Polata: Garban- sign Garban- sign Signs sign COII. Ni- Fluo- ride Pluo- ride Sili- IDS Agy.	Agy. °F and 25°C and the continue and sium sium sium sium at a banate Sultate Caho. Ni. Fluo. Sultate Caho. Ni. Fluo. Sultate Caho. Ni. Fluo. Sultate Caho. Ni. Fluo. Sultate Caho. No. Sampled have sium at a banate Sultate Caho. No. Sampled have sium at a banate Solitate Caho. No. Sampled have sium at a banate Sultate Caho. No. Sampled have sium at a banate Solitate Caho. No. Sampled have sinm at a sium at a banate Solitate Caho. No. Sampled have sampled ha	Sampled p Calcium Magne Sodium Sium Potas Carbon Bicar Calcium Sium Sodium Sium Carbon Bicar Calcium Sium Calcium Calcium Sium Calcium Calc	when mother sum signm Potest Free South signm Carbon Founds Free Souther Bistor Chlo- train ride Ni- files Free Free Free Free Free Free Free Fr	Nimbos N	Coll. Coll. Coll. Magnet Social magnet Coll. Magnet Social magnet Coll. Co	Agy. "*** of a condition at a condit	Agy Sample Agy Color Mage Agy Sadium Sadi	Second Column C	Simple S

		TDS TOTAL		36	300	117 38	113 33	94 18	95 23	380 157 436	329 118 355	156 40	117 23
Mineral constituents in	parts per millian	Sili- I	- 7	1		1	1	†	1				1
Mineral	parts p	Boron	ω	1	00 • 0	00.0	00.0	00.00	0.10	0.10	0.10	0 • 10	0.10
		Fluo-	<u>.</u>	1	ı	1	1	1	1	1	1	1	1
		rote in	S O Z	ł	34.0 0.55 13	4.2	3.1	2 • 2 0 • 04 2	1•3 0•02	5 • 3 0 • 09	5 • 5 0 • 0 9	2.3	2.0
		Chlo	ō	1.38	40 1•13 26	15 0•42 21	16 0.45 23	0.31	13 0•37 23	91 2.57 42	70 1.97	0.76	0.62
er liter	equivalents per millian percent reactance value	Sulfate	504		73 1.52 36	17 0 • 35 18	18 0•37 19	0.27	0.27	133 2.77 46	121 2•52 48	45	20
milligrams per liter	equivalents per millian percent reactance value	Bicar-	HCO 3	45	66 1•08 25	71 1.16 58	62 1.02 53	56 0.92 57	0.08	38 0•62 10	40 0•66 13	41 0.67 26	52 0.85 44
	e c	Carban-	9	0	0	0	0.03	0.07	0	0	0	0.13	0.03
		Potos-	~	1	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Mineral Canstituents in	Sodium	Ž	1	35	30	30	1.30	1.22	68 2.96 48	2.83 54	1.74	36 1.57
	Mineral Co	Magne-	Mg	}	0.08	0	0	0	0	0	0	0	0
		Colcium	3	1	2.59 2.59 61	15 0 36	0.65	0.35	0.45	3.14	2.35	16 0.80 31	0.45
Specific	conduct-	(micro-	mhas at 25°C)	399	471	215	205	170	190	969	290	298	224
		Ξ,	1	7 - 8	• 1	80 •	4 • 8	φ •	7.7	7 • 8	4	© • •	& • •
	Temp.	Sampled	u.	7.1	73	75	75	75	75	75	74	76	76
	State Well Number		Date Sampled Agy. Time Coll.	285/23E-25P 1 M 9-14-64 5050	285/24E- 1F 1 M 6-23-64 5050	285/24E- 2B 1 M 6-23-64 5050	285/24E- 2P 1 M 6-23-64 5050	28S/24E- 3N 1 M 6-24-64 5050	28S/24E- 30 1 M 3-31-64 5050	285/24E- 6F 1 M 3-31-64 5050	7- 9-64 5050	285/24E- 78 1 M 7- 9-64 5050	28S/24E- 9H 1 M 7- 9-64 5050

	Ŀ	3.	е е		28	6.3,	6 0	30	10	12	10	20	70	ı
	TOTAL	hordness	Ů	10										١
ents in Iion	TDS	Computed	Evop 180°C	250	108	145	201	138	130	161	93	120	265	ı
neral constituents parts per million	Sili	8	SIO 2	ł	1	t	1	1	1	1	1	1	1	ı
Mineral constituents in parts per million		Boron	æ	0.10	0.10	00•0	00.0	0.10	0.20	0.20	0.10	0.10	0.10	ı
	Fluo-	apir	ш.	1	1	1	1	1	1	1	1	1	1	ı
	ž	trate	NO 3	32.0 0.52 13	1.7 0.03	9•7 0•16 7	21.0 0.34 10	7•3 0•12 5	0.9	0.4	1 • 3 0 • 02 1	0.01	3.2	RESOURCES
	Chlo-	ride	ō	1.24	0.45	21 0.59 24	30	36 1.02 43	0.37	1.97	0.23	28 0 . 79	2.51	OF WATER F
er liter per million tance value		Sulfate	SO 4	1.10	0.31	0.42	0 • 85 26	19	0.19	0	0.25	19	1.08	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES
milligrams per liter equivalents per million percent reactance value	Bicar-	bonate	нсо з	69 1•13 28	1.08 58	1.29	78 1.28 39	45 0.74 31	70 1.15 67	56 0 • 92 32	1.15 1.05	0.90	0.66	ORNIA - DE
	Carbon	ote	co 3	0	0	0	0	0.10	0	0	0	0	0.10	OF CALIF
c	Polas-	mois	¥	0.03	0.03	0.03	0.03	0	0		0	0	0.03	AGENCY
Mineral Canstituents in		Sodium	2	1.91	1.35	1.26	35 1.52 46	38 1.65	1 6 6 8 8	2.57	1 • 43	37 1•61 80	3.00	RESOURCES
Mineral C	Mogne-	E i cm	Mg	0.08	ó	0	0	0	0	0.08	0	0		:
		Calcium	ů	2.05	0.55	1.25	1.75	0.60	0.20	0.15	0.20	0.40	1.40	STATE OF CALIFORNIA
Specific canduct-	ance .	(micra- mhas	at 25°C)	447	205	260	377	257	176	323	173	230	516	STATE
	:	ī_		ω •	& • •	8 . 2	8 • 1	00 • 00	7.1	7.5	8 • 2	8 • 0	00 0 10	١
Temp.	when	Sampled		73	75	88 2	75	79	72	72	0	73	10	ı
		Agy.	Call.	1 M 5050	5050 5050	5050 5050	5050 5050	1 M 5050	5050	5050 5050	5050	5050 5050	5050	
Well	2	led		-11A	-11F	-12A	-12D	-16A	-23D	-23D	-26D	-30F 54 5	-31A 54 5	
State Well		Date Sampled	Time	285/24E-11A 6-23-64	285/24E-11F 7- 9-64 5	28S/24E-12A 1 6-23-64 505	285/24E-12D 1 6-24-64 50	285/24E-16A 1 6-23-64 505	28S/24E-23D 2 4- 9-64 505	285/24E-23D 3 4- 9-64 505	285/24E-26D 6-23-64	285/24E-30F 6-23-64	285/24E-31A 6-24-64	7041 311
				.,,	10	• • • • • • • • • • • • • • • • • • • •		-				.,		

	TOTAL hordness	°s C°CO 3	13	33	186	205	207	204	176	238	205	86
ents in ion	Computed	Evap 180°C	102 113	133	401	345	376	3.88 0.88 8.89	331 368	4 30 504	378	279
neral canstituents parts per million	Sij:	SIO 2	1	1	1	ł	1	1	1	1	;	1
Mineral canstituents in parts per million	Boron	8	00•0	0.20	0.10	00 • 0	00.0	0.10	00.0	0.10	0.10	0.10
	Fluo- ride	L.	1	1	1	1	1	ì	1	1	1	-
	role Frole	NO 3	1 • 1 0 • 0 2 1	7.3 0.12	6.0 0.10	39.0 0.63 11	42.0 0.6P 11	81.0 1.31 24	47.0 0.76 14	77.0 1.24 19	30 • 0 0 • 48	14.0 0.23
	Chlo ebir	ō	20 0.56 32	0.45	111 3•13 47	36 1.02 18	38 1.07 18	0.71	1.13	2.00	39 1•10 18	19 0.54 12
milligrams per liter equivalents per millian percent reactance value	Sulfate	504	19 0•40 23	38 0.79 36	119 2•48 38	1111 2.31 42	126 2 • 62	58 1•21 22	1.85	94 1.96 29	134 2 • 79 4 7	93 1.94 43
milligrams per liter equivalents per millian percent reactance value	Bicar- banate	нсо з	0.49 28 28	43 0•70 32	55 0.90 14	1.59	97 1.59	141 2•31 42	92 1•51 29	91	98 1•61 27	113 1•85 41
Εŏō	Carbon-	8	0.27	0.13	0	0	0	0	0	0	0	0
	Potos-	¥	O	0	0.05	0.08	0.05	0.05	0.05	0.03	0.08	0.03
Mineral Constituents in	Sodium	ž	34 1.48 86	1.49.00	2.70	31 1.35 24	1.78	36	1.74	57 2.48 34	45 1.96 32	2.52 5.52 5.6
Mineral Co	Mogne-	on ¥	0	0	0.08	0.66	0 4 8	0.49	0.33	1.32 1.32	0.41	0.16
	Colcium	3	0.25	13 0•65 31	3.64	3 . 69 444 62	73	3.59	64 3•19 60	3.44	3.69	36 1 • 80 40
Specific canduct-	ance (micro-	mhos at 25 C)	200	227	722	580	630	583	561	784	647	489
	I	<u>. </u>	0.6	8 . 7	8•1	8 • 2	8 • 2	0	& •	© • •	0 •	φ •
Temp.	when	ů.	72	74	73	74	75	72	78	7.7	74	73
State Well		Agy. Coll.	-310 1 M	-32P 1 M	-36R 1 M	- 2A 1 W	E- 2K 1 M -64 5050	9-64 5050	E- 4P 2 M	785/25E- 9E 2 M 6-24-64 5050	E-10B 1 M	E-13C 1 M -64 5050
State		Date Sampled Time	285/24E-31D 6-24-64	285/24E-32P 1 6-23-64 50	285/24E-36R 6-24-64	285/25E- 2A 6-23-64	285/25E- 2K 6-23-64	285/25E- 4F 7- 9-64	28S/25E- 4P 6-23-64 5	785/25E- 6-24-64	285/25E-10B 3-31-64	285/25E-13C 6-25-64

	٠,												7
	TOTAL	28 CaCO 3	35	160	757	1200	118	454	22	40	65	20	
ents in ion	Computed	Evap 180°C		413	1266	2072	253	718	106	159	178	91	
neral constituents parts per million	Sili;	510 2	1	1	1	ŀ	1	1	1	1	1	1	1
Mineral constituents in parts per million	Boron	ω	1	0.10	0.10	0.10	0.10	0.20	0.10	0.10	0.10	0.10	1
	Fluoride	u.	1	1	t	1	1	1	1	1	1	1	1
	rate t	0 Z	1	29.0	20.0	54.0 0.87	3 . 8	8 • 2 0 • 13	1.0	4 • 2 0 • 0 7	2.9	1.2	SECURIORS
	Chlo-	ō	0.37	1.61	431 12.15 58	368 10.38	1.69	186 5•25 45	0.25	26 0.73 28	37 1.04 34	0.23	THE RESOLINCES AGENCY OF CALLEDRING DEPARTMENT OF WATER RESOLINCES
milligrams per liter equivalents per million percent reactance value	Sulfate	\$0 ⁴	- 1	148 3.08 4.7	365 7•60 36	940 19.57 61	71 1•48 35	235 4 • 89 42	0.15	37 0 - 77 0 29	43 0.90 30	13	PADTMENIT
milligrams per liter equivolents per mill percent reactance v	Bicar-	HCO 3	1.46	85 1•39 21	1.00	1.33	59 0 97	88 1•44 12	1.05	66 1.08 41	1.05	58	A PINAC
E & A.	Carban-	8	0	0	0	0	0	0	0	0	0	0.10	OF CALIFO
_	Patas-	×	ł	0.03	0 0 0 0	0.10	0.05	0.05	0.03	0.03	0.03	0.03	AGENCY
Mineral Constituents in	Sodium	Z	1	3.26	125 5.44 26	195 8 • 48 26	1.74	3.35	1.09	1.83	37 1.61 55	1.22	PESOLIBCES
Mineral C	Magne-	. ₩	1	0.41	1.40	1,23	0	0.49	0.08	0	0	0	NIA - THE
	Calcium	ß	1	2.79	13.72	456 22.75	2.35	160 7.98 67	0.35	0 + 80	1.30	0.40	STATE OF CALIFORNIA
Specific conduct-	(micro-	mhos ot 25 C)	234	687	2120	2900	466	1230	166	306	344	166	STATE
	Ξ	1	80 . 2	•	6 0 0		8 • 2	7.8	8 • 2	& •	7 • 8	& •	1
Temp	when	ů.	72	74	73	75	75	74	1	75	47	75	
		Agy. Coll.	1 M 5050	5050	5050	5050	. 1 M 5050	5050	5050	5050	1 M 5050	5050	
Stofe Well		Date Sampled Time	285/25E-17L 9-14-64	285/25E-20D 6-23-64	285/25E-22F 1 M 6-23-64 5050	285/25E-24P 1 M 6-25-64 5050	285/25E-25L 6-24-64	285/25E-27L 4-28-64	285/25E-28P 4-28-64 5	285/25E-3nG 1 6-23-64 509	285/25E-32L 4-28-64	285/25E-32P 1 6-24-64 50	DWR 1982

		_	_										
	TOTAL	hardness	C0C03	70	4 8	6	10	368	•	6 0	2660	15	39
ents in lion	TDS	Computed	Evap 180 C	141	182 202	194	203					114	210
neral constituents parts per million	Siti-	8	SIO 2	-	1	ł	1	1	1	1	1	1	1
Mineral constituents in parts per million	S S S S S S S S S S S S S S S S S S S		80	0.10	0.10	0.20	0.20	ľ	ł	1	1	0.10	0.10
	Fluo-	epi	ı.	1	1	ł	1	İ	1	1	-	ŧ ·	1
	ż	irole	NO 3	1.5	1.4	0.01	0.4		1	1	1	0.9	6.8 0.11
	Chlo	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ō	0.68	0 0 0 0 0	36 1.02 30	2.48	3.16	1.16	17	2370	0.25	1.13
milligrams per liter equivolents per million	Sulfate		504	0.42	450.94	0.52	0	<u> </u>	1	-	1	0.19	163
milligrams per liter equivolents per million	Bicar-	bonote	нсо з	1.39	70 1.15 37	1.07	1.03	1.25	92	1.21	304	1.02	31 0.51 15
E & &	ė	alo	CO3	0	0.07	23 0.77 23	0	0	0	0	0	c	0
	Potos-	E	~	0.03	0.05	0.03	0.03	1	1	ł	1	0.03	0
Mineral Constituents in			ž	1.09	31 1.35	3.17	3,39	1	1	1	1	1.17	57 2.48 76
Minerol Co	Модпе-	Eng	Mg	0	0.08	0.08	0	1	{	1	1	0	0.08
		E CORDO	S	1.40 56	32 1.60 52	0 • 10	0.20	1	1	1	1	0.30	0.70
Specific conduct-	ance	mhos	ot 25 C)	295	348	376	418	1080	313	260	9300	170	363
	1	<u>.</u>		7.9	4	0.6	7 8	7.9	. 2 • 2	8•1	6 • 9	7 • 8	7.7
Temp.	when	Sompled °F		74	75	69	69	79	4	81	1	09	72
		Agy.	[8]	5050	C 1 M 5050	H 2 M 5050	H 3 M 5050	A 1 M 5050	C 1 M 5050	L 1 M 5050	C 1 M 5050	H 1 M 5050	D 1 M 5050
State Well	Number	Date Sampled	Time	285/25E-35Q 4-29-64 5	285/25E-36C 6-25-64 5	28S/26E-21H 4-10-64	285/26E-21H 4-10-64	285/26E-30A 9-14-64	285/27E- 7C 9-14-64	285/27E-28L 9-14-64	295/22E- 1C 8-27-64	295/24E- 1H 1 M 3-31-64 5050	295/24E- 4D 1 6-23-64 50

	TOTAL	50	7	20	15	144	60	75	420	49	165	25	45
	\vdash			2.2	0 7		13	00		9 %		32	4 0
ents in Iian	IDS	001	ngi dan	132	180	743	94	272	766	166	398	132	1146
neral canstituents parts per millian	SIII:	3 9	302	1	ł	1	1	1	1	1	1	1	1
Mineral canstituents in parts per millian	Boron	a		0.10	0.20	0.10	00•0	0.10	0.50	0.10	0.10	0•10	0.10
	Fluo-		-	-	1	1	1	1	1	1	ł	1	1
	Z -	Š	2	0.0	6.3 0.10	3.8	0.0	14.0	0.0	5 • 8 0 • 09	15.0	1.6	1.7 0.03 2 ESOURCES
	Chlo		5	1.21 55	1.92	262 7.39 60	15 0.42 26	27 0•76 18	1.13	0.62	78 2.20 33	0.34	0 25 1 0 73 18 14 1•7 5 60 19 54 1•7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
milligrams per liter equivalents per million percent reactance value	Sulfate	5	20.4	0.42	400	3.04	0.27	2.12	349 7.27 58	0.90	103 2.14 32	0.25	18 0•37 19
milligrams per liter equivalents per mill percent reactance v	Bicar-		E 23	27 0 - 44 20 20	51	115	0.59	1.20	254	1.13	125 2•05 31	1.11	1.20 60 60 SRNIA - DE
E & Q	Carbon-	. 5	5	0.13	0.20	0	10	0	0	0.03	0	0	OF CALIF
_	Pofas-		¥	0.03	0	0.03	0	0.03	0.05	0.03	0.05	0.03	0.03 1 AGENCY
Mineral Constituents in	Sodium	ź	2	1.83	2.78	216	35 1.52 91	2.70	9 00 00 9 00 00	1.48	3.22	1.22 1.70	25 1 • 09 54 RESOURCES
Mineral C	Magne-	:	66	0	0	0.08	0	0	10	0.08	0.25	0	O O
	Colcium	į.	3	0.40 18	0.30	2.79	0.15	1.50	152 7.58 62	1.20	3.04	0.50	13 0.90 45 STATE OF CALIFORNIA
Specific conduct-	ance (micra-	mhos		263	355	1360	174	474	1160	308	706	195	213 STATE
	Ξ	۵.	1		Ø.		9.4	80 • 0.3	8.2	4.8	7.8	7.9	
Temp.	when	0	1	72	11	1	76	72	80	73	6 0	75	72
		Agy. Coll.		5050 5050	1 M	5050 5050	5050	1 M	5050 5050	5050	5050	5050 5050	1 1 M 5050
State Well		Date Sampled		295/24E- 4M 1 4-29-64 505	295/24E- 7C 1 M 6-23-64 5050	295/24E- 8N 1 6-23-64 505	295/24E-21B 1 M 6-23-64 5050	298/24E-24F 1 M 6-24-64 5050	295/24E-33P 3 M 7- 9-64 5050	295/25E- 3N 1 6-24-64 505	295/25E- 5A 1 4-28-64 50	295/25E- 5G 1 3-31-64 505	295/25E-10M 6-24-64 5 DWR 1982

	1				_							
	TOTAL	as as as as as as as as as as as as as a	170	165	159	10	25	30	& &	50	257	78
ents in ion	TDS	Evap 180°C	287 378	301	338	104	417	109	139	132		141
neral constituents parts per million	ils :	Sio 2	ł	1	-	1	1	1	i	1	ŀ	ł
Mineral constituents in parts per million	Boron	œ	0.10	00.0	0.20	00.00	0.30	0.10	0.20	0.10	1	0•10
	Fluo	ıL	1	1	i	1	1	1	1	1	1	1
	ż	ν 0 2	5.2	16.0 0.26 5	13.0	1.7	1.5	1.5	4.1	2 8 0 0 0 0 5	1	5.2
	chi :	ō	2.37	84 2•37 47	1.72	0.17	6.35	0.20	0.71	0.51	18	0.28 11
milligrams per liter equivalents per million percent reactance value	Suffate	504	1.23	1.27	81 1.69 34	0.15	0	0.21	0.48	23 0.48 21	1	18 0•37 15
milligrams per liter equivalents per million percent reactance value	Biar.	HCO 3	72 1•18 24	70 1•15 23	82 1•34 27	1.20	51 0.84 12	1.15	1.07	1.16	1.33	109 1.79
	ė	CO a	0	0	0	0	0	0.07	0.07	0.07	0	0
c	Potos-	¥	0.05	0.05	0.05	0.03	0.03	0.03	0.03	0.03	1	0.03
Mineral Canstituents in	Sodium	Ž	35 1,52 31	39 1.70 34	1.638	30 1•30 85	154 6•70 93	1.04	29 1•26 52	30 1•30 56	i	23 1.00 39
Mineral Co	Magne-	6 W	0.23	0.16	0.33	0	0	0	0	0	1	0.16
	Colcium	S	3.14	63 3•14 62	2.84	0.20	0.50	12 0•60 36	23 1.15 47	20 1•00 43	1	28 1.40 54
Specific conduct-	micro	mhas at 25 C)	561	566	553	160	846	166	267	247	257	250
	1	<u>a</u>	7.8	00 • 1	∞ • 1	7.3	7.9	&0 • •	80 • 5	∞ •	80 - 2	8 • 2
Femp.	when	4	74	72	1	69	99	74	74	72	71	72
		Agy. Coll.	1 1 M 5050	5050	5050	1 3 M	5050	1 1 M 5050	5050	5050	5050	J 1 M 5050
State Well	Laguinger	Date Sampled Time	295/25E-10N 4-28-64	-10N 1 6-24-64 50	295/25E-11K 6-23-64	295/25E-12M 4-10-64 5	295/25E-12M 4-10-64	295/25E-12N 6-23-64	295/25E-13R 7- 9-64	295/25E-32F 7- 8-64	-32F 9-14-64	29S/25E-35J 6-23-64

MINERAL ANALYSES OF GROUND WATER
SAN JOAGUIN DISTRICT

	TOTAL	os CaCO 3	153	54	110	72	120	39	10	56	58	29
	-		-			80 LS		O v#	6.2			1
ents in Iion	105	Evap 180°C			335 339	118	194	89	112			
neral canstituents parts per million	Sifi	SIO 2	1	1	19	}	1	1	1	1	1	-
Mineral canstituents in parts per million	Boran	ω.	+	1	0.20	0.20	0.10	0.10	0.10	0.20	1	1
	Fluo-	4	1	1	0 • 3	1	1	1	1	1	1	ł
	Ä j	0 N	+	1	14.0 0.23	2.0	2.7 0.04	2 - 8	0.01	!	1	1
	송	ū	1.38	0.37	36 1.02 18	0.23	30	0.14	0.23	0.42	15	150
milligrams per liter equivalents per million percent reactance value	Sulfate	504	1	;	16 0•33 6	0.35	37 0•77 22	0.17	0.12	1	1	1
milligrams per liter equivalents per mill percent reactance v	Bicar-	HCO ₃	91	1+23	254 4.16 72	94 1.54 72	110	1.26	88 1 • 44	1	150	34
Eŏŏ	ė	CO 3	0	0	0	0	0	O	0	1	0.17	0
	Potas-	×	1	1	0.08	0.05	0.08	0.05	0.03	1	1	-
Mineral Constituents in	Sodium	Ž	;	!	3.57 61	0.74	1.00	18 0.78	1.57 87	2.91	1	1
Mineral C	Magne-	6 _W	1	ŧ	0 4 8	0.33	0.49	0.08	0	}	1	1
	Calcium	S	1	1	34 1.70 29	1.10	38 1 • 90 55	14 0 • 70 43	0.20		1	l
Specific conduct-	ance micro-	mhos at 25°C)	575	196	552	232	374	173	199	422	432	641
	I	o.	& • 3	0 • 8	7.6	7.2	7.6	7.4	8 • 2	ł	80	7.6
Temp.	Somoled	a F	72	65	45	68	49	99	89	08	08	70
State Well	Nomber	Date Sampled Agy. Time Coll.	29S/26E- 9R 1 M 9-14-64 5050	29S/26E-35K 1 M 9-14-64 5050	29S/27E-21R M 2- 7-64 5050	29S/27E-34N 1 M 4- 8-64 5050	295/27E-34N 2 M 4- 8-64 5050	29S/27E-34N 3 M 4- 8-64 5050	295/27E-34N 4 M 4- 8-64 5050	295/28E-12E 1 M 12- 8-63 5124	-12E 1 M 9-15-64 5050	30S/23E- 1C 3 M 8-27-64 5050
		Da	295,	295.	295.	295.	295	295	295	295	6	30S.

State Well Number	Temp.		Specific conduct-		Mineral Ca	Mineral Canstituents in		e d	milligrams per liter equivalents per millian percent reactance value	er liter er millian ance value				Mineral constituents in parts per million	neral constituents parts per million	ents in	
	Sampled	Ξ,	(micro-	Calcium	Mogne- sium	Sodium	Potas.	Carbon-	8icar- bonate	Sulfate	Chlo	rote:	Fluo- ride	Boron	Sil;	TD5 Computed	TOTAL
Date Sampled Agy. Time Call.	0	.	mhas at 25°C)	ვ	Mg	Ž	×	co 3	нсо з	50 4	D	NO 3	ı.	8	SIO 2	Evop 180°C	°\$ C°CO 3
30S/24E- 3E 1 M 6-24-64 5050	75	0•6	184	5 0.25 16	0	31 1,35 84	0	0.20	38 0.62 38	0.52	10 0.28 17	0•1	-	0.10	-	9 6 120	13
30S/24E- 4C 1 M 4- 9-64 5050	8 0	7.6	1350	168	1.73	102	0.08	0	282 4.62 31	4440 9.16 61	1.24	0.01	1	09•0	i	918	206
30S/24E- 4C 4 M	78	80	506	32 1,60	0.08	2.87	0	0	90 1.48 31	120	25 0.71 15	0.8	1	0.20	1	289	4
30S/24E- 4C 5 M 4- 9-64 5050	69	7.1	416	35	4 6 8	1.87	0.03	0	94 1.54 39	1.92	16	0.5	1	0.30	1	238	104
30S/24E- 4C 6 M 4- 9-64 5050	69	8 • 1	142	0.10	0.16	28 1.22 82	0	0	1.02	9 0.19 13	0.20	0 • 2	1	0.20	l	119	13
30S/24E- 5L 2 M 6-24-64 5050	69	φ •	1000	4.69	13 13 10 10	103	3 0 • 08 1	0	274 4.49 43	235	1.13	0.01	ŀ	09•0	t	624	288
30S/24E- 6E 1 M 6-24-64 5050	-	8 • 2	1120	2.69	0.16	178 7.74 73	0.03	0	133 2•18 21	4.73	129 3.64 35	0.3	1	0.40	1	657	143
30S/24E- 6H 1 M 6-24-64 5050	69	8 • 2	878	3.94	1, 15 1, 15 13	888 8 8 4	0.05	0	279	178 3•71 40	32 0.90	0	1	0.40	1	531 558	255
30S/24E- 8G 1 M 7- 2-64 5050	73	& •	2410	158 7 888 33	2.22	319 13.87 58	0.05	3 0.10	259 4.25 18	444 9 • 24 38	375 10.58 44	0.5	1	0.90	1	1456	505
30S/24E- 8P 1 M 8-28-64 5050	1	1	7160	1	1	1	1	1	1	{	-	-	1	3.10	1		
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT C	OF WATER RE	SOURCES					

TABLE E-1

MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT

TOTAL hardness as

STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES

DWR 1982

Sili- IDS ca Camputed	2 Evop 180°C	3034	929	169	93	516		257	135	266	184
-ilis	2									N N	2
-	Sio	1	1	1	ł	1	1	1	1	1	1
Boran	83	2 • 00	0 • 4 0	000	0.10	0.20	-	0.20	0.10	0.20	0.10
Fluo-	u.	1	1	1	ł	1	i	1	1	i	ł
rate .	N 0 3	0.01	10.0	0 • 1	0.01	0	1	0.01	5.2	32.0 0.52 11	4•3 0•07
Chla- ride	Ü	1220 34.40 68	2.03	0.56	0.20	24 0 • 68	0.62	48 1.35 32	10 0•28 12	0.56	1.16
Sulfate	504	686 14.28 28	463 9.64 73	1.21	0.27	262 5.45 67	1	86 1.79 43	18 0•37 15	32 0.67	20 0.42
Bicar- bonate	нсо з	104	1.44	92 0 93	1.05	125 2•05 25	1.46	1.02	104	183 3.00 63	98 1•61 49
Carban- ate	co 3	0	0	0.10	0 13 4 8	0	0	0	0	0	0
Patas- sium	¥	0.08	0.10	0	0	0.03	1	0.03	0.03	0.03	0.03
Sodium	Ž	824 35.83 72	93 4.04 31	1.87 69	31 1,35 82	2.96 3.7	i	2.70	21 0.91 38	27 1.17 25	28 1•22 37
Mogne- sium	Wa	3.21	2.63	0	0	0 8 8 8	1	0.16	0.08	0.82	0.08
Calcium	3	208 10•38 21	123 6•14 48	0.85	0.30	96 4 . 79	1	1.35	28 1 • 40 58	2.69	40 2.00 60
(micro-	mhos at 25°C)	5120	1250	310	164	806	802	473	247	474	355
¥a		0	6 • 9	80 • 57	e0 • •	8•1	7.9	7.9	80	7.7	8
Sampled	u. 0	1	7.1	73	74	76	7.1	70	70	75	72
	Date Sampled Agy. Time Coll.	305/24E- 8P 1 M 8-28-64 5050	30S/24E-10P 2 M 6-24-64 5050	30S/24E-11G 1 M 6-25-64 5050	30S/24E-11J 1 M 6-24-64 5050	30S/24E-14H 1 M 6-24-64 5050	-14H 1 M 8-27-64 5050	30S/24E-15D 1 M 6-24-64 5050	30S/25E- 1H 1 M 6-25-64 5050	30S/25E- 2A 1 M 6-23-64 5050	305/25E- 2K 1 M 6-23-64 5050
5010	Sampled DH (micro- Calcium sium sium one bonate bonate ride trate ride	Agy. Agy. Agy. Agy. Agy. Calcium Mogne- sium Sodium gy. of Images Coll. of Images Coll. of Images Sodium sium sium of Engran of Engra	Agy. Sampled Coll. pH (micro- at 25C) Cadidum sium Sodium sium sium Petos: are bonate bonate bonate bonate at 25C) Sodium sium sium at 25C) Petos: are bonate bonate bonate sium at 25C) Petos: are bonate bonate bonate bonate ride Original ride No. 3 Fluores ride 1 Mbs. 8.0 512O 208 39 824 3 0.08 0.08 0.04 0.06 0.08 0.06 0.06 0.06 0.06 0.01 0.06	Sompled pH (micro- Calcium sium) Sodium sium of the bonds of the carbon sium of the bonds of the carbon sium of the bonds of the carbon of the	Sampled pH mitro- Calitum Mogne- Sadium Sad	Sampled of the continue	Sampled pH mircro- Calcium Nagne- Sadium Patra Carbon Barra Sadium A sadium	Section Photosistic Phot	No. No.	The continue of the continue	

	۽ پر	3	-1	m .	74	60	<u>m</u>	82	74	61	76	52
	TOTAL		141	4		103	10	œ				
ents in Iion	Camputed	Evap 180°C	271	120	173	221	202		131	129	163	142
nerol constituents ports per million	S:#: 8	SIO 2	1	1	1	1	1	1	1	1	1	1
Minerol constituents in ports per million	Boron	۵	0.20	0.10	0.10	0.20	0.20	1	0.20	0.10	0.20	0.20
	Fluo-	Œ	1	1	1	1	1	1	!	1	1	1
	Z P	ε 0 2	4•1 0•07	1.8	6.0	5.5	12.0 0.19	1	0.2	0.01	1.9	0.03
	Chlo-	ō	0.85	10 0•28 13	14 0•39 13	21 0 . 59	0.31	14	0.28	0.25	15	162 19 1 36 0 0 114 18 10 10 1.65 37 37 60 10 10 1.65 37 37 31 60 10 10 10 10 10 10 10 10 10 10 10 10 10
milligroms per liter equivolents per million percent reactance volue	Sulfate	504	1.29	0.35	0.60	45 0 • 94 24	31	1	0.35	0.33	26 0.54 18	0.37
milligroms per liter equivolents per mil percent reactance v	Bicor- banate	HCO 3	151 2.47 53	86 1•41 66	117	137 2•25 58	136 2•23 64	123	106 1.74 73	106	118	1.87
	Carban-	93	О	0.07	0	0	0.13	0	0	0	0	0
c	Patas-	×	0.03	0	0.03	0.03	0.03	1	0.03	0.03	0.03	0
Mineral Constituents in	Sodium	Ž	1.87	1.30	36	1.83	36 1.57 43	ł	0.91 38	1.17	32 1.39 47	1.57
Minerol C	Magne-	Ф	0.08	0	0.08	0.25	0.16	1	0.08	0.16	0.16	0.08
	Calcium	3	2.74 5.8 5.8	0.85	28 1.40 45	36	38	1	28 1 • 40 5 8	1.05	1.35	0.95
Specific conduct-	(micro-	mhos ot 25 C)	485	213	310	407	377	348	243	238	310	262
	Ŧ,	ı.	0 • 8	80 .5	& • •	8 . 2	80 • 4	8 • 1	¢	ec •	€ •	8 • 2
Temp	Sampled	٠,	70	72	74	1	73	71	74	72	7.1	20
		Agy. Coll.	5050	5050	5050 5050	- 1 M 5050	5050	5050	1 M 5050	5050	5050	5050
State Well Number		Dote Sampled Time	30S/25E- 7P 6-23-64 5	30S/25E- 8P 6-23-64 5	305/25E- 9A 6-23-64 5	30S/25E- 9L 6-23-64 5	305/25E-10C 1 6-23-64 505	-10C 1 8-27-64 50	30S/25E-14H 1 M 7- 7-64 5050	305/25E-18A 1 6-23-64 50	30S/25E-18C 1 6-23-64 509	25E-26A
		ŏ	305	308	308	305	305	ec .	305	30	308	305/ 7-

	TOTAL	os CoCO 3	67	29	23	٥	91	252	8 4	89	23	157
ints in	Camputed		173	163	113	112		675	131	218	116	
neral constituents parts per millian	Sili;	SIO 2	1	;	ŀ	1	1	1	1	1	!	1
Mineral constituents in parts per millian	Boron	83	0.10	0.10	00•0	0.10		0 80	0.10	0.10	0.10	1
	Fluo- ride	ı.	1	1	i	-	1	1	1	1	1	1
	rate trate	NO 3	0.4	1 • 1 0 • 02 1	2.9	1.6		43 0.69 0.69	0.0	1.7	1 • 3 0 • 0 2 1	1
	Chlo	CI	16 0•45 15	1.92	0.17	0.28	0.31	2 • 26 19	0.25	0.48	16 0.45 23	542 5 197 32 32 32
milligrams per liter equivalents per millian percent reactance value	Sulfate	50 4	30	0.21	0.17	0.27 13	ł	100 2 • 08 18	0.31	38	0.35	1
milligrams per liter equivalents per millian percent reactance value	Bicar- banate	нсо з	120 1•97 65	86 1•41 40	106 1.74 82	1.46	126	418 6.85 58	110	153 2.51 66	1.15	3.23
	Carban- ate	CO 3	0	0	0	0	0	0	0	0	0	0.17
	Patas- sium	¥	0.03	0.03	0.03	0	1	0.15	0.08	0.10	0.05	
Mineral Constituents in	Sodium	Ž	1.74	30 1•30 68	1.36	1.78 91	1	154 6.70	1.35	57 2.48 63	36 1.57 76	1
Mineral Co	Magne-	Mg	0.08	0.08	0.25	0.08	-	23 1,89 16	0.16	0.25	0	1
	Calcium	კ	25 1.25 40	0.50	0.20	0.10	1	63 3•14 26	16	22 1•10 28	9 0 • 45 22	1
Specific canduct-	(micro-	mhos at 25°C)	321	171	186	214	318	1150	243	394	215	542
	I.		& •	8 0	& • •	& • •	ω •	8 • 2	7.7	8 0	φ •	8 • 4
Tamp.	Sampled	٠ ع	76	70	1	1	67	80	8	89	68	76
State Well		Date Sampled Agy. Time Call.	305/25E-31P 1 M 6-25-64 5050	30S/26E-22P 1 M 4- 8-64 5050	305/26F-22P 2 M 4- 8-64 5050	30S/26E-22P 3 M 4- 8-64 5050	30S/27E-19L 1 M 8-27-64 5050	305/28E-10N 1 M 4- 8-64 5050	305/28E-10N 2 M 4- 8-64 5050	305/28E-10N 3 M 4- 8-64 5050	305/28E-10N 4 M 4- 8-64 5050	305/28E-11R 1 M 8-28-64 5050

State Well			Specific		Minor of L	Mineral Constituents in		E	milligrams per liter eauivalents per millian	er liter ser millian				Mineral constituents in	onstitue	nts in	
Number	Temp.		conduct-		in in in in in in in in in in in in in i	ansumoenns m			ercent read	percent reactance value				parts	parts per million		
	Sompled	Ξ.	(micro-	Calcium	Mogne- sium	Sodium	Potas- sium	Carban-	Bicar- bonate	Sulfate	Chloride	role.	Fluo- ride	Boron	Sili-	Computed	TOTAL
Date Sampled Agy. Time Coll.	0		mhos at 25 C)	3	6W	Ž	×	co 3	нсо з	504	CI	NO 3	u.	80	SIO 2	Evap 180°C	°s CoCO 3
305/28E-25A 1 M 8-28-64 5050	78	8 • 1	266	1	1	!	1	0	3.61	-	35	1	1	1	ł		165
315/24E-28B 1 M 8-26-64 5050	78	8 • 1	6030	1	1	1	1	0	91	}	886	1	1	1	1		1810
315/25E-27F 1 M 4- 9-64 5050	64	7.6	2330	362 18•06 64	2.14 8	179 7.78 28	0.15	0	71 1•16	1260 26.23 93	0.62	3.2		0.40	1	1894	1011
31S/25E-27F 2 M 4- 9-64 5050	6	7.6	2080	245 12•23 54	0.33	228 9.91 44	0.08	0	1.02	1060 22.07 94	0.31	2.6	1	0.10	1	1584	629
31S/25E-27F 3 M 4- 9-64 5050	64	7.2	898	2.50	0.08	136 5.91 69	0.05	0	74 1•21 14	330	15	3.0	1	1.00	1	574	129
31S/25E-27F 4 M 4- 9-64 5050	64	7.7	898	1.10	0	157	0.03	0	99 1•62 20	254 5.29 65	44 1.24 15	3.0	1	1.00	1	531	5.5
315/26E-32C 1 M 8-26-64 5050	79	ec	496		1		1	0	123	-	0.23	1	1		1		61
31S/27E-14F 1 M 8-27-64 5050	67	8 4 •	372	1	1	1	ł	0.13	121	1	17	1	-	1	1		92
315/30E-20B 1 M 7-17-64 5645	1	11.1	80 83 33	1.20	0.16	116 5.04 79	1	3.30	0	23	97 2.74 41	14.3 0.23	1	0.64	1	376	6.8
315/30E-20B 2 M 7-14-64 5645	-	8 • 5	435	0.13	5 0 • 41 11	3.17 85	-	13 0.43 11	127 2•08 55	0.12	1.13	0•1	-	0.38	t	203	28
DWR 1982			STATE	STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF WATER RESOURCES	NIA - THE F	RESOURCES	AGENCY C	OF CALIFO	SRNIA DE	PARTMENT C	JE WATER RE	SOURCES					

	TOTAL	hardness as CaCO 3	2 88	112	139	1430	34	248	303	74	139	52
ents in ian	SQI	Evap 180°C	210	183							378	245
neral canstituents parts per millian	Silli	SIO 2	1	1	ŀ	1	1	1	l	1	1	}
Mineral canstituents in parts per millian	Boron	æ	0.34	0.10	1	1	1	1	1	1	0.60	0•40
	-bnl-	F T	1	1	1	;	l	1	1	l	ł	1
	ż	NO S	0•1	11.5 0.19	1	-	1	1	1	1	0.0	0.0
	Chlo	G C	1.41	0.45	28	1.38	10	25	27 0 . 76	13	20 0.56	145 14 4 70 4 12 113 69 16 0.0 0.0 17 1.85 1.84 0.45 1.8 17 8 73 2 10 45 35 11
milligrams per liter equivalents per million percent reactance value	Sulfate	50 4	0.08	0.12	1	1	1	1	{	1	137 2.85	69 1.44 35
milligrams per liter equivalents per mill	Bicor-	HCO 3	121 1•98 51	171 2.80 79	146	137	127	3.15	208	131	176 2.88 46	113 1•85 45
	è	0 g	12 0•40 10	0	0	0	0	0.27	0.27	0.07	0	12 0.40 10
	Potos-	E ×	1	1	1	1	ľ	l	l	1	0.10	0.10
Mineral Constituents in	Sodium	Ž	3.30 85	26 1.13 34	1	1	ł	i	ł	1	3.52	3.04
Mineral C	Magne-	Was W	0.41	0.74	1	į	Į Į	+	1	-	10 0.82 13	0.33
	a iii	ვ	0.15	30	1	1	1	1	1	1	39 1.95 31	0.70 17
Specific canduct-	ance	mhos at 25°C)	416	357	471	3420	415	860	977	375	646	445
	1	<u>.</u>	80 6	7.6	0 •	7.7	8.1	8 5	8 • 4	8.5	7.9	8.7
Temp.	when	4.	1	1	70	4	73	89	89	1	70	-
State Well	Number	Date Sampled Agy. Time Call.	315/30E-20B 3 M 7-20-64 5645	315/30E-29M 1 M 8- 6-64 5645	315/30E-30C 1 M 8-28-64 5050	325/25E-34G 2 M 8-27-64 5050	32S/27E- 6D 3 M 9-15-64 5050	32S/27E-16R 2 M 9-15-64 5050	-16R 2 M	325/28F-12F 1 M R-28-64 5050	32S/28E-30D 1 M 4- 7-64 5050	325/28E-30D 2 M 4- 7-64 5050
			31	31	31	32.	32	32		32	32.	32

State Well Number	Temp.		Specific conduct-		Minerol Co	Mineral Constituents in		e a m	milligroms per liter equivolents per million percent reoctance volue	er liter er million ance volue				Mineral constituents in ports per million	neral constituents ports per million	nts in on	
	Sompled	Ξ,	micro-	Colcium	Mogne- sium	Sadium	Potos-	Carbon- ate	Bicar- bonote	Sulfote	Chlo-	i Zi	Fluo- ride	Boron	Sili	TDS Computed	TOTAL
Dote Sampled Agy. Time Coll.	L	_	mhos at 25°C)	S	Mg	ž	¥	CO 3	нсо з	504	Ū	NO 3	u.	g)	SIO 2	€vap 180°C	os CoCO 3
0505 49-7-4 4- 7-64 5050	70	7.9	067	0.95 20	8 0.66 14	3.04	0.10	0	154 2 • 52 54	81 1.69 37	15	0.0	<u></u>	0.50	1	273	81
325/29E-19H 2 M 4- 7-64 5050	70	0 • 0	741	3.44.6	1.56	2.39	3 0.08	0	3.23	92 1.92 26	76 2•14 29	3.4	1	0.20	i	414	250
325/29E-19H 3 M 4- 7-64 5050	70	7.9	333	1.35	0.49	1-43	3 0 • 08 2	C	155 2.54 78	21 0.44	0.23	1.8	1	0.20	1	176	92
325/29F-35M 1 M 8-28-64 5050	70	7.9	1390			101	1	i	1	-	130	3.66	-	1	1		414
104/19W- 8A 1 S 11- 7-63 5050	\ 	80	1190	2.94	3.78 3.78	127 5 52 44	10	0	328 5 • 38 43	294 6 12 49	32 0.90	3.1	-	1.30	1	734	336
11N/18W-14M 1 S 8-28-64 5050	;	8 • 2	486	-	1	-	1	0	126	-	24	1	1	1	1		181
11N/19W-25F 1 S 8-28-64 5050		8 • 7	561	<u> </u>			1	12	3.79	;	19	1	-	1	1		216
11N/20W- 8R 1 S 8-28-64 5050	78		1570	1	-	l	1	0	1.28	<u> </u>	1.52	1	1	ł	ł		517
11N/20W-25K 1 S 8-28-64 5050	1	8•1	2320		-	1	1	0	1.43	1	1.78		1	;	1		859
11N/21W- 5M 1 S 8-27-64 5050	78	7.9	1480	1	1	1	1	0	117	1	23	l		;	ŀ		559
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	RESOURCES	AGENCY (OF CALIFO	RNIA DEI	PARTMENT	JE WATER RE	SOURCES			1		

MINERAL ANALYSES OF GROUND WATER
SAN JOAGUIN DISTRICT

	TOTAL	hordness os	20003	199	396	408	1290	95	587	556		
ints in	TDS	Computed			858 910							
neral canstituents parts per million	Sili:	8 6	310.2	1	30	1	1	ł	1	1		
Mineral constituents in parts per million	200		p	!	0 • 4 0	-	1	ł	1	}		
	Flvo	ē .	-	1	0.2	1	1	1	1	1		
	ż	a Late	2	1	0.0	1	1	1	1	ţ		
	Chlo	e c	5	0.54	0.65	0.73	151	0.20	28	18		П
milligrams per liter equivalents per million percent reactance value	Sulfate		504	1	498 10.37 82	1 ,	}	1	1	1	1	
milligrams per liter equivalents per mill percent reactance v	Bicar	bonote	HCO3	105	98 1.61	1.57	1.34	153	1.25	99		
	ė	-	83	0.07	0	C	0	5 0 17	0	0	1	
	Potos	En:	¥	1	0.13	1	1	ł	1	1		-
Mineral Constituents in	Codium		Z	1	112 4.87 38	1	l	<u> </u>	1	1		
Mineral C	Magne-	£ :	6W	1	2.22	-		1	1	-		П
	Colcina		3	1	114 5.69	1	1	l	1	-		
Specific canduct-	ance	mhos	25.5	951	1040	1260	3210	359	1540	1540		
	I	۵		8 • 4	7.9	8 • 1	& •	80	8 • 1	8 • 2		
Temp.	when	o F		60 60	1	7 80	83	74	79	80		
Stote Well	Jagunos	Date Sampled Agy.	1	11N/21W-11N 1 S 8-27-64 5050	11N/21W-110 1 S 12- 6-63 5124	-110 1 S 8-27-64 5050	11N/22W- 8G 1 S 8-27-64 5050	12N/19W-33R 1 S R-2R-64 5050	12N/21W-33N 1 S 8-27-64 5050	12N/22W-25N 1 S 8-27-64 5050		

PERCHED AQUIFER

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Тепр		Specific conduct-		Mineral Co	Mineral Constituents in		E # 6	milligrams per liter equivalents per millian percent reactance value	er liter ser millian ance value				Mineral constituents in parts per million	neral constituents parts per million	ants in	
Number	when	I	ance (micro-	Calcium	Magne-	Sodium	Patas-	Carban-	Bicar-	Sulfate	Chlo-	. Z .	Fluo-	Boron	SII:	TDS	TOTAL
Date Sampled Agy. Time Coll.		a .	mhas at 25 C)	S	6W	ž	*	° 0,	нсо з	\$04	5	0 2	u.	œ	sio 2	Evap 180°C	03 CoCO 3
115/14E- 3K 1 M 10- 8-64 5000	1	8.2	1902	1	1	1	1	0	174	1	496	1	1		-		685
115/14E- 6G 1 M 10- 9-64 5000	-	φ Φ	2760	1	-	l }	1	0	132	1	817	ŀ	1	ł	1		8 7 6
115/14E-21N 2 M	67	7.8	7890	1	i i	1 5	1	0	0 9 6 0	ŧ (2560	\$ \$	1	1 7	1		2270
11S/14E-33P 1 M 9- 4-64 5000	67	7.5	6410	408	88 7.24 13	610	0.20	0	164 2 • 69 5	135 8 6 1 5	1720 48.50 90	4.6	m •	0.10	68	3470	1381
11S/15E-35P 1 M 9-29-64 5000	99	φ •	782	3.04 3.04	22 1.81 23	3.04	0.08	0.13	376 6•16 76	19 0 • 40	1.38	2 • 5	0 • 2	0.10	19	482	243
12S/14E- 3N 1 M 9-23-64 5000	;	0 %	6250	239 11.93	3.29	1000 43.48	0 • 10	0	3445 • 64	211 4•39 8	1680 47•38 82	7.7	0	0.10	61	3412	762
125/14E- 4J 2 M 13- 7-64 5000	99	7.9	2090	i t	§ 1	-	1	0	173	-	1520	1	1	1	-		1060
125/14E-12N 1 M 10- 8-64 5000	8 9	7•7	2060	113 5•64 28	34 2 80 14	260 11.30 57	0.05	0	296 4 • 85 25	1.75	452 12.75 66	1.5	0	0 • 10	24	1146	422
125/14E-26G 1 M 10-23-64 5000	1 8	φ •	1390	59 2.94 23	0 0 0	209	0.05	0	161 2.64 20	107 2.23 17	288 • 12 62	0 0 0 0 0 0 1	1	0.20	1	753 810	180
125/15E-27L 1 M 10-26-64 5000	1	0	646	1	1	1	1	3. 1.03	273	1 6	1.07	9	1	đ t	1		Q Q
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	RNIA - THE	RESOURCES	AGENCY	OF CALIFC	DRNIA - DE	PARTMENT	OF WATER R	ESOURCES					

TABLE E-2 PERCHED AQUIFER

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ents in lion	TDS	Evop 180°C	310
neral constituents parts per million	Sili:	SIO 2	
Mineral constituents in parts per million	Boron	8	00•0
	Fluo- ride	L.	
	N: trote	NO 3	0 • 0 0 0 • 0 0 1
	Chloride	Ū	1 • 1 0 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
milligrams per liter equivalents per million percent reactance value	Sulfate	50 4	33 0•69 14
milligrams per liter equivalents per mill percent reactance v	Bicar- bonate	нсо з	3 • 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 11	Carbon- ote	co 3	0
c	Potos- sium	¥	5 m m 0 0
Mineral Canstituents in	Sodium	ž	3.074
Mineral C	Mogne- sium	Wg	0 0 0 0 0 0
	Calcium	3	0.000
Specific conduct-	(micro-	mhas at 25°C)	514
	Ξ.		8 • 5
Тетр	Sompled	u .	9
	$\neg \tau$	Agy. Call.	5000 5000
State Well Number		Date Sampled Time	135/15E-18R 10-23-64
Щ.			

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & 5	milligrams per liter equivalents per million percent reactance volue	er liter ser million ance volue				Mineral constituents in parts per millian	neral constituents parts per millian	nts in an	
. -	when Sampled	I.	micro-	Calcium	Magne- sium	Sodium	Patas- sium	Carban- ate	Bicar- benate	Sulfate	Chloride	trate.	Fluo-	Boron	Siji 8	TDS	TOTAL
Dote Sampled Agy. Time Coll.	<u></u>		mhas at 25 C)	3	₩ W	Ž	×	03	HCO 3	\$0.4	ō	ε 0 Z	u.	80	SIO 2	Evep 180°C	CaCO 3
95/16E-30B 3 M 7-26-57 5050	70	7.1	202	17	0.33	15 0 65 34	0 80 84	0	79 1•29 69	e 0.00 0.00	17 0.48 26	1.8	0.0	00.0	62	162	59
-30B 3 M	72	8	204	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 % 4 7 L	0.65	0 0 0 8 4	0	1.38 70	0.04	0.51 26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0.03	20	174	9
-306 3 M 7-21-59 5128	1	7.9	203	19 0.95	0.23	0.74	0.00%	0	86 1•41 70	0.02	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0 0.03	0 • 1	0000	77	184	09
-30B 3 M 7-20-60 5128	73	7.6	216	0 980	0.41	0.889	0 6 0 8 4	0	1 • 3 8 6 4 6 4	8 0 • 1 7 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.03	0	0.11	84	162	61
-30B 3 M 7-25-61 5128	72	8 2	, 198	170 0 85	0 • 8 1 7	16 0 36	0 0 8 0 4	0	1.33	€ 00 m	18 0.51 26	0 0 0 0 0	0 • 1	0.03	o	173	50
-30B 3 M	7.1	7.9	197	14 0 • 0 36	0.49	16 0 36	0 W 80 4	0	1.31	0.02	18 0.51 27	0 0 0 0 2	0 • 1	90.0	70	169	09
-30B 3 M 8- 7-63 5050	74		207	1	ł	17	1	1	i	1	18	1	1	00.0	-		61
-30B 3 M	i	7.9	201	1	1	16	1	i	1	1	17 0.48	1	i t	0	1		o J
10S/14E- 8B 2 M 1- 5-53 5001	1	į	306	0.20	0.08	2.70	0.03	0.13	135	0 10 2	21	1	-	1	1	750	14
- 83 2 M	99	7.9	530	2.89 2.89 51	0.99	39	0.10	0	261	0.12	0 9 9 0 1 6	14.0	0 . 2	00.00	80	374	194
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	ESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT O	P WATER RI	SOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

		,				16	+			~	.0		~
	TOTAL	8	CaCO 3	160	195	125	134	131	176	217	136	119	223
ents in lion	Computed	•	Evap 180 C	327	365	272	301	299					422
neral constituents parts per million	Sil:]	SIO 2	89	69	ъ О	9	68	ł	i	ł	1	85
Mineral constituents in parts per million	Boron		8	00•0	0000	0.11	90•0	0.07	0.10	00.0	1	1	0.00
	Fluo-		F	0.1	•	0	0.1	0 • 1	1	1	!	1	0 • 0
	ž tat		NO 3	15.0 0.24 5	14.0	12.0 0.19	15.0	15.0	1	1	1	1	9•3 0•15 2
	Chlo		Ü	30	32 0.90	1.04	31 0.87	0.93	0 0 0	35	1.40	1.35	121 3•41 55
milligrams per liter equivalents per million percent reactance value	Sulfate		50 4	0.12	0.10	0.08	0.12	0.10	1	1	1	1	0.12
milligrams per liter equivalents per mill percent reactance v	Bicar.		нсо з	224 3.67 75	264	174 2.85	190 3•11 72	187 3•06 71	1	1	138 2•38	139	156 2.56 41
. E & O.	Corban-	}	co 3	0	0	0	0	0	1	1	0	0	0
c	Potas-		¥	0.10	0.10	0.10	0.10	0.10	1	i	1	1	0.10
Mineral Constituents in	Sodium		Na	37 1.61 33	1 • 7 4 0	37 1.61 38	38 1.65 37	36 1.57 37	38	1.74	-	ł	39 1•70 27
Mineral C	Magne-		Mg	11 0.90 18	11 0 0 90 16	12 0 99	0 8 8 2	10	!	!	1	!	1.07
	Calcium		ვ	2.30	2 . 99	1 . 30	37	36	1	1	1	1	3.39
Specific canduct-	micro-	mhos	at 25 C)	491	532	426	440	448	533	594	414	464	658
	I	.		7.8	7.6	7 • 6	8 • 0	7 • 7	1	7.7	ω •	80 •	8 • 1
Temp	Sampled	п.		67	67	8 9	72	69	67	67	1	1	68
		Agy.		3 2 M 5050	3 2 M 5128	3 2 M 5128	3 2 M 5128	5050 5050	8B 2 M 5050	3 2 M 5050	5000	1 M 5000	1 M 5050
State Well		Date Sampled	lime	10S/14E- 8B 8- 7-58	7-21-59	7-26-60	7-25-61 5	6-19-62	8-15-63	5-28-64 5	10S/14E-13A 1 10-22~64 500	105/14E-20N 1 M 10- 7-64 5000	10S/14E-24B 1 M 7-24-57 5050

State Well	Temp.	ė		Specific conduct-		Mineral Co	Mineral Constituents in		E & 6	milligrams per liter equivalents per million	er liter ser million				Mineral canstituents in parts per million	neral canstituents parts per million	ants in	
H			I.	ance (micro-	Calcium	Magne- sium	Sadium	Potas- síum	Carbon-	Bicar- banate	Sulfate	Chlo	role trale	Fluo-	Boran	Sili	TDS	TOTAL
Date Sampled Agy. Time Coll.	<u></u>			mhos at 25°C)	3	Wa	Ž	×	0	нсо з	504	ō	ε 0 2	u.	80	510 2	Evap 180°C	030 CaCO 3
10S/14E-24B 1 M 8- 7-58 5128		7 89	2.	707	3.54	1.07	1.74	0.13	0	165 2•70 42	0.12	120 9 9 8 8 5 3	10.0	0 • 1	00•0	χ 9	414	231
-243 l M 7-21-59 5128		68 7	7 . 5	746	3 - 8 - 5 - 6 - 5 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	1.23	1.91	0.15	0	181 2•97 42	0.15	134 3•78 54	9 • 6	0•1	0000	71	454	256
-243 1 M 7-20-60 5128		72 7	7 .5	748	8 6 424 449	1.32	2 • 0 0 0 %	0.10	0	125 2•05 31	8 0.17 8	153 • 91 60	7.0	0	0.22	64	410	228
-24B 1 M 8-12-62 5128		10		808	-	1	50	0.10	1	1	1	136	1	1	0.04	1		261
10S/14E-26H 1 M 10-13-64 5000		00	2	550	;	1	1	1	0	114	1	2.51	-	İ	ł	1		173
10S/14E-33M 1 M		8 9	w.	668	;	1	1	i	0	98	1	219	+	-	1	1		300
105/14E-35K 1 M 10- 8-64 5000		0 1	4	589	1	1		1	0.10	105	1	113	1	-	ł	;		151
10S/15E- 2J 1 M 9-28-61 5050		<u> </u>	+	390	34 2 19 62	0 0 8 8 7	1.18	0.11	0	106	0.04	1.27	9.4 0.11	0 • 2	0 0 8 0	4	243	661
105/15E-31A 1 M 7-24-57 5050		7 07	0	3 2 3	32	0 • 6 6 9	1 . 1 . 2	0 0 0 0 0 0	0	127 2.08 60	4 80 6	1.021 9.03	4 • 3	(n	00.0	78	261	113
-31A 1 M		7 07	7.7	459	1 9 0 4 4 8	0 • 74	1 • 2 2 3 1	0 • 10 0 m	0	139 2•28 58	4 0 0 8 2 2	1.52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 .	0 0	73	284	132
DWR 1982				STATE	STATE OF CALIFORNI	NIA - THE R	ESOURCES	AGENCY C	OF CALIFO	RNIA - DE	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER R	ESOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E # 6	milligrams per liter eqvivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	nts in ion	
-	_ <u>`</u>	I.	ance (micro-	Colcium	Mogne- sium	Sodium	Potos-	Carbon-	Bicar- bonote	Sulfate	Chlo- rida	Ni- trote	Fluo- ride	Boron	Sij 8	Computed	TOTAL
Date Sampled Agy.			mhas at 25°C)	ડ	8 W	ž	×	03	HCO 3	50 4	ō	NO 3	L.	æ	SIO 2	Evop 180°C	00°CO 3
10S/15E-31A 1 M 7-21-59 5128	102	8 0	964	2.40	11 0.90	31 1,35 28	0.10	0	155 2.54 53	0.12	2.06	5.8	0.1	00.0	75	350	165
-31A 1 M 7-25-60 5128	72	7 • 8	625	5.9 2.94 5.0	1.32	36	0.08	0	173 2•84 48	0.12	101 2.85 49	4.0 0.06	•	0.22	51	361	213
-31A 1 M	72	7 • 4	662	3.49	1.23	1.65	0.13	0	3.06	0.17	3.10 3.10	7 • 3 0 • 12	0 • 1	0 • 0 5	72	417	236
-31A 1 M 6-21-62 5128	69	1	707	1	!	1.78	0.13	1	ł	!	3.13	1	1	0 0 8	1		249
-31A 1 M 8-15-63 5050	 	!	772	1	1	1.87	i	1	i	1	3.38	1	1	0.10	+		268
10S/16E- 6J80 M 9-27-61 5050		88	268	26 1.30 48	0.58	18 0•78 29	0.05	0	116 1•90 73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.9	• 0	0.07	56	194	42
10S/17E- 4J 1 M 8-10-60 5050	<u> </u>	8 • 1	418	1	1	21 0.91	ì	0	3.06	1	26	1	1	1	1		170
10S/18E- 8J80 M 7- 8-59 5050	1	7•7	699	-	1		i	0	230	1	1.24	1	1	1	i		242
10S/18E- 8L 1 M 7- 8-59 5050	-	8 • 1	439	1	1	1	ł	0	194 3•18	1	21	1	1	;	-		126
10S/18E-20M 1 M 8-10-60 5050	!	7 • 8	295	1	1	200.87	į.	0	68	ł	25	1	1	1	-		06

State Well Number	Tamp.		Specific canduct-		Mineral Co	Mineral Constituents in		E & &	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	ion	
. -	Sampled	Ŧ.	(micro-	Colcium	Magne- sium	Sodium	Palas-	Carban.	Bicar- banate	Sullate	Chlo- ride	trate.	Fluo- ride	Boran	Sij: 8	Camputed	TOTAL
Date Sampled Agy. Time Call.	OF.		mhas of 25 [°] C)	ß	w _g	Ž	¥	00 3	нсо з	504	ō	0 Z	u.	80	SIO 2	Evap 180°C	03°C
10S/19E-16D80 M 7- 8-59 5050	1	8.2	445	t i	1	1	1	0	198 3•25		16	1	1	1	1		161
115/12E-13J 1 M 7- 3-57 5641	1	7.1	1870	98 4.89 27	4.11 23	200 8 • 70 49	0.13	0	188 3•08 17	108	460 12.97 71	1.3	0 • 1	0.28	31	1046	450
-13J 1 M 8-16-58 5641	1	8 • 1	1570	4 • 14 28	3.13 2.13 2.1	168	0.18	0	131 2•15 15	87 1.81 12	381 10•74 73	3.0	0	0.30	21	1004	364
-13J 1 M	1	7.3	1900	100	4 200 400 400	203 8 8 8 3 4 8 8	0 13	0	197 3•23 18	117	443 12•49 6 9	1.0	0.2	0.35	0 8	1051	476
-13J 1 M 7-23-60 5641	1	7.7	1395	3.84	3 8 2 2 5 5	128	14 0.36	0	223 3•65 28	54 1•12 9	290 8•18 63	1.0	0	0.22	23	736	യ ന പ
-13J 1 M 7- 7-61 5641	1	7.1	1810	4 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6	4.0.4 4.4.4 2.0.0	195 8 • 4 8 4 8	0.10	0	3.11 17	116 2 42 14	435 12•27 69	1.5	0 • 2	0 • 34	59	1021	454
-13J 1 M 7-23-63 5641	1	1	1770	1	1	192 8 • 35	1	1	1	1	407	1	1	0 30	1		417
115/13E-17L 1 M 7- 3-57 5641	1	7.3	1190	36 1 80 16	21 1•73 16	173	0.10	0	171 2.80 25	75 1.56 14	248 6 • 99 62	0.01	•	0 • 5 1	8	675	177
-17L 1 M 8- 3-59 5641	1	∞ •	1240	2.00	201.64	181 7.87 68	0.08	.0	183 3.00 26	79	250	0.0	0 • 2	09.	30	469	182
7-23-60 5641	1	8 • 1	1326	41 2.05 17	23 1.89 15	189	0.08	0	180 2.95 24	81 1.69 14	275	0	0	0 0	22	723	197
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	ESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT (OF WATER RE	SOURCES	1		1		7

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

	,	2			70	10	~	•	+		.0		
Mineral constituents in parts per millian	TOTAL	5 5 6 6 F	2000	204	198	205	197	199	104	110	126	129	134
	Computed	°	2 not dons	726					605	643	658		
	Sili:	3 5	310.2	30	1	ł	1	1	52	51	37	Ì	-
	Boron	٠	a	0.60	1	09•	0 9 •	0 9 •	0 • 2 9	0 • 30	0.51	0 • 30	0.40
	Fluo-	,	-	0 • 1	1	-	1	ł	0	0 • 2	0	1	:
milligrams per liter Mineral Constituents in equivalents per millian percent reactance value	řoř.	ģ	500	1.0	1	1	i	1	0 • 1	0.01	0	-	-
	S S		5	262 7•39 61	272	275	267	272	186 5•25 56	204	222 6 • 26 59	6 6 3	241
	Sulfate	:	30.4	1.79	1	1	1	-	1.87	1.92 1.92 1.9	1.96 1.96 1.8	1	1
	Bicar- bonate	9	203	181 2•97 24	;	1	1	1	137 2•25 24	147 2•41 24	146 2•39 23	1	
	Carbon-	i (23	0	ł	i	ł	ł	0	0	0	1	
	Potos-		¥	0 0 0 9	0.08	•	}	1	0.08	0.05	0.05	0.05	
	Sodium	ž	200	188 8•17 66	192	195	186	188	169 7.35 77	181 7•87 78	186 8•09 76	192	195
	Magne- sium	:	6w	1.97	1	!	ŧ I	i	0.58	0 • 4 0	0 0	g 1	
	Colcium		3	2.10	1	i	1	1	30	34	37	ŧ	1
Specific canduct-	(micro-	mhos		1290	1310	1360	1330	1330	1010	1060	1160	1190	1240
Ξ				& .3	1	1	7.9	8 . 2	7.7	0 •	0 .	1	1
Temp. when Sompled			1	1	1	1	29	1	1	1	ì	!	1
State Well Number		Date Sampled Agy.		115/13E-17L 1 M 7- 7-61 5641	-17L 1 M 7- 6-62 5641	-17L 1 M 7-23-63 5641	-17L 1 M 4-15-64 5050	-17L 1 M 7-13-64 5641	115/13E-36B 1 M 7- 3-57 5641	-3-59 5641	-36B 1 M 7-23-60 5641	-36B 1 M 7- 6-62 5641	-36B 1 M 7-23-63 5641
Da		Da		115		7	4	2	115	ω	7	. 2	7.

State Well		Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E 9 9	milligrams per liter equivalents per million percent reactance value	er liter ser million tance value				Mineral constituents in parts per million	neral constituents parts per million	ants in ion	
. -	\top	Sampled	Ξ	(micro-	Calcium	Magne- sium	Sodium	Patas- sium	Carban. ate	Bicar- bonate	Sulfate	Chloride	rote.	Fluo-	Boran	Sij: 8	TDS	TOTAL
Date Sampled Ag	Agy. Coll.	ů.		mhos at 25°C)	3	W ₉	Ž	~	003	HCO 3	504	σ	NO 3	u	æ	SIO 2	Evap 180°C	os CoCO 3
115/14E- 58 1 M 8- 7-58 5050	Σ03	69	6 • 2	267	1.05	0.41	0.96	m & m	0	91 1•49 62	0.04	0.76	7.4 0.12 5	0.1	00.0	74	206	73
- 58 1 M 8-12-59 5050	Σ 0	1	7.4	313	28	0.49	1,004	m & m	0	101	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	77	258	95
- 58 1 M 7-26-60. 5128	2 8	8 9	7.8	422	38 1 • 90 50	0.58	1.26	0.05	0	96 1•57 41	0 0 0 8 4	2.14	0.03	0	0	w w	258	124
7-25-61 5128	Z 88 Z	72	00 0	506	N 500 000	9 0 • 7 4 16	29 1.26 28	0 0 0 0 0	0	93 1.52 34	0.12	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.7 0.03	0 • 1	0.0	75	519	162
6-21-62 564	3 1 M 5641	6 8		909	1		1.43	0.10	ł	1	1	123	1	ł	0 0 0	-		198
8-15-63 500	5050	8 9	O • •	610	3 444	12 0•99 16	36	0.10	0	110 1•80 29	17 0 • 35	142	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0.10	57	394	222
115/145- 9G 1 M 7-25-57 5050	Σ00	6.8	7.2	562	3.26	0.82	1,43	0.13	0	154 2 2 2 4 6	0.16	2.33	2 0 0 8	· •	00000	95	347	411
115/14E-16A 1 8- 7-58 513	5128	70	7 • 7	340	28 1.40 45	6 0 • 49 16	1.17	m & m	0	119 1•95 62	0.10	9200.00	11.0 0.18	0 • 1	0	92	247	95
-16A 1 M 7-21-59 5128	≥ 8	70	7.5	420	1.900	0 • 66	32 1.39	0.10	0	122 2 • 00 50	0.17	1.64	11.0	0	0000	78	297	128
-16A 1 M 7-26-60 5128	≥ 80	70	7.8	507	46 2.30 49	10 • 82 18	1.43	0.10	0	126 2 07 45	0.15	2.26	6.0 0.10 2	0	0.11	6	301	156
DWR 1982				STATE	STATE OF CALIFORNI	NIA - THE R	RESOURCES	AGENCY C	DF CALIFC	JRNIA - DE	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER R	ESOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

Temp.		Specific canduct- ance		Mineral Co	Mineral Constituents in		1	milligrams per liter equivalents per million percent reactance value	r liter er million ance value	-	į	Ī	Mineral constituents in parts per millian	neral constituents parts per millian	ints in	
Sompled °F	Ŧ _Q	micro-	Colcium	Magne- sium	Sodium	Potos.	Carbon- ate	Bicar- bonote	Sulfate	ride o	Ž t	Fluoride	Boron	i∮ 8	Computed	TOTAL hordness os
		at 25 C)	S	Мв	ν̈́	¥	co ₃	нсо з	SO 4	Ü	NO 3	u.	8	SIO 2	Evap 180°C	CoCO 3
72	& 	539	2 52 50 50	12 0 • 99 19	34 1•48 29	0.10	0	126 2•07 41	0 25	91 2•57 51	8 0 13 3	0.2	0.05	79	354	179
69	8 1	290	<u> </u>	1	36	0.10	1	-	1	104	1	1	0.10	1		196
70	8 • 2	0 10 10	2 . 54 4 4 3	21 1.73 2.8	1.74	0.10	0	137 2•25 37	0.12	3 126 555 58	11.0 0.18	0 • 1	000	n n	384	221
69	φ •	428	1	1	1	1	0	146	1	1. 0.30	1	1	1	-		136
69	8 • 6	347	1	i i	1	1	8 0 27	136	1	0.62	1	1	1	1		102
69	8 • 2	1010	1	1	1	1	0	1.32	1	8 • 56 59	1	1	{	1		288
1	8 • 6	616	1	1	1	1	0.27	172	1	84	1	1	1	1		146
1	7.8	925	84	22	2.87	0.03	0	234	58	1413.98	7.6	1	0•10	1	559	300
8 9	7•1	339	1 600	0 • 6 6 19	28 1•22 34	0 0 8 8	0	169 2•77 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 51	6 • 2 0 • 10 3	0.2	0.02	29	249	113
69	7.8	368	31	10 0 82	1 22 33	0 0 8 8	0	180 2 • 95 8 1	0 0 0 8	18 0•51 14	7.3	0.5	00•0	70	260	119

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Temp.		Specific canduct-		Mineral Co	Mineral Canstituents in		E & 6	milligrams per liter equivalents per million percent reactance value	er liter er million ance value				Mineral constituents in parts per million	neral constituents parts per million	nts in	
_ -	Sampled	I	ance (micro-	Colcium	Magne- sium	Sodium	Potos- sium	Carbon- ote	Bicar- bonate	Sulfate	Chlo- ride	trote	Fluo- ride	Baron	ij 8	TDS	TOTAL
Date Sampled Agy.	*		mhas at 25°C)	3	W	ž	×	co 3	нсо з	SO 4	C	NO 3	ч.	В	SIO 2	Evap 180°C	°5 C°CO 3
11S/15E-23L 1 M 7-21-59 5128	89	8.2	365	33 1.65 42	0.82	1,35	0.08	0	171 2.80 69	0.10	38 1.07 26	5.6	0 • 1	00•0	70	280	124
-23L 1 M 7-26-60 5128	70	7.3	358	1 . 80 4 . 5	10	1.000	0.08	0	190 3•11 78	0.12	24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0.97	8 4	255	131
-23L 1 M 7-25-61 5128	73	φ •	365	1 • 6 • 6 • 6 • 6 • 6 • 6	10	1 9 9 9 4	0.08	0	183 3.00 78	0.12	0.59	7.7	0 .2	0.07	71	272	124
_23L 1 M	6 8	1	407	•	i i	1.26	0 8 3	1	1	1	0 0 0 0 0 0) I	1	0 0 8	1		140
-23L 1 M	6 9		422	;	1	1 • 3 5	1 2	ı	1	 	0.62	1	1	00	-		144
11S/15E-29H 1 M 7-24-57 5050	8 9	7.7	385	37	11 0.90	34 34	0.08	0	188 3.08 71	8 0.17	34 0 0 0 2 2 2 2 2 2 2	0 0 1 0 2	0 • 2	0.01	29	293	138
-29H 1 M	69	ω •	432	1.85	11 0.90 21	1 9 9 9 9 9	0.08	0.13	184 3 • 02 7 0	0.15	0.93	4 • 2 0 • 0 7 2	0 • 2	0	74	299	130
-29H 1 M 7-21-59 5128	72	0 • 8	454	2.40	0 • 41	1 • 0 0 0 0 0 0 0 0 0	0.08	0	193 3•16 72	0.15	1.02	2•7 0•04 1	0 • 1	0.10	78	310	141
-29H 1 M 7-26-60 5128	70	7.8	418	34	11 0.90	1 900	0 0 0 0	O.	176 2.88 70	0.15	38	2.0	0	00.0	53	270	130
-29H 1 M	70	η • •	426	1,995	10	1 • 4 9 4 8 9 4 4	0 0 0 0 0	0	188 3•08 71	0.17	36	3.6	0	90 • 0	79	305	139
DWR 1982			STATE	STATE OF CALIFORN		RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	ESOURCES					

SEMI-CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	as CoCO 3	142	148	54	52	20	ŭ ®	64	54	5.3	51
ents in lian	Camputed	Evap 180°C			172	169	174	135	163	166		
neral constituents parts per millian	Silis	SIO 2	1	1	62	65	4 9	26	67	68	1	1
Mineral constituents in parts per millian	Boren	83	0.07	0.10	9000	0 • 0 4	0	0.11	0 • 0 5	0.07	00.0	0
	Fluo-	F	-	1	0 • 2	0 • 2	0.1	•	•	0 • 1	1	1
	- N-	NO ₃	1	1	6.8 0.11 5	1.5	1.4	1.0	1 • 6	1.0	1	1
	Chloride	ט	36	1.13	18 0.51 25	18 0.51 26	18 0.51 25	0.59	13 0•37 21	16	0.51	14
milligrams per liter equivalents per million percent reactance value	Sulfate	504	-	!	0 0 4 8 4	0.04	0.12	0.00	0 0 0 8 4	0.04	!	1
milligrams per liter equivalents per mill percent reactance v	Bicar- banate	нсо з	1	1	82 1.34 66	84 1•38 71	1.38 6.8	1,39	1.31	80 1•31 72	1	1.31
C + 0	Carban- ate	င်တ	1	1	0	0	0	0	0	0	1	1
c	Patas. sium	×	0.08	1	0 6 8 4	0.00	0.08	60.0 4	0.10	0.08	-	1
Mineral Canstituents in	Sodium	Ž	35	1.00	19 0 • 83 42	0.83	21 0•91 43	0.83	17 0•74 41	18 0•78 40	20	19
Mineral C	Magne- sium	W _g	1	1	0.33	0.33	0.41	0.41	0.33	0.33	1	
	Calcium	3	1	1	0.75	0.75	0.70	0.75	0.65	150.75	ł	1
Specific canduct-	ance (micro-	mhas at 25°C)	436	460	207	204	200	210	184	197	205	205
	I.		1	1	6 • 9	7.6	7.4	7.7	7.6	7 • 8	1	7.2
Temp.	Sampled	٠ ٢	1	68	70	70	72	72	72	71	72.	70
Stote Well		Date Sampled Agy. Time Call.	115/15E-29H 1 M 6-21-62 5641	-29H 1 M 8-15-63 5050	115/17E-25B 1 M 7-22-57 5050	-25B 1 M 8-58 5050	-258 1 M 7-23-59 5050	-258 1 M 7-26-60 5128	-258 1 M 7-26-61 5128	-25B 1 M 6-19-62 5050	-258 1 M	-25B 1 M 3-19-64 5050
		Date	115/	8	115/	0 ∞	7-	7-	7	-9	<u>ω</u>	В

	TOTAL	ž	CaCo 3	000 CO	51	6, 51 6, 51	8 2 2 2 8 8 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 8 0 1 0 0 3 3 1 0 0 0 3 3 1 0 0 0 0 0 0 0	663 663 663 677	Cocco 3 6 3 177 177 4 48	78	1	780
	TDS Computed	2 Evap 180°C				121	1.2	1 2	122	12	75		
neral constituents parts per million	: <u>\$</u> 8	SIO 2	2										
Minero	Boron	es .	- 0.02	0.04		•							
	Fluoride	ű.	i			•							
	rote trote	N 0 3	1	 		1 • 0 0 • 0 2 1	0 0 0 0 0 0 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	Chloride	Ū	18	18		19 0•54 23	19 0•54 23 39 1•10	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
equivalents per million percent reactance volue	Sulfota	504	-	1	ď	0.10	0 10 4	0 1 1 1	0 1 1 1	0 1 1 1 1	0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.10 1.39 1.39 1.39
equivalents per mill percent reactance v	Bicar. bonote	нсо 3	-	1	100	1.64	1.64 71 104 1.70	1.64 1.71 1.70 1.70 1.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2 2 3 3 4 4 5 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 6
: o c.	Carbon- ate	00	1	1	0		0	0 0	0 0 8 2 7	. 2	N N O	N N O	N N O
_	Potos- sium	¥	-	ŀ	0.08	m	m	m	m	m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		• •
Mineral Canstituents in	Sodium	Z	0.70	0.74	22	45	42 29 1•26	• •	• •	• •	• •	1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	1
Mineral C	Magne- sium	W ₉	1	ł	0.41	18	18	18	1 1 1 8	1 1 1 8			
	Calcium	3	1	1	0.85	20	37	h	m 1 1 1	F	11 0 555	0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	(micro-	mhas at 25°C)	194	187	229		316	316	316 218 618	316 218 618	316 218 618 474 474	316 218 618 783 788	316 218 618 783 783
	Ξ.		7.8	8 • 1	7.7		0 8	8 .0	8 7 8	8	8	8 8 8 9 7 9 1 8	8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1
Темр	Sompled	u.	1	1	1		1	1 1	1	1 8 1	1 8 1 8	1 8 1 8 9	1 1 8 1 8 6 6
State Well	H	Date Sampled Agy. Time Call.	15/17E-35A 1 M 11- 2-61 5050	15/17E-35K 1 M 5- 1-62 5050	15/18E-17H 1 M 7-25-60 · 5050		15/19E- 6E80 M 8-10-60 5050	15/19E- 6E80 M 8-10-60 5050 15/19E-32C 1 M 8-10-60 5050	15/19E- 6E80 M 8-10-60 5050 15/19E-32C 1 M 8-10-60 5050 15/21E-32E 1 M 7-22-59 5050	15/19E- 6E80 M 8-10-60 5050 15/19E-32C 1 M 8-10-60 5050 15/21E-32E 1 M 7-22-59 5050 25/14E- 3J 1 M 10- 8-64 5000	15/19E- 6E80 M 8-10-60 5050 15/19E-32C 1 M 8-10-60 5050 15/21E-32E 1 M 7-22-59 5050 25/14E- 3J 1 M 10- 8-64 5000 25/14E-16K 1 M 7-25-61 5128	15/19E- 6E80 M 8-10-60 5050 15/19E-32C 1 M 8-10-60 5050 15/21E-32E 1 M 7-22-59 5050 25/14E- 3J 1 M 7-25-61 5128 10- 8-64 5000 25/14E-16K 1 M 7-25-61 5128	15/19E- 6E80 M 8-10-60 5050 15/19E-32C 1 M 8-10-60 5050 15/21E-32E 1 M 7-22-59 5050 25/14E- 3J 1 M 10- 8-64 5000 25/14E-16K 1 M 7-25-61 5128 7-25-61 5128 7-25-61 5128

			_										
	TOTAL	hardness	CoCO 3	47	79	92	72	87	96	63	26	101	100
ents in Ion	201		Evap 180 C		152		211	265	239	258			
neral constituents parts per million	Sili	8	SIO 2	ł	1	1	ra M	42	52	73	ł	1	-
Mineral constituents in parts per million	Boron		В	1	000	1	0 • 0 3	0 0 • 0	0 88	0 • 0 5	0.07	0000	-
	Fluo	9	F	1	1	-	0.2	0.1	0	0 • 2	1	1	1
	ż		NO 3	1	2 · 8 0 • 05 2	1	1 • 3	1.2	1.0	1.2	1	1	-
	Chlo		ō	205	19 0 54	16	26 0 73 25	32 0 90 26	32 0 90 25	29 0•82 24	32	32	25
milligrams per liter equivalents per million percent reactance value	Sulfate		504	1	0.10	1	0.12	0.15	0.12	0 • 15	1	1	1
milligrams per liter equivalents per mill percent reactance vo	Bicor-	90000	нсо з	131	130 2•13 76	127	126 2.07 70	149 2 • 44 70	152 2•49 71	150 2•46 71	1	1	178
	Carbon-	9	co 3	14	O	21	0	0	0	0	1	1	14
Ę	Patos-	E	¥		0.05	1	0.083	0.10	0 0 8 8 9	0 0 0 8 8	0.05	1	1
Mineral Constituents in	Sodium		Ž	1	300 1 • 30	1 5	34 1.48 4.9	36	36	37 1•61 45	37	2 99	-
Mineral C	Magne-		Mg	-	0.33	1	0.33	0.33	0.66	0 • 41	1	1	-
	Colcium		3	1	1.25	1	1.10	28 1.40 41	1.25	1.45	1	1	1
Specific conduct-	ance (micro-	mhos	at 25 C)	1210	304	327	302	333	355	348	366	381	414
	Ξ	Q.		8.6	7.7	Φ Φ	7.3	0 • 8	7 • 8	8 • 1	1	1	& • &
Temp.	Sampled	,		1	6 8	1	4 9	7.1	73	72	69	71	1
		Agy.	Coll.	5000	1 M 5000	1 M 5000	6 1 M 5050	-27G 1 M	5 1 M 5128	5 1 M	1 M 5641	5050	5000
State Well		Date Sampled	lime	125/14E-360 10-23-64	125/15E-20L 10-28-64	12S/15E-24H 1 10-26-64 50	12S/15E-27G 1 7-23-57 50	-27G 7-21-59	-27G 7-26-60 5	-27G 7-25-61 5	-27G 1 M 6-22-62 5641	-27G 1 8-15-63 50	125/15E-36J 1 10-26-64 50
							·			_			

	JA Š	, e	71	70	67	29	104	0 1	61	62	232	116	٦
	TOTAL	00°03					7						
ents in lion	Camputed	Evap 180°C	185	178	152	174				183	351	203	
neral canstituents parts per million	S 8	SIO 2	65	5	4	4 9	1	1	1	71	1	94	
Mineral canstituents in parts per million	Boron	۵	0.05	00000	0.11	90.0	0.10	0 0 • 0	0	0.10	00.00	0 • 0 5	
	Fluo- ride	ı.	0.1	0 • 1	0	0.2	1	-	1	0	-	0	
	Ni- trote	o Z	2.7	4 • 0 • 0 • 0 • 0 • 0 • 0	1.0	0 0	1	1	1	27 • 0 • 8 3 3 5	41.0 0.66	10 0 0 0 16	ESOURCES
	Chlo	ō	0.34	0.28	0.45	13 0•37 18	0.28	10	0.28	11 0•31 13	22 0•62 10	0.17	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES
milligrams per liter equivalents per million percent reactance value	Sullote	504	0.15	0 0 0 0	0.02	0.12	1	1	1	0.10	1.04	13	EPARTMENT
milligrams per liter equivalents per mil percent reactance v	Bicor- banate	нсоз	106	102	1.62	92 1.51 73	1	1	1 1	91 1•11 47	238	151 2•47 81	ORNIA DI
	Carban- ate	003	0	0	0	0	1	1	1	0	0	0	OF CALIF
c	Patas- sium	¥	0.10	0.10 0.10	0.10	0.10	0.10	1	1	0 0 0	0.13	0.02	AGENCY
Mineral Constituents in	Sodium	ž	0.74	0 • 1 6	0.70	0.65	0.65	0.70	0 0 0 0	18 0•78 32	38 1•65 26	13 0•57 19	RESOURCES
Mineral C	Magne- sium	Wg	0.41	0.49	0.58	0.49	1	1	•	0.58	1.89	0.82	RNIA - THE
	Calcium	ů	1.00	18 0.90 41	0.15	0.85	1	1	1	20 1.00 41	2 • 7 4 4 3	1.50	OF CALIFO
Specific conduct-	(micro-	mhos at 25 C)	230	214	226	205	205	202	204	262	614	259	STATE
	Ŧ		8•1	8 0	7.1	7.9	}	1	į į	7.2	7.2	7.6	
Temp.	Sampled	F	68	69	72	6.8	68	68	8 9	1	71	99	
Well		oled Agy.	- 7L 1 M 58 5050	- 7L 1 M 59 5128	- 7L 1 M 60 5128	- 7L 1 M 61 5128	- 7L 1 M 62 5641	- 7L 1 M -63 5050	- 7L 1 M 63 5050	- 60 1 M 53 5000	-17L 1 M 54 5050	-31P 1 M	
State Well Number		Date Sampled Time	125/18E- 8- 5-58	7-23-59	7-25-60	7-26-61	6-22-62	8- 7-6	8-28-63	125/21E- 8-20-63	125/21E-17L 6- 3-64	125/21E-31P 7-25-57 5	DWR 1982

FRESNO - MADERA AREA

	_	w											
	TOTAL	hardness	CaCO 3	129	130	100	146	261	193	160		102	106
ents in lion	TDS	Camputad	Evap 180°C	206	203	180		376	277	210			1643
neral constituents parts per million	Sili	8	SIO 2	47	9 7	80 4	1	64	45	64	1	-	48
Mineral constituents in parts per million	Borns	8	60	0.05	0 • 0 5	0.07	00•0	00.0	90.0	0000	1	1.00	1.20
	Fluo-	6	4	0.0	0.2	0.5	1	0.1	0 • 2	0.1	1	!	4.0
	ż	frate	NO 3	8.5 0.14	8.5	7.0 0.11	1	6 • 0 0 • 10 2	13.0	17.0	1	1	0.0
	ek :	a pi.	Ū	0.14	0.11	0.11	5	0 • 65 5	14 0 39	13	251	260	300 8 • 46 34
milligrams per liter equivalents per million percent reactance value	Sulfate		504	0.21	0.17	0.25	1	0.35	0.17	0.31	582	528	635 13 • 22 53
milligrams per liter equivalents per mill percent reactance v	Bicar-	banate	нсо з	161 2•64 84	162 2.66 86	126 2.07 81	1	334 • 47 83	23. 3.84 83	188 3.08 76	3.10	646	202
E & a	ė	9	co 3	0	0	0	1	0	0	0	0	0	0
_	Patas-	E S	¥	0.05	0.05	0.05	!	0.08	0 0 0 0	0.05	ł	1	0.08
Mineral Constituents in	Sodium		Ž	0.52	0.52	0.52	13	1 - 30	19 0.83 17	0.83	i	430	516 22.44 91
Mineral C	Magne-	E O S	Mg	1.23	1.15	0.90	!	2 9 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	22 1•81 38	20	1	0.58	0 • 41
	Calcium		3	1.35	1.45	1.10	1	2.59	2.05	1.55	1	29	34 1.70
Specific conduct-	(mirro-	whos	at 25 C)	310	295	258	344	602	444	388	1	2230	2410
	I	۵		8 0	7.6	8 • 1	1	7.7	ω •	7.5	7.8	7.4	7.8
Темр.	Sampled	- L		99	1	80 57	1	70	1	73	1	1	75
		Agy.	Coll.	1 M 5050	1 M 5050	1 M 5050	1 M 5631	1 M 5000	5050 5050	5000 5000	5702	1 M 5050	1 M 5050
State Well		Date Sampled	Time	12S/21E-31P 7-31-58	-31P 1 7-20-60 50	-31P 1 6-18-62 505	-31P 1 7-11-63 563	128/22E-20R 1 M 8- 8-63 5000	125/22E-30C 7-20-60 5	12S/22E-32R 2 8-13-63 500	13S/14E-15B 1 2-13-50 57C	-158 1 8-15-51 505	-158 1 M 7-14-59 5050

State Well		Temp		Specific conduct-		Mineral Co	Mineral Canstituents in		E & &	milligrams per liter equivalents per million	milligrams per liter equivalents per million				Mineral constituents in parts per million	neral constituents parts per millian	ents in Iian	
Lagunder		when	I	ance	Colcius	Magne	- Initial	Patas-	ė	Bicar	Sulfate	Chlo	Ż	Fluo-	0	Sili	TOS	TOTAL
	Agy.	o F	۵.	mhos		En s		E	e e	Banate		e 0	frote		2	8	Camputed	hordness
Time				at 25 ^C)	3	Mg	S.	¥	co 3	нсо з	50 4	ō	NO 3	ı.	8	510 2	Evap 180°C	CaCO 3
135/14E-15B 1 M 8-13-59 5050	Σ O Z	77	α • Γ	2400	1.75	0.41	491 21•35 91	0.08	0	203 3•33 14	581 12•10 52	284 8•01 34	0.3	4.0	1.20	51	1552	108
-15B 1 M 7-19-60 5050	Σ Ο 3	1	& • •	2170	34	0 4 % 1	494 21•48 91	0 0 8 9	0.17	186 3 • 05 13	584 12•16 52	286 8•07 34	0.01	4.0	1.20	51	1555	102
-158 1 M 8-25-61 5050	Σ O 3	77	α • •	2300	32	0 • 4 1 2	488 21•22 91	0.05	0.27	180 2.95 12	540 11.24 46	350 9.87 41	0.0	4.0	1.10	57	1573	101
-158 1 M 4-26-62 5050	ΣΟ	77	80 	2320	3.6	0.16	497 21• 6 1 91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	3.39	591 12•30 53	270	0	0	1.19	43	1544	9 8
-15B 1 M 8-26-63 5050	ΣΟ	76	1	2450	1	1	488	1	1	-	1 8	8 • 4 0 0 4 6	1	1	1.10	1		108
135/15E- 6E 1 M 4-10-56 5050	Σ Ο	i	7.8	913	1.50	0.08	155 6•74 80	0.08	0	158 2 • 59 30	70	159 4•48 52	1.0	0	2.00	t a	499	79
135/15E-11P 1 M 10~23-64 5050	Σ Ο 3	1	8 • 4	596	18 0.90 15	0 2 4	110	0.05	0.20	276	14 0 • 29	38 1.07 18	1.4	1	0.20	ł	328	58
135/15E-24D 1 M 10-26-64 5000	Σ 0	1	0.6	411	1	1	1	1	23	3.20	1	12	1	1	1	1		51
135/15E-35E 1 M 5-28-51 5001	Σιο	1	1	110	1	1	0.04	1	1	!	1	0.17	-	1	1	1		
-35E 1 M	0 Ω	29	1	100	0.50	0 52 3	0.30	0 0 0 0	-	0.10	0	13 0 37 34	0.0	1	1	1	57	38
DWR 1982	1			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY (OF CALIFO	JRNIA - DE	PARTMENT	OF WATER R	ESOURCES					

_	-						0.1						_
	Ĭ	hardness	ů	51	7.7	67	82	81	103	114	130	117	62
ents in		Computed	Evap 180°C	216	202	222	236	210	253				
neral constituents	I	Sil: 8	SIO 2	1	58	8 3	о 6	r. 8	78	1	1	1	1
Mineral constituents in parts per million		Boron	8	90•0	0 0	0 • 12	0	60.0	0 • 0 5	0 0	0000	1	1
	ı	Fluo-	ı	1	ο •	0 5	0.1	0.1	0 . 2	1	1	1	1
		rote et ort	NO 3	6 • 2 0 • 10	2.0	0.02	1.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.7	1	1	1	1
		Chlo- ride	ū	1.21	0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0	16 0 45 17	18 0.51 17	19 0 54 18	18 0.51 15	18	19	3.22	1.78
milligrams per liter equivalents per million	percent reactance value	Sulfate	504	10 0.21	0 4 8 6 4	N W N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0.10	1	1	1	-
milligrams per liter equivalents per mill	ercent read	Bicar- bonate	HCO 3	145 2•38 61	133 2•18 80	129 2•11 80	142 2 • 33 80	143 2•34 79	165 2.70 81	1	1	125	169
E e	a	Carbon- ate	8	0	0	0	0	0	0	1	+	10	1.60
-		Potas. sium	×	0.05	0.05	0.05	0.05	0.05	0.05	0.05	1	!	1
Mineral Constituents in		Sodium	ž	2.91 73	1.22	1.26	0 % • 1 • 4 %	0 0 0 0 0 0 0 0 0 0 0 0	1 9 9 9 8	1.30	1.35	1.39	1
Minerol C		Magne- sium	Wg	0.41	0.58	0 • 8 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	0 • 49	10 0.82 28	0.66	1	1	*	-
		Calcium	3	0.60	19 0.95	1.00	1.15	0.80	28 1.40 41	1	!	1	1
Specific conduct-	ance	(micro-	at 25°C)	427	270	282	280	298	328	351	395	691	639
		=_		7.6	7.8	8 • 1	7.9	7.6	8 • 1	1	;	8 - 7	9•1
I eme	4	Sampled		67	71	70	71	72	72	69	71	1	1
		7	Coll.	1 M 5001	2 M 5050	2 M 5050	C 2 M 5128	C 2 M 5128	5128	2 M 5641	2C 2 M 3 5050	R 1 M 5000	5000
State Well	Number	pelo		-35E	- 2C	- 2C 2 M 6-58 5050	- 2C	2	52	- 2C 2 M -62 5641	63 5	- 7R 64	-18F
State	No	Date Sampled	Time	13S/15E-35E 12-14-60	135/16E- 2C 2 M 7-25-57 5050	8	7-23-59	7-25-60	7-25-61	6-21-62	8-15-63	135/16E- 7R 1 M 10-26-64 5000	135/16E-18F 1 10-26-64 50
	_												

State Well	Temp	à	Specific conduct-		Mineral Co	Mineral Constituents in		الخ ق مَا	milligrams per liter equivalents per millian percent reactance value	er liter ser million tance value				Mineral constituents in parts per million	neral constituents parts per million	on sin	
		H _d		Calcium	Magne- sium	Sodium	Potas- sium	Carban- ate	Bicar- banate	Sulfate	Chlo- ride	tate.	Fluo-	Boran	<u>≅</u> 8	Camputed	TOTAL
Date Sampled Agy. Time Coll.	 		mhos at 25°C)	3	Wg	Ž	¥	S	нсоз	\$0.4	ö	ε Ο Z	u.	6	SIO 2	Evap 180°C	25 CaCO 3
13S/16E-36R 3 M 8-14-63 5000		9.7 69	756	3.94	1.40	2.00	0.13	0	212 3 • 47 46	1.02 1.3	110 3•10 41	0.01	0.2	00.0	20	461	267
135/17E- 1L 1 M 9- 3-63 5000		71 7.4	237	17 0.85	0 • 41	22 0.96	0.05	0	1.51	444 0 . 92	0 52 50 50 50 50 50 50 50 50 50 50 50 50 50	8 • 1 0 • 13 4	ο •	000	77	244	63
13S/17E- 5P 1 M 7-22-57 5050		7.5	760	21 1.05 41	0.33	1.13	0.05	0	11111-82	0.15	19 0.54 21	4.0	0	0	77	215	69
8- 6-58 5050	ω Σ O	0 7.9	265	1.00	0.49	1.13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	113	8 0.17	24 0.68 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 2	0	000	225	75
7-23-59 5128		72 7.9	252	22 1•10 42	0.25	1.22	0.05	Э	11111-82	0 • 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5	0 • 1	0	81	221	8
- 5P 1 M 7-25-60 5128		79 8.0	661	3.54	1.15	2.04	0.05	0	274	900000000000000000000000000000000000000	1.52	8.0 0.13	0	0.22	53	414	235
- 5P 1 M 7-25-61 5128		77 8.0	6 38	3.49	1.07 1.07	2 • 0 9 3 1	0.05	0	277	27 0 . 56	40 1•13 17	21.0	0 • 2	0.16	72	0 8 4	228
- 5P 1 M 6-19-62 5050		78 8.2	794	4.34	1.56	2,39	0.08	0	342 5.61 68	0.83	52 1.47 18	23.0	0 •	0 18	72	519	295
- 5P 1 M 8-15-63 5050		52	718	!	1	2.91	1	1	!	1	1.41	1	1	0.20	1		226
- 5P 1 M 3-19-64 5050	<u>.</u>	76 7.9	530	2.40 4.5 4.5	11 0.90 17	2.04	0.05	0	2.18	25 0 52 10	0.85	0.88.0	ł	0.10	1	358	165
DWR 1982			STATE	OF CALIFO	RNIA - THE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	AGENCY	OF CALIFC	SRNIA - DE	PARTMENT C	JE WATER RI	ESOURCES					

AREA

FRESNO - MADERA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in	_	[E & &	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	ion	
-	Sompled	ī	(micro-	Colcium	Magne- sium	Sodium	Potas- sium	Carbon- ote	Bicar- banate	Sulfate	Chlo- ride	rote	Fluoride	Boron	Sili:	TDS Computed	TOTAL
Time Coll.	4.		at 25°C)	J	Mg	N _a	×	co 3	нсо з	SO 4	ū	NO 3	ı.	8	SIO 2	Evap 180°C	CoCO 3
13S/17E-12J 1 M 9-26-63 5050	!	8.3	009	2.54	20 1•64 25	2.00	0.089	0	304	43 0•90 14	16	9 • 5 0 • 15 2	1	0.20		345	209
135/17E-14R 1 M 7-20-60 5050	99	80 W	389	0.95	10	7 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	0.03	0.07	216 3.54 83	0.31	0	5.9 0.10 2	0.2	0.11	9	291	89
135/17E-22B 1 M 6-25-63 5631	1	7.6	747	2 . 5 . 9 4	18 1.48 19	3.30	0.05	0	372	42 0•87 11	21 0.59	25.0	0.1	0.16	50	485 467	221
135/17E-27J 1 M 6- 4-64 5050	7.1	7.9	473	2.15	1.32 29	1.04	0 0 0 8 3	0	160 2.62 59	14 0 • 29	1.24	19.0	1	00•0	i	318	174
135/18E- 2L 1 M 6-11-64 5050	8	7.7	664	1 • 8 0 9 0 9 0 9 0	1.15	2.04	0.18	0	251 4•11 81	0.27	17 0•48 10	12.0 0.19	1	0.10	1	340	148
135/18E-33L 1 M 7- 5-57 5050	99	ω •	525	24 1•20 24	21 1•73 34	2.00	0.15	0.20	169 2•77 56	14 0 • 29	1.05	11.0 0.18 4	0 • 5	00•0	96	362	147
-33L 1 M 7-20-60 5050	9	8 .2	498	28 1•40 29	20 1 • 64	1.74	0.13	0	189 3•10 65	8	1 • 3 5 2 8	11.0	0•1	0.10	58	311	152
135/19E-27L 1 M 8-12-63 5000	1	7.4	385	1 34	1 23	22 0 96 24	0.135	0	201 3.29 82	0.23	10	12.0	0	00.0	70	278	147
13S/19E-29E 1 M 7-17-63 5050	1	7•7	311	30 1 50 4 45	0.66	18 0.78 25	0.13	0	141 2.31	0.12	13	13.0	0 • 2	90•0	102	265	108
135/19E-30L 1 M 7-20-60 5050	75	7.5	231	15 0 • 75 32	10 0 • 82 35	0.70	0.10	0	125 2•05 86	0.00	0.25	0.5	0.2	0.05	59	178	79

FRESNO - MADERA AREA

State Well Number	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		F & &	milligrams per liter equivalents per million percent reactance volue	er liter ser million ance volue				Mineral constituents in ports per million	nerol constituents ports per million	ants in	
	Sampled	Ξ_	(micro-	Calcium	Magne.	Sodium	Patas- sium	Carban- ate	Bicar- bonate	Sulfate	Chlo- ride	Ni- trate	Fluo- ride	Boran	Sili.	TDS Camputed	TOTAL
Time Coll.			at 25°C)	3	Mg	Z	×	co ₃	нсо з	504	ū	NO 3	ш.	89	SIO 2	Evap 180°C	CaCO 3
135/19E-30L 1 M 10-18-61 5050	1	8.2	253	1.00	10 0.82 31	17 0•74 28	0.10	0	122 2•00 78	0.10	10 0•28 11	11.0	0.1	00.0	77	214	91
-30L 1 M	71	1	257	1	0.16	0.74	0.10	-	i i	-	0.25	1	1	0.07	1		œ
135/19E-32D 1 M 6-13-63 5050	i	7•4	356	26 1.30 37	1.15	21 0.91 26	0.13	0	157 2•57 74	0.19	15	17.0	• 0	0.07	73	257	123
135/19E-32M 1 M 5- 9-52 5050	65	7.7	486	30	1.40	1.96	0.13	0	215	0.23	31 0 87 18	15.0	0 • 1	0 • 0 3	72	332	145
-32M 1 M	1	7.5	832	2.50	21 1•73 19	105	0.15	0	373 6.11 71	0.56	1.41	31.0	0	0.20	62	536	212
135/19E-36E 2 M 5-28-63 5050	72	8 • 0	281	16	0.66	14 0•61 28	0.13	0	108 1•77 84	0.00	0.11	10.0 0.16 8	0 • 2	0 • 0 5	73	186 180	73
135/20E- 3C 1 M 7-20-60 5050	-	0	214	10.05	0.66	11 0 • 48 22	0 0 0 8 4	0	109 1•79 85	0.04	6 0.17 8	6.7	0 • 2	0.11	63	173	81
- 3C 1 M 6-12-63 5050	1	1	1	1	!	1	i i	1	1	1	1	10.0	1	ł	t		
- 3C 1 M 6- 9-64 5050	73	7 • 8	215	18 0.90 41	0 • 74	11 0.48	0 0 8 9 4	0	110 1 • 80 85	0.04	0.17	7.6	1	0.10	1	162	82
135/20E- 3P 1 M 7- 5-61 5060	1	7.6	1	19 0.95 39	10 0.82 34	0 • 5 7 2 3	0.10	0	122 2•00 83	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17	12.0 0.19 8	0.2	1	1	127	φ 0,
DWR 1982			STATE	STATE OF CALIFORNIA		RESOURCES	AGENCY	OF CALIFO	DRNIA - DE	- THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER RI	ESOURCES					

Sulfate ride trate SO 4 CI NO 3 O • 06 O • 05 O • 07 O • 02 O • 02 O • 02 O • 06 O • 02 O • 06 O •	10	color 1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.06 0.06 0.06 0.025 0.07 0.02 0.020	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	0 0 0 0	O H O O O H I	00 0 1 0 0 0 0 1 1 480	WOW OLO HUH WOW WOW WO4 1 40W 1
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	00 400 017 018 108 1 00 400 157 400 188 8 8 7 1		
0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0.66 0.57 0.0 30 26 0.41 0.65 0.0 19 0.52 0.1	0.06 0.57 0.0 30 0.57 0.0 19 0.65 0.0 19 0.52 0.1 33 23 0.15	0.066 0.066 0.066 0.074 0.074 0.074 0.074 0.065 0.074 0.065 0.074 0.065 0.074 0.065 0.074 0.065 0.074 0.065 0.074 0.074 0.075 0.077 0.	0.0668 0.0668 0.057 0.074 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.052 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.074 0.055 0.075	0.0668 0.668 0.057 0.074 0.052 0.074 0.075 0
	212 21 21 48 40 40 40 40 40 40 40 40 40 40 40 40 40	212 21 1.055	212 1.05 1.05 1.05 20 20 20 20 20 39	212 1 • 05 4 8 18 0 • 90 0 • 90 0 • 90 0 • 90 18 18 18 0 • 90 19 19 19 10 • 90 10
	7.7	1 02		70 70
20	18 9 15 4 0.65 0.10	18 0.90 0.74 0.65 0.10 38 31 27 4	18 9 15 4 0.90 0.74 0.65 0.10 38 31 27 4 	18 9 15 4 0.90 0.74 0.65 0.10 38 31 27 4 0.95 0.82 0.57 0.08 39 34 24 3

State Well Number		Temp.		Specific conduct-		Mineral Ca	Mineral Constituents in		E ad	milligrams per liter equivalents per million percent reactance value	er liter ser million ance value				Mineral constituents in parts per million	neral constituents parts per million	ants in ion	
. -		Sompled	Ξ°	(micra-	Calcium	Mogne- sium	Sodium	Patas.	Carban- ate	Bicar- bonate	Sulfate	Chlo	rate.	Flua- ride	Boron		TDS Camputed	TOTAL
Date Sampled A Time C	Agy. Call.	٠,		mhas at 25°C)	ß	М	Ž	×	co 3	нсо з	504	CI	NO 3	ıL	83	SIO 2	Evop 180°C	os CaCO 3
135/20E-12L 1 7-20-60 50	1 M 5050	1	6.7	219	18 0.90 41	10 0.82 37	10 0.43	0.05	0	115 1.88 87	4 0 0 4	0.11	6 • 4 0 • 10 5	0.1	90•0	09	171	86
-12L 1 4-26-62 50	. 1 M 5050	02	89 %	264	1 . 20 + 42 + 42	0 99	0.61	0 0 0 2 2	0	160	0	0 23 8	0	0	90.0	27	166	110
-12L 1 6-14-63 50	. 1 M 5050	1	7 . 8	155	14 0 10 45	0 • 41	0.000	0 0 0 0 0	0	1.31 86 86	0.10	0.11	0 • 8	0 0	0 • 0 5	23	102	υ 9
135/20E-16L 2 8- 7-57 50	2 M 5060	1	7.5	1	1.30	0.90	0.65	0.10	0	129 2•11 71	0.15	0.34 11	24° 0 • 3 9 1 3	0.1	t B	1	163	110
135/20E-16L 3 8- 7-57 50	3 × 2000	1	8 • 1	1	0.85	900	0.57	0 • 1 0 0 0 0	0	104	0 0 0 0	0 28	6.6	0 • 1	i i	1	115	76
135/20E-17G 1 3- 6-51 506	5060 5060	1	7•1	1	170.85	0 • 7 4 4 3 8	0 10 10 10 10 10	l	i 3	1.56	0.15	0.17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1	1	66	8
-176 1 9- 3-63 50	5060 5060	+	7 • 7	1	0.95	0 982	0.57	0 • 10	0	120 1.97 85	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.14	7.1 0.11	0•1	-	1	122	9
138/20E-17G 2 5- 5-55 50	5 2 M 5060	1	• 1	1	17 0.85 37	0 • 74	0.65	w & w	0	122 2•00 90	m 90 m 0	0.11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1	1	114	0 8
-17G 2 9- 3-63 50	5060 5060	1	δ0 •	ţ	1.65	1307	17 0 • 74 21	0.13	1	172 2•82 81	8 0 • 17	0.23	15.9	0 • 1	1	1	185	136
135/20E-17J 1 8- 7-57 50	1 M 5060	1	6.7	į.	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.58	11 0•48 23	0.10	0	108	4 0 0 0 4	0 11 6	11. 0.18 8	0 • 2	1	1	112	74
DWR 1982				STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	ESOURCES	AGENCY C	JF CALIFO	RNIA - DE	PARTMENT C	JE WATER R	ESOURCES					

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Canstituents in		E 9 8	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per millian	ants in ion	
	when	I	(micro-	Colcium	Magne- sium	Sodium	Potas-	Carbon- ote	Bicar- bonate	Sulfote	Chloride	rote.	Fluo-	Boron	Sili:	TDS	TOTAL
Date Sampled Agy.	L.	1	mhos			:		· .								۰	50
			at 25 C)	S	Mg	Ž	¥	8	нсо з	504	ō	20 3	u.	80	SIO 2	Evap 180 C	C ₀ C ₀ 3
135/20E-19C 1 M 8-27-57 5060	1	7 • 8	1	0.75	9 0 0 7 4 3 5	13 0.57 27	0.08	0	101	0.10	0.14	11.5	0 • 1	-	1	111	75
-19C 1 M 6-10-64 5050	70	7.7	213	16	0 • 7 • 0	13 0.57 26	0 • 10 5	0	108	0 0 4 8 4	5 0 0 1 4 7	8.6 0.14	i	00.0	1	113	77
135/20E-20H 1 M 12-12-56 5060	1	7.5	1	0.85	0 66 8	0.65 29	4 0 0 0 4	0	1.56	0.21	0.25	12.4	0	1	1	122	76
-20H 1 M 6-10-64 5050	71	7.5	225	0.85	0.82	12 0•52 23	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	107	0.10	0.20	13.0	1	00•0	ł	121	84
135/20E-20N 1 M 8-27-57 5060	1	7.7	1	0,10	0 • 4 9 6 2 8	11 0.48 27	0 0 0	0	80 1•31 75	0.12	0.14	10.6	0.2	1	1	95	09
-20N 1 M 6-26-63 5050	02	7.7	194	16 0.80 41	0.58	110.48	0.10	0	1.52	0.00	5 0 0 1 4 7	10.0	0•1	90•0	68	170	69
135/20E-20R 1 M 8-27-58 5060	1	7.7	1	14 0.70 36	0.66	11 0 • 48 25	0.10	0	91 1.49 75	0.15	5 0 • 1 4	13.7 0.22 11	0.1	1	1	108	89
135/20E-21J 1 M 8-27-57 5060	+	7 • 7	1	0 0 0 0 0 0 0 0 0	0.41	0.43	0.088	0	71 1.16 82	0.10	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 • 9 0 • 0 8 6	0 • 1	1	1	75	43
-21J 1 M 11-19-62 5060	1	7.5	{	0.50	0 • 4 9	10 0.43 29	0 0 0 0	0	73 1.20 84	4 8 9	0.083	4 • 4 0 • 0 7 5	0 • 1	1	1	76	000
135/20E-22L 1 M 8-27-59 5060	;	7.7	1	0.45	0.49	10 0 4 4 3 3 0	0.08	0	70 1•15 85	4 8 9	0 • 0 6 4	4.4 0.07	0 • 1	1	1	73	4 7

FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Ca	Mineral Canstituents in	_	E & g	milligrams per liter equivalents per millian percent reactance value	er liter er million ance value				Mineral constituents in parts per million	neral constituents parts per million	ints in	
	Sampled	Ŧ _a	(micro-	Colcium	Magne- sium	Sodium	Patas- sium	Carbon-	Bicar- banote	Sulfate	Chloride	Ni- trate	Flua- ride	Boron	Siji 8	Camputed	TOTAL hordness
Date Sampled Agy. Time Call.	ů.		mhos at 25 C)	კ	w 8	ž	×	9	нсо з	50 4	Ü	NO 3	ı	89	SIO 2	Evap 180°C	coCO 3
135/20E-22L 1 M 6-10-64 5050	69	7.6	161	0.50	0.58	0.39	0 0 0 0 0	0	80 1•31 85	0.06	0 0 0 0 0	6.5 0.10	1	0.10	-	81	54
135/20E-23B 1 M 12-12-56 5060	1	0 8	ļ	0.70	0.82	0.65	0 0 8 9 4	0	1.43	0.15	0.17	12.4	0	1	+	110	92
-23B 1 M 6-10-64 5050	10	7.6	212	15 0 . 75 35	10 0 82	12 0 • 52 24	0 0 0 8 4	0	102 1•67 80	0.12	0 · 1 1 4 5	11.00.18	1	0.10	1	111	79
135/20E-23J 1 M 10-14-60 5060	1	7.6	1	0.75	0.82	0.65	0.10	0	104	7 0 0 15	0.17	16.8	0 • 1	1	1	125	79
-23J 1 M 6-11-64 5050	6 9	7.7	229	0.70	0.82	150.00	0.08	0	106 1•74 78	0.12	0.14	14.0	1	0.10	+	176	76
135/20E-23Q 1 M 12-12-56 5060	ł	2, 8	1	19	64.0	0.65	0 0 0	-	1.21	0.25	0.20	8 0 0 1 3	0	1	i	114	72
135/20E-26D 1 M 6-11-64 5050	69	7 • 8	152	0 • 4 8 2 8 3	0.58	110.48	0 0	0	74 1.21 83	0.00	0 0	6.6 0.11 8	1	0 • 10	1	138	52
13S/20E-27F 1 M 5- 1-52 5050	20	7.8	164	0.55	0.49	0.48	0 0 0 0	0	1.34	0.10	0.00	6.1 0.10 6	0	0.02	69	153	52
-27F 1 M 5-17-55 5060	1	7 • 7	1	0.65	0.58	0.52	0 0 0 0 0 0	0	1.43	0.12	0.00	0 0 0	0	1	1	91	62
-27F 1 M 4-15-59 5050	20	7 • 4	165	9 0 4 5 31	0 • 49	10	0.089	0	1.18	0.12	0 0 0	6.7	0 .	0.15	41	120	47
DWR 1982			STATE	STATE OF CALIFORNIA	1 .	RESOURCES	AGENCY	OF CALIFC	DRNIA - DE	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER R	ESOURCES]

Specific conduct-	Specific conduct-		Mine	Mine	eral Co	Mineral Constituents in			milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value	100	ž	<u> </u>	Minerol constituents in parts per million	parts per million	ion ion	Į.
Date Sampled Agy.	Sompled P.F.	I	(micra- mhas	Calcium	wegner.	Sodium	sium sium	ote ote	Bicar- bonate	Sulfore	e spir	- stort	Pluo ebir	Boron	<u>‡</u> 8	Computed	hordness
Time Coll.			ot 25 ^C)	S	Mg	No	×	co 3	нсо з	504	ō	NO 3	ш.	80	SIO 2	Evap 180°C	CoCO 3
13S/20E-27F 1 M 6-10-64 5050	72	7 • 8	154	0.45	0 • 4 • 8 • 8	11 0•48 32	0.08	0	72 1•18 79	0.10	0.08	8 • 4 0 • 14 9	1	0.10	1	147	47
13S/20E-27G 1 M 12- 1-49 5702	1	7 • 8	i	0 . 5 5	0 .58	21	1	0	1.56	18	0.20	1	1	1	ŀ	210	57
-27G 1 M 10-25-51 5050	65	8.0	185	0.600	0.58	0.57	ω ω 8 4	0	90 1•48 81	0.12	0 • 1 1 6	7.6	0	00.0	69	166	59
13S/20E-27J 1 M 5-17-55 5060	1	. σ • α	+	0.659	0.58	0.61	0 0 0 0 0	0	100	0.17	0.11	7.1	0•1	+	1	106	62
-27J 1 M	70	7.9	213	1400.70	0 3 2 8	0.61	0.10	0	104	0.10	0.11	9 • 9 0 • 16 8	0.5	00.0	65	175	8 9
-27J 1 M 7-21-60 5050	70	7.9	219	0 16	9 0 • 7 4 6 8 9 9	13 0.57 26	4 0 0 10 ë	0	107	6 0 • 12 6	0.11	10.0	0	90.0	99	181	77
-27J 1 M 10-19-61 5200	73	8 • 2	224	14 0•70 31	100.382	0.05	0.10	0	106	0.12	0.17 8	10.0	0•1	0	65	182	76
-27J I M 6-19-62 5200	71	1	243	!	!	0.65	0 • 0 • 0	1	1	1	0 • 1 4	i	1	0.07	1		75
-27J 1 M 6-26-63 5050	;	7 • 8	233	18 0.90 38	9 0 • 7 4 31	15	0 0 10 4	0	108	0.15	5 0 • 14	14.0 0.23 10	0 • 1	0.16	65	190	82
135/20E-28C 1 M 5- 2-52 5050	67	7.7	182	0.70	0.58	0.43	0.10	0	92 1.51 84	0.10	0.11	5 • 2 0 • 0 8 4	0	00 • 0	63	157	64

EA	
AREA	
~	
MADERA	
AD	
2 1	
9	
FRESNO	
L N	

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		Eě	milligrams per liter equivalents per million	er liter er million				Mineral canstituents in parts per million	neral canstituents parts per million	ents in lion	
Number	when	I,	ance (micro-	Calcium	Magna-	Sodium	Potos-	Carban-	Bicar.	Sulfate	Chlo-	Z sar	Fluo-	Boran	-ilis	Computed	TOTAL
Date Sampled Agy. Time Coll.		۵.	mhos at 25°C)	კ	6W	ž	×	g 8	HCO 3	50 4	Ū	N 0 3	u.	8	SIO 2	Evap 180°C	03 CoCO 3
13S/20E-28C 1 M 8-27-57 5060	1	7.8	1	13 0.65 32	0.74 37	0.52	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	89 1•46 77	0.12	0.14	11•1 0•18	0.0		1	104	70
-28C 1 M 6-10-64 5050	67	7.7	243	18 0.90 35	12 0 .99	0.52	0.13	0	120	0.17	0.17	11.0	1	00.0	1	131	95
135/20E-30Q 1 M 6-11-64 5050	71	7.8	203	13 0.65 32	9 0 • 74	13 0.57 28	0 0 0 0 0	0	103 1•69 86	0.04	0.14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0.10	0	103	70
135/20E-32D 1 M 10-14-60 5060	1	7.6	1	14 0 • 70 31	0.74	0.65	6 0 0 15	0	94 1.54 72	0.10	0.20	18•1 0•29 14	0	1	1	120	72
-32D 1 M 6-26-63 5050	70	7.7	239	0.80	9 0 • 74 32	0.61	6 0 0 15	0	86 1•41 72	4 80 0	0.20	16.0	0 • 2	0 • 0 4	74	188	77
135/20E-32L 2 M 8-27-57 5060	1	7 • 8	1	19 0.95	12 0.99 34	0.83	0.15	0	99 1.62 67	0.23	0.25	20.4	•	1	i	145	97
-32L 2 M	71	7.9	311	1.05	1.07 1.07 36	0.74	0.15	0	132 2.16	0.15	0.31	22 0 • 35 12	ł	0.10	1	162	106
135/20E-33D 1 M 5- 1-52 5050	70	7 • 7	302	20 1.00	1.15	17 0 - 74 24	0.15	0	147 2•41 80	10	0 7 0	11.0 0.18 6	0	00.0	74	232	108
-33D 1 M	1	7.9	1	21 1.05 34	13 1.07 35	19 0 83	0.15	0	142 2.33	0.19	0 0 0 0	17.0	0 • 1	1	1	164	106
-33D 1 M	70	7 • 8	317	23 1.15 36	13 1•07 34	19 0 83 26	0.13	0	153 2.51 80	0.21	0.23	11.0 0.18 6	0 0	0 • 0 8	72	236	111
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	RNIA - THE	RESOURCES	AGENCY (JF CALIFO	RNIA - DE	PARTMENT (OF WATER R	ESOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	8	CoCO 3	113	111	149	119	06	95	153	91	8 5	57
ants in ion	Computed		Evap 180 C	236	163	269	165	146	221	298	182	204	164
nerol constituents parts per million	:is 8	1	SIO ₂	73	1	73	1	1	1	75	31	8	70
Minerol constituents in parts per million	Boran		æ	00.0	1	0 0 0 0	0.10	1	000	000	0.18	0 • 0 5	0000
	-Pluo-		ш	0.0	0	0•1	1	0 • 1	1	0	e. •	0 . 2	0.1
	Ž į		NO 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.0 0.26 8	11.0	12.0	15.0	16.0	21 • 0 0 • 34 8	22.0 0.35 13	12•0 0•19	5 • 2 0 • 0 8 5
	Chlo		ਹ	0 - 23 8	0 2 8	10	0.20	0.20	0.20	14	0 2 8 8 8 8	0.20	4 0•11 6
milligrams per liter equivalents per million percent reactonce value	Sulfate		SO 4	0.19	0.15	13	0.17	0.23	0.17	0 21 5	0 15	0.12	0.12
milligrams per liter equivalents per mill percent reactonce v	Bicar- bonate		нсо з	152 2•49 81	145 2•38 78	185 3 • 03 81	157 2.57 82	124 2.03 75	124 2.03 81	174 2.85 67	123 2.02 73	122 2•00 80	89 1•46 82
Eŏŏ	Carban	}	co 3	0	0	0	0	0	0	14 0.47 11	0	0	0
	Potos-		¥	0.15	0.13	0 1 2 8 8 8	0.15	0 1 0	0.13	0.15	0 1 0 1 0 1 0	0 1 2 2 2	0.00
Mineral Constituents in	Sadium		°Z	0.70	18	18	17 0 0 74 23	18 0.78 29	16 0.70 26	1.00	18 0•78 29	18 0•78 30	0.52
Mineral Co	Mogne.		Mg	0.66	1.07	1 • 1 9 4 8 3 8	1.23	0.00	12 0•99 36	19	0.000	9 0 . 74 28	0.33 19
	Calcium		ß	32	23 1•15 37	1 900 900	1.23	18	18 0.90	1.50	20 1.00 37	19 0.95	16 0.80 46
Specific conduct-	(micro-	mhos	ot 25 C)	298	1	379	322	1	265	396	273	281	171
	Ŧ	1		7.7	8 • 2	, œ	7.0	7.7	7.6	ω • π	7.6	7.7	7.7
Temp.	Sampled	, L		69	1	8 9	02	1	71	1	02	71	89
		Agy.	Coll.	1 M 5050	5060	1 M 5050	1 M 5050	1 M 5060	48 1 M 5050	1 1 M 5050	1 1 X 5050	1 1 M 5050	5050
State Well Number		Dote Sampled	Time	135/20E-33P 5- 1-52	-33P 1 8-27-57 50	-33P I 4-15-59 50	-33P 1 M 6-10-64 5050	135/20E-34B 1 M 5-17-55 5060	-348 1 6-10-64 505	135/20E-34M 1 8-30-51 50	-34M I 4-15-59 505	-34M 1 5- 1-63 505	13S/20E-35D 1 5- 1-51 50:
	_!			-									

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & g	milligroms per liter equivalents per million percent reactonce value	er liter er million once value				Mineral constituents in ports per million	neral constituents ports per million	in shra	
	Sampled	I	once (micro-	Calcium	Magne-	Sodium	Patos-	Carban.	Bicar- banole	Sulfate	Chlo- ride	rote	Fluo-	Boran	ij 8	TDS	TOTAL
Date Sompled Agy.	, LL		mhos of 25 C)	კ	Wg	ğ	~	8	нсо з	504	ō	° 0 Z	u.	ω	SIO 2	Evap 180°C	03e2
13S/20E-35D 1 M 5-17-55 5060	1	7.9	i i	0.70	0.49	0.61	0.10	0	94 1.54 81	0.21	0.11	1.8	0•1	1	1	100	09
-35D 1 M	67	7.4	229	16 0 80 38	0.66	0.57	0.10	0	98 1•61 78	0.19	0.17	6 • 1 0 • 10 5	0 • 2	0.22	36	147	73
135/21E- 4P 1 M 6-13-50 5060	1	7.4	1	1.10	12 0.99	19 0.83 28	i i	ł	147 2•41 83	0 0 0 0 0	10	8 • 0 • 1 • 0	0	1	1	147	105
- 4P 1 M	1	8 • 1	1	1.00	1.15	16 0.70 24	m @ m	0	142 2.33 79	0 0 0 0 0 0	1100.31	14.6 0.24 8	0 • 2	1	i i	152	108
135/21E- 8J 1 M 4-12-59 5060	1	7 • 8		1.15	1.15	18 0•78 25	m & m	0	144 2•36 78	0.06	10	20.7	0 • 1	i	ł	163	115
135/21E-15N 2 M 7-29-58 5050	70	7.8	163	0 • 45	0.49	13 0 • 57 37	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	81 • 33 85	0 0 0 0 0	0 0 0 0	0 0 0 0 0	φ •	0	7 + 7	126	47
-15N 2 M 7-20-60 5050		7.8	167	10	0.58	13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1 • 33 8 4 8 4	0 10	0 0 0	5 0 • 0 0 5 5	0 • 5	0 0	7 7	131	54
-15N 2 M 4-26-62 5050	70	8•1	238	0 • 4 5 9 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 988 7	16	0 0 0 0 0	0	81 1•33 76	0.15	0.20	0 4 • 0 • 0 • 0 ° 0	<i>∞</i>	0 • 0 5	29	121	52
-15N 2 M 5-16-63 5050	1	7.9	152	0 • 40	0 4 9 4 8	0 12 36 36	9 2 5	0	76 1.25 86	0 4 8 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.7	0	40.0	24	120	45
135/21E-17F 1 M 5-16-63 5050	71	7.9	254	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.82	16 0•70 29	m & m	0	106	0.25 11	0.20	11 0 18 8	0 . 2	0 0 0 3	6 2	190	48
DWR 1982			STATE	STATE OF CALIFORNI	NIA - THE R	ESOURCES	AGENCY O	P CALIFO	RNIA - DE	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	F WATER RE	SOURCES			1		

SEMI-CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	7emp.		Specific conduct-		Mineral Co	Mineral Constituents in		E 9 0	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million bercent reactance value				Mineral constituents in parts per million	neral constituents parts per million	ents in Ion	
	when	I	ance (micro-	Colcium	Magne-	Sodium	Potos-	Carbon-	Bicar- bonote	Sulfate	Chlo- ride	rote	Fluo- ride	Boron	Sili:	TDS	TOTAL
Date Sampled Agy. Time Call.	u. 0	<u>.</u>	mhas at 25°C)	S	6 W	Ž	¥	° °	нсо з	50 4	ō	ο 2	L.	œ	SIO 2	Evap 180°C	03 CaCO 3
13S/216-19A 1 M 5-29-63 5050	-	4.7	230	0.70	10 0.82 36	14 0.61 27	0.13	0	111 1•82 82	0.23	0.08	5 • 2 0 • 0 8	0.2	0.04	89	185	76
135/21E-31E 2 M 11-10-61 5060	1	7.6	1	0.85	0.58	11 0 • 48 32	0 0 0 0	0	1.10	4 8 0	0 0 0	7.5	0.2	1	1	76	47
-31E 2 M	1	0 • 8	1	1.30	1.40	1.00	0.10	0	171 2.80	0.25	0.37	18 0.30 8	0	1	1	198	135
-31E 2 M	1	7.4	393	1 9 9 9 6	1.40	24 1.04 26	0.10	0	178 2.92 75	13	0.37	20.00.32	0 • 1	60.0	57	272	140
135/21E-31Q 1 M 5-27-63 5050	72	1	l	1	1	-	1	ł	1	1	1	16.0	i	l	1		
-310 1 M 6-24-63 5060	1	α • 1	1	2 4 4 9 4 6 9 4 9 9 4 9 9 9 9 9 9 9 9 9 9	2.22	1.22	0.18	0	283 4•64 77	0.56	0.518	22 • 0 0 • 35 6	1	1	t t	317	234
13S/21E-33K 1 M 7-21-60 5050	8 9	O 20 20	274	1.10	1.15	11 0.48	0.05	0	1.97	0.33	0.11	23.0	0 . 2	0.08	59	210	113
-33K 1 M 6-22-62 5050	69	8 • 1	242	1.05	0 0 0 0	0.57	0.05	0	113	0.23	0.11	16.0	0 • 1	0.04	57	190	94
-33K 1 M 3-16-64 5050	69	7.6	216	1	1	0.52	1	i	1	1	0.06	1	i	00.0	į		46
135/21E-36R 1 M 8-20-63 5050	68	7.8	173	0 • 45	0.49	13 0.57 37	0.03	0	1.20	0.12	0.03	1.9	0	00.00	44	120	47

State Well	Temp.		Specific canduct-		Mineral Co	Mineral Constituents in		E & 8	milligrams per fiter equivalents per million	milligrams per liter equivalents per million				Mineral constituents in parts per million	neral canstituents parts per million	ents in lion	
Number	when	I	ance	Coleina	Magne	miles	Potas	è	Bicar-	Sulfahe	Chlo	ż	Fluo-	Rores	-ilis	SQI ,	TOTAL
Date Sampled Agy.	Sampled P.	۵	mhas		E O	E CONTRACTOR DE	E	e e	bonate		e p	tote e	a pi		8	Computed	hardness as
			at 25°C)	3	Mg	No	×	co 3	нсо з	SO 4	۵	NO 3	ш	8	SIO 2	Evap 180°C	CoCO 3
13S/22E-10M 1 M 6- 3-64 5050	72	7.7	515	2.25	24 1•97 37	1.09	0.08	0	259 4•25 81	0.19	20 0 • 56 11	14.0	1	00.0	-	322	211
135/22E-14D 1 M 8- 8-63 5000	71	7.6	553	30	N 0 20 U 0 20 U	1.09	0.05	0	270 4•43 82	0.21	18	14.0	0 • 2	00.0	4 5	312	219
135/22E-28C 2 M 7-20-60 5631	1	8.1	422	1.10 25 25	30 2 47 57	17 0 • 74	0.05	0	3 203	0 0 0 0 0 0	18 0.51 12	24.00.39	• 5	0.07	n O	272	179
-28C 2 M 6-20-62 5631	69	8 4	4 2 8	23 1.15 27	2.22	0 8 7 0 0 0	0 0 8 8 9	0.10	3 • 20 3 • 73	0.21	18 0 • 51 12	23 • 0 0 • 37 8	0•1	90•0	43	266	169
-28C 2 M 7-11-63 5631	+	8	467	23 1.15 24	2,000	0 8 7	0 0 0 0	0	210	0 2 2 2 2 2 2	0.56	25.0	0	0.10	8 4	287	189
135/23E- 7N 2 M 8-13-63 5000	99	0	382	2.10	0 .58	1.17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	180 2.95 78	0 . 35	11 0•31 8	10.0	0 4	0.11	32.	237	134
135/23E-30J 1 M 7-24-57 5631	6 9	7.7	217	0.50	0 9 0 7 0 8 0 8 0 9 0 9 0	1.09	m & m	0	11111-111-11-11-11-11-11-11-11-11-11-11	0.21	0 0 0 0 0	0 15	0 • 1	0.02	57	185	υ. 8
-30J 1 M 6-20-62 5631	8 9	80	218	0.65	0.49	1.04	0 6 0 8 4	0	1.74	0 1 2 5	0.20	8 8 0 14	0 4	0.04	5.5	175	57
-30J 1 M 7-19-63 5631	-	7 • 8	232	14 0 0 7 0 0 3 0	0.49	1.09	0 0	0	112 1•84 80	0.12	0.17	9.7	• •	0	62	187	09
135/23E-34A 1 M 6- 3-64 5050	67	8 0	800	38 1,90 20	78 6•41 69	21 0.91 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	4 + 6 9 8 5 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	29 0 • 60	0 1 4 2	0.00	1	0000	Į Į	444 483	416
DWR 1982			STATE	STATE OF CALIFORNI	NIA - THE R	ESOURCES	AGENCY	OF CALIFC	RNIA - DE	A THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER R	ESOURCES					

	TOTAL	8 8	F 3	040	ľ	52		80	137	20	20	15	22
	\vdash		,	930	441	969	<u> </u>	271 326	7 7 7 7 7	598	8 6 9	609	658
ents in Ilion	Computed		_	150	7 7			(4 (6)					9
neral canstituents parts per million	ii 8	9	310 2	1	20	47	<u> </u>	1	52	56	56	57	54
Mineral canstituents in parts per million	Boran		٥	1.80	0.18	0.10	1	000	0 4 •	0 8 8	0 8 8	06•0	1.60
	Fluo	1	-	0	4.0	0	1	;	0.2	4.0	0.4	0 • 3	0.5
	N:-	2	EON	0 • 2	0.01	4 • 9 0 • 08 1	1	0	0.6	0.01	0.4	1.0	0.04
	Chlo		5	3.38	142	156 4•40 47	989	1.86	2111 5 • 95	234 6 • 60	234	228	250 7•05 67
milligrams per liter equivalents per millian percent reactance value	Sulfate		504	1160 24.15 80	0.02	1.19	1	23	34 0 71	0 · 0 · 0 · 0 · 0 · 0	0 0 0 0	0.08	0.04
milligrams per liter equivalents per millian percent reactance value	Bicar- banate		HCO 3	169	184 3 • 02 43	214	1	152	228 3•74 36	176 2 • 88 30	176 2.88 30	172 2.82 30	206 3 • 38 32
E # 6	Carbon-	} {		0	0	0.23	1	0	0	0	0	0.20	0.07
c	Potas-	,	¥	0.20	0.03	0.08	1	8 0.20 4	0.13	0.08	0.08	0.08	0.08
Mineral Canstituents in	Sodium	-	2	207	154 6•70 98	195 8 • 48 88	46 2.00	66 2.87 60	178 7•74 73	206 8 • 96 95	206 8•96 95	218 9•48 96	235 10•22 95
Mineral C	Magne-	:	Wa	13.90	0	0.08	1	0 2 8 8 8	0 • • • • • •	0	0	0	0.08
	Calcium	d	3	138 6 • 89 23	0.10	0.95	t I	1.50	2.25	0.40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 O R	0.35
Specific canduct-	micro-	mhos	(2 CZ II)	2500	765	973	330	513	1100	916	976	1030	1160
	Ŧ	a .		7.2	8 • 1	8 • •	1	φ •	7.6	8	8 • 2	ω •	8 • 4
Temp.	when	. "		1	68	1	02	72	70	1	70	71	72
		Agy. Coll.		1 M 5050	1 M 5000	5000 S	1 1 M 5001	1 1 M 5050	1 M 5000	80 M 5050	5050	5050	1 M 5050
State Well		Date Sampled Time		145/14E-16N 8-12-52	145/16E- 6A 8-27-63 5	145/16E-10J 1 8-12-63 50	14S/16E-13H 1 8-24-50 500	-13H 1 6- 4-64 505	145/16E-23M 1 M 8-12-63 5000	145/16E-25A80 7-20-60 505	145/16E-36A 1 7-20-60 505	-36A 1 10-18-61 505	-36A 1 M 6-20-62 5050
			_										

FRESNO - MADERA AREA

State Well		Temp.		Specific conduct-		Mineral Ca	Mineral Canstituents in		E & G	milligrams per liter equivalents per million percent reactance value	er liter er million ance value				Mineral constituents in parts per millian	neral constituents parts per millian	ants in	
of the Control of the	Agv	when Sampled	±_	(micro-	Calcium	Magne- sìum	Sodium	Potos- sium	Carbon.	Bicor- banate	Sulfate	Chloride	rate et art	Fluo- rida	Boran	<u>≅</u> 8	TDS	TOTAL hardness
Time	Coll.			at 25°C)	ű	Wg	N O	ж	co 3	нсо з	50.4	ū	NO 3	ı.	82	SIO 2	Evap 180°C	CaCO 3
145/16E-36A 4-15-64 5	1 M 5050	22	7.8	875	-	!	169	1	+	1	1	181		1	0 8 0	-		16
14S/17E- 9A 1 M 9- 7-56 5050	1 5050	73	8 . 2	382	1.75	8 0.66 17		0	0	2 · 156 2 · 56 65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35	4 • 9 0 • 0 7 2	0	90•0	80	298	121
5-28-59 5	5050	72	7.7	514	1	1	1	36	0	164	1	1 .5 8	-	1	1	1		
14S/17E-13H 1 M 7-20-60 5050	1 M	1	8 • 2	375	1.75	13 1 29	18 0•78 21	0.13	0	132 2•16 60	14.00.29	37	8 0 0 1 4 4	0 • 2	90.0	76	272	141
-13H 1 6-20-62 564	1 1 M 5641	71	8.2	457	2 • 0 5 4 6 4 6	1.32	22 0.96	0.15	0	150 2•46 56	19	1.95	13.00.21	• 5	0.07	78	317	169
-13H 1 6-25-63 563	1 1 M 5631	+	0	4 444	38 1 • 90 47	1.15	20.87	0.13	0	143 2•34 57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42 1•18 29	15.00.24	0.2	0 • 0	69	290	153
145/18E-11F 1 8-28-63 500	1 M 5000	69	0	260	30	24 1.97 36	1.87	0.15	0	212 3•47 64	0 42.0 90.0 9	38 1•07 20	23.0	• 5	0.15	75	368	174
145/18E-160 1 M 8-12-63 5000	5000 5000	71	7.3	471	2.10	20 1.64	20 0.87 18	7 0 • 18	0	170 2.79 60	0.33	1.27	16.0	e. •	0.10	75	325	187
145/18E-24D 1 8-12-63 500	1 M 5000	71	7.7	339	1.45	1.07	18 0.78 22	0.18	0	154 2.52 74	0.12	17	17.0 0.27 8	0.2	00.0	76	259	126
145/18E-25A 1 M 6-12-63 5050	1 M 5050	68	8	450	38 1 • 90 41	1.32	1.26	0 15 0	0	193 3•16 70	0 23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	113.0	m •	0.20	9	305 293	161
DWR 1982				STATE	STATE OF CALIFORNI	NIA - THE R	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	AGENCY C	JE CALIFO	RNIA - DE	PARTMENT (OF WATER R	ESOURCES					

	TOTAL	hardness	CaCO 3	18	34	8 6	175	173	169	9.5	197	99	56
	07			4 2	1 2	- L	7	2	0	<u>ع</u>		10.01	1 6
ents in Ilion	TDS	Computed	Evap 180°C	45	4 1	547		32.	32	34.	346	18:	181
neral canstituents parts per million	.iis	8	StO 2	70	69	71	1	84	8 2	77	74	34	47
Mineral canstituents in parts per million		Boron	8	0.26	0.07	00•0	0.10	0.04	0.07	0.11	0.04	00.0	0.08
	Fluo-	ride	F	0.0	0.2	0•1	1	0.5	0.1	0.1	0	0•1	0 • 1
	ż	trate	NO 3	15.0 0.24	11.0 0.18	27.0 0.44 5	1	7.2	8 • 4 • 0 • 1 4 • 8	11.0 0.18	12.0 0.19	20.0 0.32 12	16.0 0.26 11
	Chlo	ride	CI	1.97	1.78	105 2 • 96 33	1.69	0.42	16 0 45	0.42	13	0.20	0.23
milligroms per liter equivolents per million percent reactance value		Sulfate	\$04	0.52	0.35	0.65	1	0 19	0.15	0.17	0 • 19	20 • 42 16	9 0•19 8
milligroms per liter equivolents per million percent reactance value	Bicar-	banate	нсо з	239 3 92 59	256 4 • 20 65	5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	220 3.61 78	230	263 4•31 83	276 4•52 86	101	104 1•70 71
F & C	Carban	afe	co 3	0	0	0	ł	0.27	0.13	0.13	0	0	0
c	Patas-	sinm	×	0.15	0.13	0.18	1	7 0.18	0.15	0.18	0.18	0 0 0	0 • 0 8
Mineral Constituents in		Sodium	No	47 2•04 31	1.78	2.48	1.78	23 1.00	1.04	1,22	30 1 • 30 24	1 9 9 8 4	1.22
Mineral C	Magne-	s ica	Mg	22 1.81 28	1.89	4 0 8 0 0 10 0	1	1.15	18 1•48 32	1.73	1.73 32	0.66	0.58
		Calcium	S	2.54	2.79	38 1.90 20	1	2 • 30 50	38 1.90 42	42 2•10 40	44 2.20 41	13	12 0.60 24
Specific conduct-	auce	(micro- mhas	at 25 C)	640	654	857	559	438	431	764	503	290	261
		Ŧ _a		7.5	7.6	8 • 1	-	& •	8 • 4	4.8	0	7.9	7.4
Temp.	when	Sampled		71	8 9	70	1	1	69	71	i	89	1
		Agy.	Coll.	1 M 5000	1 M 5050	1 1 M 5050	1 1 M 5050	1 1 M 5631	1 1 M 5050	1 1 M 5641	1 1 M 5050	1 M 5050	5050
State Well		Dote Sompled	Time	145/18E-26N 7-24-57	7-20-60	-26N 7-30-62	-26N 8-13-63	145/19E- 7M 7-29-58 5	7-20-60 5	- 7M 1 6-20-62 564	- 7M 1 6-13-63 50	14S/19E-14P 1 10-24-62 505	-14P 6-13-63 5

	Ι.:	9	2 5		9	n	0	m	80		~	00	30	\neg
	TOTAL	nardness	10		376	353	220	363	148	111	123	136	106	
ents in Iian	IDS CO		246	250	603	584 565	375	536	204	172	180	287	149	
neral constituents parts per millian	Sili:	3	74		73	67	67	9	1	1	1	77	1	
Mineral constituents in parts per millian	Boron		0.07		0.14	0.27	0	60.0	00000	1	0.10	0.13	i	
	Fluo-		0.1		0.1	0.1	0	0 0	1	0.0	!	0 • 2	0 • 1	
	ż	9	15.0	0.24	3 9 9	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.0	14.0	20 0 32	19 9 0 0 32 10	18 • 0 0 • 29 9	24.0 0.39 10	.12.4	
i :	Chlo-			0.54	66 1.86 18	1.38 1.38	1.69	2.65	0.37	0.31	0.34	17	0.25	
milligrams per liter equivalents per million percent reactance value	Sulfote		φ α	0.17	21 0 • 44	14 0 . 29	0.31	0.19	0.12	0.15	0.15	0.17	0.12	
milligrams per liter equivalents per mil percent reactance v	Bicar-		_ ⊸	2.20	474 7.77	527 8•64 84	3.64 6.2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	189 3.10 79	148 2•43 76	157 2.57 77	173 2.84 73	134 2.20	
	Carban-	5	3		0	0	0	0	0	0	0	.0	0	
_	Palos-			0.18	0	0.28	0.135	0.26	0 • 13	0.15	0.15	0.15	0.13	
Mineral Constituents in	Sodium	:		900	61 2.65 2.5	2.96	31 1.35 23	1.78	0.87	0.83	0.87	24 1.04 26	17 0 • 74 25	
Mineral C	Magne-		11	0.90	2 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 . 3 7 9 3 3	1.89	3 9 3 7 3 6	1.56.	1.07	1.15	1.15	13 1 • 07 36	
	Colcium	•	24	1.20	98 4.89 47	3.69	2 . 50	3.89	28 1•40 35	1.15 36	1.30	3.5 1.60 4.1	21 1.05 3.5	
Specific conduct-	(micro-	mhos	331		1040	928	594	851	391	ļ	348	395	1	
	Ŧ	۵	7.7		Ο •	ω •	7 • 7	7.3	7 • 7	7 • 7	7 • 7	7.9	7•4	
Тетр	Sampled		1		89	65	10	6 9	73	i	72	74	1	
_		Agy.		5050	P 1 M 5050	A 1 M 5050	A 1 M 5050	A 1 M 5050	20 1 M 5050	3C 2 M	3C 2 M 5050	M 1 M 5050	5060 5060	
State Well Number		Date Sampled	14S/19E-20M	6-12-63	145/19E-28P 6-26-63 5	14S/19E-29A 6-26-63	14S/19E-31A 4-30-52	-31A 6-12-63	145/20E- 20 6-10-64	145/20E- 30 8-27-59	6- 9-64	14S/20E- 3M 6-13-63 5	145/20E- 5 8-27-57	coo.

	TOTAL	hardness	CoCO 3	102	173	101	157	199	141	144	151	148	140
nts in an	TDS -	70	Evap 180°C C	151	308	224	303	369	299	221	315	300	293
neral constituents parts per millian	Silis	8	SIO 2	1	9	73	76	74	78	1	73	62	80
Mineral constituents in parts per millian		Boron	8	00 • 0	40.0	0	0.07	0.07	0000	į.	0.10	1	0.02
	Flvo-	ride	F	1	0.1	i	• 0	0 • 2	0	0	0 • 1	-	0.0
	ź	trate	NO 3	14.0 0.23	5 0 0 0 0 2	15.0	32.0	41.0 0.66 13	25.0	27.4 0.44 11	28.0	0.10	16.0 0.26 6
	Chlo	do r	ū	0 2 9	0.82	0.28	0.51	26 0 • 73	24 0 68	24 0•68 17	24 0•68 15	0 2 8 2 0 2 0 2 0	200.56
milligrams per liter equivalents per millian percent reactance value		Sulfate	504	0.15	0.31	0 4 0 8 0 8	13	17 0 . 35	15 0 • 31 8	13 0.27	0 • 3 5	0.12	9 0 19
milligrams per liter equivalents per mill percent reactance v	Bicar-	banate	нсо з	132 2.16	212	138 2•26 79	173 2•84 69	215 3•52 67	162 2.66 66	2 158 - 59 65	180 2.95 67	183 3.00 75	167 2•74 67
Εŏŏ	Carbon-	ote	co 3	0	0	0	0	0	0	0	0	0	0.33
c	Patos-	si e	×	5 0.13	0.13	n & n	0.18	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18	0.15	0.15	0.10	0.15
Mineral Canstituents in		Sodium	Na	17 0•74 25	1.04	0.83	21 0•91 22	1.17	1.04	1.13	1.22	0.96	1.09
Mineral Co	Magne-	Enis	Mg	12 0 • 99 34	1.00	1.07	1.0 1.0 3.5 3.5	1.23	1 932	1.32	1.32	1.40	1-40
		Colcium	S	21 1.05 36	1.90	0.95	1 • 0 0 0 0 0 0 0	2.74	1.50	1.55	1.70	1.55	28 1•40 35
Specific conduct-	auce	(micro- mhas	at 25°C)	289	1	285	425	531	415	1	448	400	383
		= _		7.6	7.8	8 • 0	7 • 8	7.5	7.7	7.6	7.8	7.7	8 • 6
Tamp	when	Sampled		71	1	76	74	70	71	1	73	;	72
		Agy.	Coll.	1 M 5050	1 M 5702	1 M 5000	5050	1 M	1 1 M 5050	1 1 M 5060	1 1 M 5000	1 1 M 5702	1 1 M 5050
State Well		Date Sampled.	Time	145/20E- 5H 6-10-64	145/20E- 8A 5- 2-47	- 8A 10-19-51	- 8A 4-15-59	7-16-63	14S/20E- 9N 1 5-12-52 505	- 9N 1 8-27-57 500	4-15-59	14S/20E-10M 1 5- 2-47 57	-10M 1 8-30-51 50

	= 1	۳	140	129	31	0	34	9	2	7		크
	TOTAL		17			11	~	276	16	15		13
ents in lion	105 Popurado	Evap 180°C	287	252	178	229	260	437	303	237		250
neral constituents ports per million	Silit	sio 2	80	67	1	78	73	74	36	1	1	63
Mineral constituents in ports per million	Boron	æ	0.50	0.54	0000	0.57	0 • 0	0	0 0	1	-	900
	-Fluo-	IL.	0	i	;	0	0	0	0.2	0	1	0 • 1
	.i. Z	ς 0 2	22.0 0.35	14.0	20.0	9 8 0 16	111.0	25 ° 0 0 • 40 6	16.0	25•3 0•41	26.0	16.0
	Chlo	ō	0.51	0.37	0.31	0.20	16 0 • 45 13	1.35	40 1•13 22	15	1	0.31
milligroms per liter equivalents per million percent reoctonce volue	Sulfote	50 4	0.19	0.17	0.12	0.08	0.17	18 0 • 37	10 0.21	13	1	1.30
milligroms per liter equivalents per million percent reoctonce volue	Bicar-	HCO 3	172 2 • 82 73	172 2•82 79	158 2•59 78	151 2•47 85	169 2•77 78	283 4•64 69	212 3.47 68	204	1	2.77
	Carbon-	8	0	0	0	0	0	0	0	i	ł	0
	Potas-	¥	0 130	0.10	0.10	0.13	0.15	0.18	0.10	7	1	0 • 10 0 • 10
Mineral Constituents in	Sodium	Ž	1.00	19 0.83	0.74	0.65	0.83	1.17	1.17	25 1.09 25		25 0•96 26
Mineral Co	Mogne-	6₩	1.40	1.23	1.32 1.32 38	1.15	1.53 1.23 34	18 1•48 22	1.73 34	18 1.48 34	1	1.32
	Colcium	ა	28 1.40 36	1.35	26 1.30	21 1.05 35	29	81 4: 004 59	42 2•10 41	1 . 653	1	1.30
Specific conduct-	(micro-	mhos ot 25 C)	378	347	340	277	367	672	511	;	-	359
	I,		7.6	7 • 8	7.8	7.7	8	7 • 7	8 • 1	ω •	1	7.5
Temp.	Sompled	u. 0	1	ŀ	73	1	73	1	1	1	73	1
		Agy. Coll.	1 M 5000	1 M 5200	1 M 5050	1 M 5000	1 1 M 5050	± 5000 €	2 M 5000	1 M 5060	1 M 5050	5050
State Well		Dote Sompled Time	14S/20E-10M 10-17-51	14S/20E-14F 10-17-51	-14F 1 M 6-10-64 5050	145/20E-15M 1 10-17-51 50	-15M 5-16-63	14S/20E-19A 7-17-63	145/20E-34R 2 M 8-22-63 5000	145/21E- 6E 11-19-62	5-16-63	10-29-63

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in			milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per millian percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	ents in ion	
	Sampled	I	ance (micro-	Colcium	Magne.	Sodium	Patas-	Corban.	Bicar- banate	Sulfate	Chlo	rote trote	Fluo-	Boran	Sili:	Computed	TOTAL
Date Sampled Agy. Time Coll.			mhos at 25°C)	ڻ ٽ	W ₉	Ž	×	80	HCO 3	504	ō	NO 3	u.	80	SIO 2	Evop 180°C	% CoCO 3
14S/21E- 9R 1 M 5-28-63 5050	71	ω •	452	1.95	21 1•73 36	1.09	0.05	0	219	0.31	15	21.0	0 • 1	0 • 0 5	47	293	184
14S/21E-13B 1 M 9- 7-56 5050	1	7.3	500	1.55	33 2 44	1.87	0.08	0	213	1.64	0.65	21 • 0 0 • 34 6	0	0.01	89	406	213
14S/21E-23F 1 M 6- 4-64 5050	1	8 • 4	434	1.50	1.56	1.30	0.08	0.13	196 3•21 73	0.50	12 0 • 34 8	12.0	1	0000	1	230	153
14S/21E-27R 1 M 7-24-57 5050	69	7.5	694	38 1 • 90 39	1.56	1.30	0.10	0	226 3•70 74	23 • 48 10	21 0.59	13.0	0	0.05	09	319	173
14S/21E-30N 1 M 6-13-63 5050	1	7.9	381	1 0 4 0 0	1.32 34	21 0.91 24	0.08	0	162 2.66 70	0.15	24 0 • 68 1 8	19.0 0.31 8	η • •	0.24	0 4	241	144
14S/21E-34J 1 M 9- 7-56 5050	1	7.6	281	22 1•10 37	11 0.90 31	0.87	0 0	0	134 2.20 75	0.19	0 4 0 4 0 0 0	10.0	0 • 1	0 • 0	64	204	100
14S/22E- 18 1 M 7-21-60 5050	8 9	0	242	1,05	9 0 • 7 4 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.03	0	1.67	22 0•46 18	0.20	11.0	0 • 2	90•0	4 0	185	06
145/22E- 4R 1 M 9- 7-56 5050	1	∞ • ⊔	270	18	1.23	18 0•78 26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	160 2.62 88	0.15	0.14	4.3	0	00 • 0	47	195	107
145/22E- 9P 2 M 6- 4-64 5050	42	7.9	256	22 1•10 39	10 0.82 29	20 0.87	0.05	0	140 2.29 84	0.15	0.17	7.2 0.12	1	00 • 0	1	143	96
145/23E- 3G 1 M 6- 4-64 5050	70	7.0	192	20 1.00 52	0 9 8 8 8	0.30	0.03	0	92 1•51 79	10 0•21 11	0 • 11	0 • 0 8 0 4	+	0000	1	99	79

				Specific					Ε	milligrams per liter	er liter				Mineral constituents in	onstitue	ints in	
State Well Number		Temp.		canduct-		Mineral C	Mineral Canstituents in		ŭă	equivalents per millian percent reactance value	equivalents per millian percent reactance value				parts	parts per million	.uo	
	<u> </u>	Sampled	I.	(micra-	Calcium	Magne- sium	Sodium	Patas- sium	Carban- ate	Bicar- bonate	Sulfate	Chlo-	N: trate	Fluo- ride	Вогоп	Sil;	TDS Computed	TOTAL
Date Sampled A	Agy. Coll.			mhas at 25°C)	J	6W	ž	¥	° CO	нсо з	SO 4	ō	_ε ο z	L.	8	SIO 2	Evap 180°C	os CaCO 3
14S/23E- 8D 1 8-13-63 50	5000	89	7 • 3	215	16 0.80 41	10 0.82	0.30	0.05	0	1.56	0.15	5 0 • 14	9 • 6 0 • 1 5 8	0	0000	26	129	81
14S/23E-20F 2 8- 4-59 50	5050 5050	16	8 • 1	191	1	1	1	1	0	108	1	0.06	1	1	1	i		74
14S/23E-33C 1 M 9-15-58 5050	ΣΟ	70	7.9	367	34	13 1.07 31	14 0•61 18	0 0 0	0	114	44 0 • 92 26	0.17	32.0 0.52 15	• 5	0 • 0	id O	215	139
145/24E- 9P 3 6- 4-64 50	5050 5050	76	7.6	349	1.60	1.07	0.70	0 0 0	0	161 2.64 78	0.17	0.23	22.0 0.35 10	1	0	1	181 226	134
14S/24E-14B 1 7-21-60 50	3 1 M 5050	65	7 • 8	239	20 1 44	10.82	0.39	0.05	0	1.23	32 0.67	0.145	21.0	0	0	29	165	91
145/24E-36L 1 M 8- 8-63 5000	M 000	02	₹• 5	244	1 • 90 40	1.40	31 1.35 29	0.08	0	218 3•57 76	0.23	14 0•39 8	30.0	0 0	0 9 •	20	302	165
155/17E-14G 1 M 2- 4-53 5050	Σ09 200	1	7 • 7	545	1 900 900 900	0 • 7 4 1 5	2.57	0 10	0	140 2 • 29 46	14 0.29 6	2.43	0.01	0 • 1	0	53	327	120
-146 1 M 4-20-54 5050	Σ O 3	46	7•7	2300	203 10.13	3.54	167	10 0.26 1	0	164 2 • 69 13	27 0 . 56	620 17.48 84	2.6	0	0.26	62	1216	684
-14G 1 9-29-55 50	5050 5050	1	1	5590	1	1	602	1		i t	1	1790	1	1	1	1		1300
-14G 1 10-18-55 50	1 M 5050	7.1	1	8320	ł	1	946	1	1	t t	1	2700	1	1	2 • 70	i		2100
DWR 1982				STATE	OF CALIFOR	SNIA - THE	RESOURCES	AGENCY	OF CALIFG	RNIA - DE	PARTMENT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES					

AREA

FRESNO - MADERA

State Well	Temp		Specific conduct-		Mineral Co	Mineral Canstituents in		E 9 0	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	ants in ian	
-	Sampled	Ξ	ance (micro-	Calcium	Mogna- sium	Sodium	Pates-	Carbon-	Bicar- banate	Sulfote	Chloride	N: frofe	Fluo-	Boran	± 8	Computed	TOTAL
Date Sampled Agy. Time Coll.	u.		mhos at 25 C)	ß	Mg	Ž	×	c o ₃	нсо з	50 4	5	ε 0 2	u.	æ	510 2		°° c
15S/17E-14G 1 M 9-27-56 5050	02	1	397	1	1	3.48	-		1	1	1.66	1	1	0.08	1		11
-14G 1 M	62	7.5	413	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8	3.48	0 10	0	128 2•10 54	40.08	1.000	0.02	0 • 5	0.04	9 9	282	12
-14G 1 M 7-30-58 5050	80	8 5	456	0 35	0	3.91	0.10	0.27	138 2•26 51	0.04	1.80	1.0	0	0.16	99	310	18
-146 1 M 7-13-59 5050	105	7.4	645	0.65	0 • 25	112	0.10	-	133 2.18 37	0.08	3.58	0 • 3	0 4	0.01	09	98.89	45
-14G 1 M 7-21-60 5050	1	8•1	885	1.55	9 4 4 0	136	4 0•10 1	0	116	0.08	215	0.0	0 4	0.20	79	518	102
-14G 1 M 8-22-63 5000	1	89	855	1. 1. 1.5	0.16	141 6•13 81	0.13	0	138 2•26 30	0.06	186 5 • 25 69	0	0 4	0.16	41	624	99
15S/17E-15H 1 M 4-20-54 5050	1	8	1090	0.60	0.16	217	0.13	0	244 4•00 38	24 0 0 50	212 5.98 57	0.01	e •	0.77	67	099	98
-15H 1 M 10-18-55 5050	73	1	1070	1	1	214	}	1	1	1 1	192	-	1	1.40	-		35
-15H 1 M 7-31-58 5050	74	0 8	1080	0 • 60	0.08	214	0 0 13	0	252 4 • 13 40	24 0 • 50 50	202 5•70 55	0•1	4.0	1.80	67	651	34
-15H 1 M 7-13-59 5050	72	7.4	1090	0.50	0.08	222 9•65 93	0.10	0	248 4•06 40	26 0 • 54 5	198 5 • 58 55	0.07	9 • 0	2.00	61	647	29

	_												7
	TOTAL	200°CO	28	84		86	80	89	79	87	113	rv o	
ents in lion	Computed	Evap 180°C	642	257			255	253	252	278		265	
neral canstituents parts per million	i <u>;</u> 8	SIO 2	29	77	1	1	75	70	74	34	1	70	
Mineral constituents in parts per million	Boron	80	1.40	40.0	-	1	0	60.0	0.07	0000	0.07	0 • 0	
	Fluo-	u	0 •	0 • 1	1	1	0 • 1	0 • 2	0.2	0	ł	0 • 5	1
	N: trate	NO 3	0.01	8 • 2 0 • 13	1	1	7.7	8 0 0 1 3 4 4 4	7.9	13.0	1	4 • 0 • 0 × 2	FCOURTER
	Chlo- ride	ס	201 5•67 56	28	0.82	32	27 0•76 23	0.76	0.71	0.71	27	1.007	OE WATEP P
milligrams per liter equivalents per million percent reactance value	Sulfate	SO 4	0.25	0.12	0.12	-	0.15	0.12	0.10	0.08	0.17	0.19	DADTAKENIT
milligrams per liter equivalents per mil percent reactance v	Bicar- banate	HCO 3	235 3.85 40	136 2.23 68	1	1	137 2.25 69	142 2•33 70	140 2•29 71	144 2•36 67	1	136 2•23 63	Allyac
E & C.	Carbon- ate	00	0.20	0	1	į į	0	0	0	0.17	1	0	20110
_	Patas-	×	0.13	0.18	1	i	0.18	0.18	0.18	0.18	1	0.18	AGENION
Mineral Canstituents in	Sodium	ž	216 9•39 93	1.00.00	1	1.74	36	1.52.2	35 1.52 46	38 1.65 46	1.17	2.09 61	STATE OF CALLEORNIA THE BESOIBLES ACENCY OF CALLEORNIA DEBABTMENT OF WATER RECOLLEGE
Mineral C	Magne- sium	6W	0	0.58	1	i	0.49	0.41	0 • 9 10 10 10	0 • 49	1	0.16	DAILA TUE
	Calcium	3	0.08	1.10	1	1	22 1.10 33	1.25	1.25 1.35 38	1.25 1.35 35		1.00 1.29	051147 30
Specific conduct-	micro-	mhos at 25 C)	1007	333	338	2,962	68.83	346	326	349	377	372	CTATE
	Ξ.	-	8•4	7.8	1	-	7.3	8 • I	ν ∞	ω •	1	7 • G	
Тетр.	Sampled	u.	73	73	1	74	74	74	72	74	1	7.5	
_	-	Agy. Coll.	H 1 M 5050	6 1 8 5050	G 1 M 5050	G 1 M 5050	G 1 M 5050	G 1 M 5050	G 1 M 5050	G 1 M 5020	6 1 N 5631	G 1 M 5050	
State Well		Date Sampled Time	155/17E-15H 7-19-60	155/18E-16G 1 M 8-13-53 5050	-16G 1 5-24-54 50	-16G 7-28-55	-16G 8- 6-57 5	-16G 7-13-59	-16G 7-19-60 5	-16G 1 7-30 - 62 50	-166	155/18E-20G 8-13-53	DWR 1982

	TOTAL	coco 3		62	60		,0 co	70	92	190	184	100
ants in	TDS Camputed	Evap 180°C			278		277	280	251	549	3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	255
neral constituents parts per millian	: 8 ::	SIO 2	-	i	71	i	4 9	6 9	0,0	70	47	1
Mineral constituents in parts per millian	Boron	В		i	0 • 0 3	-	90•0	0.14	0	0	0.07	0.00
	Fluo-	LL.	-	1	0 • 2	-	0 • 3	0 • 3	0.2	0 • 1	0 • 2	1
	Ni: frate	NO 3		1	4 • 7 0 • 08 2	1	5 • 5 0 • 0 9 2	5 • 5 0 • 0 9 2	13.0 0.21 6	10 0 • % 0 0 0	5.7	7.1 0.11
	Chloride	ט	1.18	1.18	1.18 32	1.18	1.21	1.18	0.51	1 1 1 1 1	51	0 9 8 5 2 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
milligrams per liter equivalents per million percent reactance value	Suffate	504	0.17	i	0.15	1	0.10	0.17	0.23	0.65	26 0 • 54 10	26 0.54 15
milligrams per liter equivalents per million percent reactonce value	Bicor- bonate	HCO 3	1	1	139 2•28 62	1	143 2•34 61	140 2.29 61	153 2.51 73	331 6.91 75	198 3•25 61	128 2•10 58
t o o	Carban- ats	co 3	1	ŧ	0	1	0	0	0	0	0	0
c	Patas- sium	×	1	1	0.208	1	0.18	0.18	0.18	13	0.18	0.18
Mineral Canstituents in	Sodium	Z O	1	2 9 9 9	2.35	1	2 • 9 • 0 • 0 • 0	2 8 8 8 8 8 8	36 1.57 44	2.17	1.57	33 1•43 40
Mineral C	Magne- sium	Mg	1	1	0.25	!	0.25	0 0 0 0	0.58	3.33	12 0•99 18	0.25
	Calcium	S	!	1	1.00	1	22 1•10 29	23 1.15 30	1.25	3.97	2.69	35 1•75 48
Specific canduct-	(micro-	mhos at 25°C)	377	389	n R	403	402	389	340	758	547	386
	±α		1	1	7.5	1	8•1	ω •	0 • 10	7.6	္ သ	8 • 2
Tamp.	Sampled	٩.	1	73	72	1	74	70	7.1	89	1	71
_	\vdash	Agy. Call.	G 1 M 5001	G 1 M 5050	G 1 M 5050	G 1 M 5001	G 1 M 5050	-20G 1 M -60 5050	A 1 M 5000	C 1 M 5000	M 1 M 5000	A 1 M 5050
State Well		Date Sampled Time	155/18E-20G 1 M 5-24-54 5001	-20G 1 M 7-28-55 5050	-20G 1 M	-20G 1 M	-20G 1 M 7-13-59 5050	7-19-60	155/18E-36A 1 M 8-14-63 5000	155/19E-15C 1 M 8-14-63 5000	155/19E-22M 1 M 8-29-63 5000	155/19E-25A 1 M 6- 4-64 5050

State Well	Teap		Specific conduct-		Mineral Co	Mineral Canstituents in		E 5 6	milligrams per liter equivalents per millian percent reactonce value	milligrams per liter equivalents per millian percent reactance value				Mineral constituents in parts per millian	neral canstituents parts per millian	an ans	
. -	Sompled	=_	(micro-	Colcium	Mogne- sium	Sodium	Potos.	Cerbon- ofe	Bicar- bonate	Sulfote	Chlo-	N: trate	Fluo- ride	Boron	Sili:	Computed	TOTAL
Date Sampled Agy. Time Call.	u.		mhas at 25°C)	კ	Wg	ž	¥	00	нсо з	SO 4	ō	ν 0 Ν	u.	æ	510 2	Evop 180°C	°° CO O O
155/19E-26F 1 M 6- 4-64 5050	1	8 • 4	197	8 0•40 19	0.08	1.52	0.10	0	106	480	0 • 1 1 6	3.000	1	00•0	1	112	24
155/19E-28E 1 M 8-14-63 5000	74	7.6	286	0.95	0.33	3.4 1.48 5.0	0.18	0	120 1•97 69	9 0 19	17 0 • 48	13.0	φ •	000	9	228	49
155/20E- 6L 1 M 8-14-63 5000	67	7.8	584	2.45	24	1.83	0 0 0 0 0 1	0	288 4•72 75	17 0 • 35	27 0 • 76	29.0 0.47 7	• •	0 • 20	ů. O	60 80 80	221
155/20E-10D 3 M 7-30-58 5050	72		614	41 2.05 31	2.14	2 9 9 9 9 5 5	0 0 0 0 0 0 1	0	324 5.31 81	0.19	0.99	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 1	0.12	r S	3 8 6	210
-10D 3 M 7-21-60 5050	1	20 •	501	51 2.54 47	23 1 • 8 9 3 5	0.87	0.08	0.17	215 3 • 52 67	22 0.46	24 0.68 13	26.0 0.42 8	0 • 2	0.10	e G	933	222
155/20E-31K 1 M 9- 8-56 5050	70	⊙ • ∞	372	1 9 9 9 5 2 5 2	5 0•41 11	H B B B B B B B B B B B B B B B B B B B	0.08	0	157 2.57 67	12 0 • 25 6	30.00.85	11.0 0.18	0 • 1	0.10	30	237	118
155/20E-36H 1 M 9- 9-56 5050	67	1	245	21 1.05 19	15 1 23 23	3.09	0 0 8 8 1	0	187 3 • 0 6	31 0.65	51 1.44 26	23.0	0	0.14	39	346	114
155/21E- 2K 1 M 6-15-64 5050	70	8	383	1.40	9 0 • 74	3. 1.61 4.2	0 100	0	168 2•75 73	18 0 37	21 0.59	2 • 4 0 • 0 4	1	0000	1	202	107
155/21E- 3D 1 M 5-21-52 5050	99	7 • 4	139	0 • 45 9	0.41	0 • 11 • 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 5 4	0	74 1•21 86	0.12	0.03	3.0	•	0 • 0 3	04	113	4
- 3D 1 M 7-22-59 5050	ω ω	0	384	1	1	•	1	0	1 • 8 8 4	1	16	1	1	1	1		139
DWR 1982			STATE	STATE OF CALIFORN		RESOURCES	AGENCY	OF CALIFO	RNIA - DE	PARTMENT (A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES					

Mineral constituents in parts per million	TOTAL	0 0 3 CO 3	249	143	144	8 8	43	74	19	237	136	97
	\vdash		94		N O	Ŋ	ω N		32	73 2		0 %
	IDS	Evop 180°C	52	32	m m	88	68		8 1	47		170
	Silis	SIO 2	1	99	ω ω	8	+	1	1	40	1	1
	Boron	ω	0.10	0.11	0.07	0.11	0000	1	0000	0.10	1	00.0
	Fluo-		1	0 0	0 • 2	0.1	1	1	1	0 • 2	1	1
milligrams per liter equivalents per millian percent reactance value	-iZ	, o	39.0	21.0 0.34	19•0 0•31 6	16.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0.8 0.01 2	26.0 0.42 6	!	28.0 0.45 15
	Chlo	ਹ ਹ	1.02	34 0 96 18	0.93	42 1•18 21	m & 9	0.06	0.03	1.95	16	0.31
	Sulfate	\$0	1.08 1.12	26 0 .54	29	21 0 • 44 8	0.12	1	0.04	41 0 85 11	1	0.15
	Bicor-	HCO ₃	362 5.93 68	205	219	222 3•64 66	1.00	0.98	32 0 52	246 4•03 54	3.21	131 2•15 70
	Carbon-	Š	0	0	0	0	0	0	0	0.27	0	0
	Potas-	×	0.13	0.08	0.10	0.10	0.05	1	0.03	0.10	1	0.05
	Sodium	ž	8 8 8 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.93	2.00.4	3.61 66	6 e e o	1	0.17	64 2.78 36	1	1.09
	Mogne-	. ×	1.48	0.90	10 0.82 16	1.07	0.25	1	0.08	1.15	1	9 0 • 7 4 2 4
	Colcium	S	3.49	39	2.05 39	14 0 13	12 0.60 47	1	0.30	3.59	1	24 1.20 39
Specific conduct- ance (micro- mhos at 25 C)			834	510	550	533	138	208	29	731	644	319
	I.			ω •	8 • 2	8 • 2	7.2	7.8	7 • 7	χ • 4	8 • 2	7.9
Temp.	Sompled		02	78	73	99	99	1	63	+	1	69
State Well Number Date Sampled Agy. Time Coll.		5050	L 1 M 5050	1 M 5050	5050	J 1 M 5050	5050 5050	1 1 M 5050	5000 5000	5050 5050	5050	
		155/21E-17F 6-15-64	155/21E-24L 7-21-60	-24L 8-12-63	155/21E=32R 1 9- 9-56 50	155/22E- 1J 1 6-12-64 505	155/22E- 3D80 7-21-59 505	155/22E-10H 1 6-15-64 505	155/22E-33G 1 8-21-63 50G	155/23E-33C80 7-22-59 505	15S/24E- 3A 1 6- 4-64 505	

Solding Policy Contains Blance Solding Nie Policy Policy Contains Blance Solding Nie Policy	Specific canduct-	Specific canduct- ance			Mineral Co	Mineral Constituents in			milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per millian	neral constituents parts per millian	ents in I'an	
14	I _Q		Colcium		Magne- sium	Sodium	Potas.	Carban- ate	Bicar- bonate	Sulfate	Chlo-	r g t	- ebir	Boron	i <u>‡</u> 8	Computed	TOTAL hardness
0.677 0.02	at 25°C) ca		రి		Mg	°Z	¥	co ₃	нсо з	504	D	NO 3	LL.	æ	S10 ₂	Evap 180°C	CaCO 3
1.35 0.08 0.235 0.29 0.23 32.0 0.2 0.00 58 362 0.65 0.6	68 7.5 385 3.85 1.85		37 1.85 47		1,15	71 80 71	0	0	16 • 7 7	÷ 0 €	निल्न	• 4 1	•	00.0		~	150
0.65 0.05	69 7.6 556 2.50 45		2 .50		2 6 2	6 6 V	0	0	23	9.0	1.62	• r2		00.0	rU	362	207
	62 7.8 270 24 1.20		1.20		0.82	L 0 0	•	0	12 •9 7	то- по-	. 2	13.0 0.21 8	i	. 2	i	146	101
0.96 0.05 0.05 0.127 0.45 0.45 0.90 0.05 58 220 1 21 2.2 2.08 0.10 0.45 0.91 0.02 0.05 58 221 21 0.91 0.05 0.08 0.44 0.45 0.32 0.06 59 228 2.26 0.03 0.20 249 0.44 0.48 0.32 0.09 292 1 2.26 0.03 0.20 4.08 0.44 0.48 0.32 0.09 292 1 2.26 0.03 0.20 4.08 0.44 0.48 0.32 0.09 292 1 2.26 0.03 0.04 0.44 0.48 0.32 0.09 292 1 1.35 0.08 0.44 0.48 0.32 0.09 292 1 1.35 0.08 0.44 0.48 0.32 0.09 292 1 2.44 0.08 0.44			1		1	1	i	1	1	!	1		1	0 • 0 8	<u> </u>		
2.21 0.05	69 8.1 289 27 1.35 45		1,35		8 0.66 22	200	0	0	127 2•08 71	•	т 4 п	19.0	•	0.05	58	220	101
2.26 0.03 0.20 4.08 0.44 0.48 0.32	72 7.9 313 27	1.35			0.66	01 Q (U)	0	0	128 2•10 71	0	н 4	20.0	•	90•0		220	101
31 32 38 23.0 360 27 1.35 0.08 4.65 0.67 1.07 0.37 336 27 20 1 69 10 16 915 59 62.0 0.1 1.10 45 1603 98 5.44 0.05 3.21 19.05 1.66 1.00 45 1603 98 176 124 760 60 1.40 61 7.65 2.03 15.82 1.69 1.40 61	8.5 507 32 1.60 29	1.60			20	N 01 4	0	• 2	249	4.	14.	0.0	•	0		0	162
125 2 0 196 915 59 62.0 0.1 1.10 45 1603 98 5.44 0.05 3.21 19.05 1.66 1.00 1.00 45 1603 98 17.65 124 760 60 1.40 61 7.65 1.69	68 8.0 653 68		89 • 89 • 49		2.06	•	0	0	284 • 65 69	•	<i>w</i> 0 <i>⊓</i>	23.0 0.37 5	i	0000	-	3 6 0 376	273
176 124 760 60 1,040 61 7,065 15,082 1,069 1,069	7.7 2010 147 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	147		-	150 2•34 49	125	•	0	196 3•21 13	6	n 0	62 1 0 0 4	0 • 1	-	45	1603	985
	7.5 1721		1		1	176	1	1	124 2.03	ru.	9 9	1	1	1.40			615

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

8 510
o _N
so 4
HCO 3
¥
ž
w ₉
S
mhos at 25°C)
mhos at 25°C)

. <u>s</u>	TDS TOTAL Computed hardness	- 11	250 75	277 134	238	117	166 64	110 24	24	275	99	9 6 8
Mineral constituents in parts per million	Sili-		25	31	1 8	1	39	90	-	1	1	17
Mineral co	Boron	80	0.02	90.0	000	1	0	0.03	1	000	1	0.03
	Fluo- ride	u.	0 • 2	0 •	1	-	0 •	0	i	i	0	e •
	rate s	۳ 0 2	1 • 8 0 • 0 3	24 • 0 0 • 39	7 • 2 0 • 12 4	1	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	18.0 0.29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 0 1
	Chloride	ō	1.24	1.41	1 • 1 • 1 • 3 • 5	36	16 0 • 45 20	0.00%	1	25 0 • 71 16	0 0 0	0.06
milligrams per liter equivalents per million percent reactance value	Sulfate	\$0.4	38	24 0 • 50 12	19 0•40 12	20 0.42	0.23 10	0.04	1	18 0.37	0 0 4 %	e 9 • 0
milligrams per liter equivalents per million percent reactance value	Bicar- bonate	нсо з	113	117	98 1•61 49	134	98 1•61 70	1.34	1.13	182 2•98 69	59 0 97 78	71
E & &	Corban-	8	0	0	0	0	0	0	0	0	0.13	0
	Potas-	¥	0.03	0.10	0.13	0.05	m m m	0.03	ł	0 0 0 7	0.03	0.03
Mineral Constituents in	Sodium	Z	2.35	H W W W W D N	1.17	1.78	1.00	22 0 96 65	1	1.36	1.28	28
Mineral Co	Magne.	8₩	0	0.33 4 %	46.0	0.58	0.08	0.08	†	0 0 8 2 1 8	0	0
	Calcium	ß	1.50	2.35	35	35	24 1•20 51	8 0.40 27	{	41 2.05 45	0.05	0.15
Specific canduct-	ance (micro-	mhas ot 25°C)	421	494	359	394	246	141	146	450	ł	134
	Ŧ,	ì.	L•L	7.9	8 • 1	7.8	0 0	7.9	7.9	8 • 2	8.0	7.4
Temp.	Sampled	<u></u>		73	73	70	+	72	74	71		75
State Well		Date Sampled Agy. Time Coll.	16S/18E-35Q 2 M 8- 5-59 5050	165/19E- 3Q 1 M 8-29-63 5000	16S/19E- 5P 1 M 6- 4-64 5050	16S/19E- 7E 1 M 5-27-54 5000	165/19E- 8R 1 M 8-14-63 5000	16S/19E-24R 1 M 9- 8-56 5050	-24R 1 M	16S/20E- 2P 1 M 6- 4-64 5050	165/20E-18G 1 M 11- 7-61 5060	-18G 1 M 8-16-63 5000

AINERAL ANALYSES OF GROUND WATER
FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral C	Mineral Constituents in		E	milligroms per liter equivalents per mill percent reactonce v	milligroms per liter equivalents per million percent reoctonce volue				Mineral constituents in parts per million	neral constituents parts per millian	ants in ion	
	Sompled	Ξ.	(micro-	Colcium	Mogne- sium	Sodium	Potos- sium	Carbon.	Bicar- bonato	Sulfote	Chlo- ride	Ni. frote	Fluo- ride	Boron	Sili	Computed	TOTAL
Date Sampled Agy. Time Coll.	u. 0		mhas at 25°C)	3	W	ź	¥	8	HCO 3	504	ū	S O S	u.	60	SIO-2	Evap 180°C	°° C°CO 3
16S/21E-21F80 M 7-30-62 5050	69	8.2	228	1.10	0	1.13	0 0 0	0	102	0.17	0.34	12.0 0.19 8	0.1	00.0	33	166	50
165/21E-30R 1 M 9-17-58 5050	70	7.9	293	1.35	0.08	1.17	0 0 2 2	0	1.54 1.54	0.17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.0 0.26 13	0 • 1	0.16	22	151	72
16S/21E-35P 1 M 8- 9-63 5000	69	7.9	482	2.54	10	1.00 30 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	3.11 64	19 0•40 8	36 1.02 21	22.0 0.35 7	0 • 2	00 • 0	37	306	168
165/23E- 5C 1 M 2-27-61 5050	68	8 • 1	609	1	1	2.57	1	0	293	1	0 65	1	ì	0.07	-		187
16S/23E- 8P 1 M 9-13-63 5000	67	7 • 8	327	30	0.66	21 0.91 29	0 0 0	0	127 2.08 67	21 0 • 44	10	19.0 0.31 10	1	0000	1	174	108
175/16E- 2E 1 M 8-22-51 5000	76	0 •	1720	147 7.22 38	1.58	232 10.10 53	0.14	0	130 2.27 12	719 14•76 78	1.95	0.01	4 • 0	2.04	50	1300	433
17S/17E- 2N 1 M 7-21-54 5050	1	7.6	1930	98 4.89 24	23	315 13.70 67	0.10	0	235	622 12.95 65	3.07	0.00	0	1.20	1	1289	939
175/17E-23Q 1 M 8-15-51 5050	76	6 • 8	1270	3.49	20	164	1	1	116	476 9.91	1.33	8	1	0.50	1		257
-230 1 M 8-13-52 5050	92	7 • 8	1280	3.29	23 1.89 14	183 7•96 60	0.08	0	115	487 10•14 76	1.24	0 • 2	0.2	0 .50	8 2	∞ ⊅ 30	259
-230 1 M 7- 8-53 5050	75	7.7	1210	63 3•14 25	1.56	181 7.87 62	0 0 0 0 5	0	121 1•98 16	449 9 • 35 75	1.13	0 • 3	φ •	1.80	23	839	235

	-			01							-	
	TOTAL	°s C°CO 3		232	254	251	255	249	257	262	265	249
ents in lion	TDS	Evop 180°C				878	0 98	869	858			8 6 8
neral canstituents parts per million	: 8 : 8	SIO 2	1	1	1	56	26	25	27	1	1	25
Mineral canstituents in parts per million	Boron	œ	0.71	0.78	0.72	06.0	0.81	0.92	0 • 70	0.73	0 80	0.94
	Fluo-	u.	-	1	-	0 • 2	0 • 2	• 5	• •	1	1	0
	rote t	ε 0 2	1	1	1	0	0 • 2	0 • 2	0 • 1	1	1	0 • 0
	Chlo- ride	ō	1.13	1.18	1.16	1.30	1.33	1 • 4 ¢ 10 10	1.47	1.35	1.41	20 67 20 178 2 0 119 468 48 0.01 3.34 1.64 7.74 0.05 1.995 9.74 1.35 0.01 26 13 61 15 75 10
milligrams per liter equivalents per millian percent reactance value	Sulfate	50 4	1	1	}	470 9•79 75	450 9•37 72	458 9 • 54 74	443 9•22 72	470	1	468 9•74 75
milligrams per liter equivalents per mill percent reactance v	Bicar- banate	нсо з	1	1	1	121 1•98 15	116 1•90 15	127 2.08 16	130 2•13 17	1	1	119 1•95 15
F 0 C	Carbon- ote	003	1	1	-	0	11 0.37	0	0	-	1	0
	Potos- sium	¥	1	1	1	0 0 2	0.05	0.05	0.10	0.05	!	0.05
Mineral Canstituents in	Sodium	ž	180	178	167	186 8•09 61	178 7•74 60	186 8 • 09 62	177	172	176	178 7•74 61
Mineral C	Magne- sium	Wg	1	1	i i	1,73	1.81	1.73	1.64	1	1	20
	Colcium	ß	1	1	1	3,29	3.29	9 0 0 0 0 0 0 0	3.49	1	1	3.34
Specific conduct-	(micro-	mhas at 25°C)	1190	1210	1210	1250	1260	1220	1270	1290	1340	1220
	Ξa			1	{	8 0	ω •	8 • 1	8 • 0	-	1	8 • 1
Temp.	Sompled		76	76	76	76	76	1	77	76	76	1
_	\vdash	Agy. Call.	Q 1 M 5050	0 1 M 5050	0 1 M 5050	0 1 M 5050	0 1 M	0 1 M 5050	0 1 M 5050	0 1 M 5050	0 1 M 5050	5050
State Well		Date Sampled Time	175/17E-230 7-27-55	-230 6-27-56 5	7-31-57 5	6-26-58	7-15-59	7-19-60	-230 10-17-61	6-21-62	8-22-63	175/17E-25N 7-19-60

	- :	ŝ	m	v	286	ᅼ	20		301	xo	20	<u></u>	20
	TOTAL		OCO	27		291	2,00		36	208	318	35	293
ents in lian	10S Patronted		Evap 180 C		068	916	668 668				936	979	921
neral constituents parts per millian	Sili	3	SIO ₂		23	24	24	1	1	1	24	26	24
Mineral constituents in parts per millian	Boron		8	08.	1.10	0.61	0.75	0 30 •	0 . 75	8 9 •	0 8	0 8 8 5	0 • 86
	Fluo		u.	-	0 • 2	m •	o •	!	1	i	0.5	0.2	0.5
	÷ Ž		NO 3	1	0 • 3	→ • •	0	1	;	1	0	0 • 0 0 1	0.04
	Chlo		ΰ	51	1 + 49	1.38	1 + 4 9 1 0 1	1 • 64	1 • 0 • 4	1 • 4 9	1.44	1 • 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1.41
milligroms per liter equivalents per million percent reactance volue	Sulfate		50 4	491	477 9 • 93 75	505 10•51 77	488 10•16 76	1	1	\$ 1	518 10•78 77	541 11.26 76	509 10.60 77
milligroms per liter equivalents per mill percent reactance v	Bicar.		нсо з	116	116 1•90 14	112	1,80	1	1	1	105	100	109 1•79 13
	Carban-	5	co ₃	0	0	0	0	1	1	1	0	0.33	0
_	Potos-		х	t	0.05	0.05	0.03	1	1	1	0.05	0.05	0.05
onstituents in	Sodium		ž	170	1777	17777.570	178 7•74 57	176	174	167	177	175 7•61 52	178 7•74 57
Mineral Constituents in	Magne.		Wg	1.40	1.48	1.73	1.81	1	ŧ,	i	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	22 1•81 13
	Colcium		ვ	82 4 • 0 9	4 85 4 24 31	4 • 0 9 9 0 0	4 82 4 30	1	1	1	4 86 4 30	4 8 6 6 8 0 0	81 4.04 30
Specific canduct-	ance (micro-	mhas	at 25 C)	1300	1320	1300	1130	1310	1330	1280	1350	1410	1290
	I	a .		8 • 9	7.7	7.5	7.6	1	1	1	7.9	ω • •	8 • 1
Temp.	Sompled	, u		77	76	77	76	75	77	75	76	76	76
		Agy.		5050	5050	5050	5050	5050	5050	5050	5050	5050	5050 5050
Stote Well		Date Sampled	E L	175/17E-27R 8-15-51	-27R 1 M 8-13-52 5050	-27R 1 M 7- 9-53 5050	-27R 1 M 7-21-54 5050	-27R 1 M 7-27-55 5050	-27R 1 6-27-56 50	-27R 1 M 7-31-57 5050	-27R 1 M 6-26-58 5050	-27R 1 M	-27R 1 M 7-19-60 5050

State Well	Temp.		Specific conduct-		Mineral C	Mineral Constituents in		E & 6	milligrams per liter equivalents per million	milligrams per liter equivalents per million				Mineral constituents in parts per millian	neral constituents parts per millian	ents in lian	
Number	Sompled	I	ance (micro-	Colcium	Mogne-	Sodium	Polos.	Carbon	Bicar-	Sulfate	Chlo	.i. N	Fluo-	Boron	Sili	TDS	TOTAL
Date Sampled Agy.				ઙ	8 W	ž	×	8 9	HCO ₃	\$04	Ū	, °		60	SiO 2	Evop 180°C	CoCO 3
175/17E-27R 1 M 10-17-61 5050	M 76	2 7 9	1290	3.94	1.97	173	0.10	0	109	482 10.04	1.41	0.01	0.0	0.80	30	168	296
-27R 1 M 4-25-62 5050	76 0		1310	l	8	163	0 0 0 2	+	1	500	1 4 60 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	ł	0.78	1		292
-27R 1 M 8-22-63 5050	75 0	<u> </u>	1370	1	1	172	1	1	1	1	1.44	9	1	0.70	1		301
175/18E-24J 1 M 8-28-63 5000	ΣΟ	8 . 2	1170	0 9 3 2	0	246 10•70 97	0 • 0 3	0	307	1 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	174	0 • 0	.∩. 	96.0	10	651	39
175/18E-350 1 M 10-27-49 5001	M 70	0	1000	1	1	190	i	1	1	1	94	1	1	-	Į,		
-350 1 M	ο ₂ ο σ	0 7.6	1440	37	12	265	1	0	262	328	123	1	1	1.20			142
-350 1 M 7-15-59 5050	M 74	4 8 6 9	1320	2.74	0 0 0 0	238 10•35 75	0.03	20 0.67	294 4•82 35	294	2.23	0000	٠٠ 0	1 • 40	20	862	170
-350 1 M 7-19-60 5050	M 71	1 8 1	1270	53 2.64 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	235 10•22 75	0.03	0	303 4 • 97 36	307	2.26	0.01	φ •	79•0	20	855	165
-350 1 M 6-19-62 5050	M 71	1 8 4	1440	2.79	0.74	258 11.22 76	0.03	0.07	263 4•31 29	387 8 06 55	2 · 8 8 3 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	0 • 2	ω	1.60	20	948	177
-350 1 M 8-26-63 5050	7 7 7 1	8 .5	1,090	1.03	0.90	225 9•78 78	0.03	13	304	235	1.92 1.92	0	9	J • 40	17	756	133
DWR 1982			STAT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	RNIA - THE	RESOURCES	AGENCY	OF CALIFO	DENIA - DE	PARTMENT	OF WATER RI	SOURCES	1				

TABLE E-2 SEMI-CONFINED AQUIFER

MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

	-	- 2	ŭ								
ents in		TDS Camputed	Evap 180°C	194	292	9 0 8	242	181 186	174	205	144
anstitu	parts per million	: <u>;</u> 8	SIO 2	41	26	32	t i	24	8 4	1	26
Mineral constituents in	parts p	Boran	89	0.05	1.30	76.0	{	90•0	0.04	00 • 0	0
		Fluo- ride	T.	0.2	1 • 6	1.4	1	0.5	0 • 1	1	0
		Ni- trate	NO 3	1 • 9 0 • 0 3	0 0	0	0	4.4 0.07 3	0	7.4	0.03
		Chlo- ride	ū	0 • • • • • • • • • •	1.02	2.17	0.99	1.04	0.11	0.70	0 0 0 0 0 1
milligrams per liter equivalents per million	percent reactance value	Sulfore	\$0 4	0.35	0.17	44 0 92 11	22 0 • 46 10	20 0 • 42 16	0.27	21 0 45	0 34 34
milligrams per liter equivalents per mil	ercent rea	Bicar- banate	нсо з	84 1•38 51	3 • 26 68	306 5 • 02 59	159 2.61 58	1.16	149 2•44 87	142 2•24 64	0000
E W		Carbon.	co 3	0	0.37	0.00	0.47	0	0	0	0
		Patos- sium	×	0.03	0.03	0.03	0	0.03	0.03	0.11	0
Mineral Constituents in		Sodium	Na	36.1.57	101	168 7 • 30 84	91 3.96 98	41 1.78 66	61 2.65 92	20 0.87 23	0.35
Mineral C		Magne- sium	Mg	0.08	0.16	9 0 0 6 6	0	0	0	0.90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Calcium	ვ	1.10	0.30	0.85	0.10	0.90	0.20	1.97	1,60
Specific	ance	(micro-	at 25°C)	303	520	818	435	307	275	394	500
		I _Q		7.5	8 . 6	8.5	ω	7.5	7.8	7.9	7.7
	Temp.	Sampled		7.1	6 8	1	70	1	99	69	1
State Well	Number	-	Time Coll.	175/19E- 1G 1 M 8-14-63 5000	17S/19E-16H 1 M 8- 2-55 5050	175/19E-21P80 M 8- 3-55 5050	175/19E+27A 1 M 8-19-63 5000	175/20E- 2M 1 M 8-28-63 5000	17S/20E-22P 1 M 8-27-63 5000	17S/21E- 1J80 M 10- 7-63 5050	175/21E-17P 1 M 8-13-63 5000

U

CaCO 3

TOTAL

State Well		Tamp.		Specific conduct-		Minerol Co	Minerol Constituents in		E 6 0	milligroms per liter equivolents per million percent reoctonce volue	milligroms per liter equivolents per million percent reactonce value				Minerol constituents in ports per million	nerol constituents ports per million	ents in	
NOMber		Sampled	I	(micro-	Calcium	Magne	Sodium	Patas-	Carban	Bicor-	Sulfate	Chlo	.: N	Fluo-	Boran	± 8	Camputad	TOTAL
Dote Sampled Time	Agy. Coll.			mhos at 25 C)	3	5 W	2		9	HCO ₃	504	ō	ν 0 2	L	80	sio 2	Evap 180°C	00°CO 3
105/14E-11J 10-22-64 5	5000	1	8 5	331	1	8	1	1	0.13	151	1	12 0 34	1	1	1	1		112
10S/14E-19R 1 10- 7-64 500	5000 5000		80 •	399	å t	1	1	1	0.13	121	1	1.30	1	ł	1	1		95
10S/14E-33J 2 M 10-18-64 5000	2 000 000	68	8 • 4	372	i	1	1	1 8	0.13	98	1	1 5 6	§ 1	1	1	1		112
11S/14E-30H 1 M 10- 7-64 5000	1 M	67	7.9	316	21 1,05 35	0.41	1 6 8 8 8	0 10	0	133	4 80 0	21 0•59 20	0 10	1	00.0	1	159	73
12S/11E-13D 2 M 8-13-51 5000	2 M	1	7.5	1590	1	1	286	1	0	192	450	100	1	ŧ	2.40	1		196
12S/11E-23R 2 M 758 5050	2 M	1	8	2520	118 5.89 23	62 5 10 19	348 15•13 58	0 • 0 5	0	154 2.52 10	512 10.66	459 12.94 49	2.1	0.3	3.70	30	1613	550
12S/11E-25G 1 M 8-14-51 5000	1 M	1	7.3	2570	127	58	365	0	0	196 3•21	583	415	1	1	3 • 90	1		556
12S/12E-18D 1 M 8-14-51 5000	1 M	8 2	7 • 8	2010	1	1	385	1	0	158	550	196	1	1	2.40	1		172
-18D 1 M 4-10-56 5050	1 M	80	7.9	2134	2.25	18 1•48	397 17•26 82	0 8 9	0	165 2.70 13	581 12•10 58	213	0.1	0 4	1.90	32	1373	187
12S/12E-19N 1 M 8-13-51 5000	1 M	81	7 • 8	1390	1	1	242	1	0	218	400	2.37	1	1	3.40	1		180
DWR 1982				STATE	STATE OF CALIFORN	RNIA - THE	IA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	AGENCY	OF CALIFC	ORNIA DE	PARTMENT	OF WATER R	ESOURCES					

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	_												
	TOTAL	hardness	CoCO 3	173	180	8 8 8	87	464	469	53	52	24	75
ents in ion	TO S	Camputed	Evap 180°C	1513		869	80 R		1689	161	164	174	150
parts per million	, iii	<u> </u>	SIO 2	32	1	51	27	1	36	65	70	69	48
Mineral constituents in parts per million		Boran	8	1.25	2.90	0.43	0.40	2 • 90	3 • 60	00.0	0000	00 • 0	0.13
	dolla	ride	F	1	1	0.2	0 • 2	1	0	0.2	0 • 3	0.1	0.0
	Ž	trate	NO 3		1	1.9	1 • 8 0 • 0 3	1	0 • 2	1 • 5 0 • 0 2 1	0.6	2 • 6 0 • 0 4 2	2.0
	Chla	- Pir	ū	181	180 5•08	1.78	1.78	280	272 7.67 29	17	18 0 51 28	0.51	0.51 27
milligrams per liter equivalents per million percent reactance volue		Sulfate	504	693	600	293	282 5 87 45	713	730 15.20 58	m 9 m	0	0.10	0 • 10
milligrams per liter equivalents per mill percent reactance v	Birny	banate	нсо з	172	176	5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	329 5•39 41	213	217	1.25	1.28	1.29	78 1.28 67
E & 5	1 - C	ate ate	co 3	0	0	0.13	0	0	0	0	0	0	0
_	Potos	Enis Enis	к	-	1	0 0 0 5	0.03	0	0.10	0.080	0.080.4	0.10	0.08
Mineral Canstituents in		Sodium	₹	434	440	266 11.57 87	266 11.57 87	385	385	0.16	0.70	0.74	0.16
Mineral C	Money	sium	Mg	1.56	!	0.41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51	4 700 18	0 • 41	0.33	0.33	0.25
W		Calcium	3	38	1	1.30	1.25	102	4 6.4 4 8 H	0.05	0.70	15 0.75 39	0.85
Specific conduct-	auce	(micro- mhos	at 25°C)	-	2130	1280	1290	2470	2500	191	194	194	209
		= _		7.8	7.6	δ 4	8.2	7.3	7.9	7.6	7 • 8	7.8	7.8
Temp.	when	Sampled ° F		1	83	70	77	79	80	70	72	71	72
		Agy.	Coll.	1 M 5702	1 M 5000	2 M 5050	2 M 5050	3 M	M 1 M 5050	R 1 M 5050	3 1 M 5128	5128	1 M 5128
State Well	Number	pled		2E-21E 5-48 5	-21E	60.	- 25J	-31M		57 E	- 5R 1 6-58 512	10	- 5R
State		Date Sampled	Time	125/12E-21E 2- 5-48	-21E 1 M 8-14-51 5000	12S/12E-25J 2 M 7-22-60·5050	-25J 2 M 8-25-61 5050	12S/12E-31M 1 M 8-14-51 5000	-31 4-10-56	12S/17E- 5R 7-25-57 5	8	7-23-59	- 5R 1 M 8-23-60 5128
	_		_										

			m	30	m	0	0			.0	<u>,0</u>	-4-
	TOTAL	2000 CaCO 3	53	56	118	200	269	147	167	106	186	144
ents in Isan	TDS	Evap 180°C	184									1050
neral constituents parts per millian	: <u>‡</u> 8	SIO 2	83	1	1	ŀ	+	1	- 1	1	1	ω ω
Mineral constituents in parts per millian	Boron	&	0.05	90•0	1.60	4.20	3.10	3.10	09•0	2 • 80	2.70	2.20
	Fluoride	IL.	0.2	1	1	1	1	1	1	1	1	0 • ©
	rate.	S ON	2.03	1	1	ł i	1	1	1	1	ł	0 0 0
	e pir	ō	0.48	17	1.47	342 9• 6 4	90	3.16	3.58	2.26	2.79	80 2.26 14
milligrams per liter equivalents per million percent reactance value	Sulfate	50 4	4 0 0 0 8	1	359	742	484 10•08	458 • 54	477	519	542	480 9.99 64
milligrams per liter equivalents per mil percent reactance v	Bicar- banate	HCO 3	78 1.28 68	{	220	218	170	220	206 3 • 38	204	212	187 3•06 20
E & O.	Carban- ate	8	0	1	0	O	0	0	0	0	0	0.30
	Patas.	¥	0.10	0 0 8	ł	1	1	1	i	1	1	0 0 0
Mineral Canstituents in	Sodium	Ž	16 0.70 38	17	215	415	205	295 12•83	295	310	320	294 12•78 81
Minerol C	Magne- sium	Wg	0.25	1	11 0.90	5.10	2 29	15	18	10	22	1.32
	Calcium	3	16 0.80 43	1	1.45	4 8 8 9 9	2.99	34	37	26	38	31.1.55
Specific conduct-	(micro-	mhos at 25°C)	195	198	1270	2690	1480	1640	1650	1670	1740	1590
	Ŧ,		8 • 0	1	7.7	7.3	7.2	7.5	7.5	88	7.9	8
Temp.	Sampled	<u></u>	72	89	82	81	1	82	48	80	86	1
		Agy. Coll.	1 M 5128	5R 1 M 5128	4N 1 M 5000	5N 1 7 5000	9R 1 M 5000	1 M 5000	5000	5000	5000	5050
State Well Number		Dote Sampled. Time	12S/17E- 5R 7-25-61	8-13-62	13S/12E- 4N 8-14-51	13S/12E- 5N 8-14-51	13S/12E- 9R 8-14-51	13S/12E-10N 1 8-14-51 500	135/12E-22Q 1 8-14-51 50	13S/12E-24N 1 8-14-51 50	135/12E-260 3 8-15-51 500	5-58
		٥٥	125/	∞	135/	135/	135/	135/	135/	135/	135/	m

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

	TOTAL	\$0	C°C0 3	200	238	177	435	354	373	384	459	388	415
ants in	Computed	0	Evop 180 C					3064		3171	3272	3138	
neral constituents parts per million	Sili	3	Sio 2	-	-	1	1	37	-	74	w w	47	1
Mineral constituents in parts per million	Boron		æ	2.60	3 • 80	3.02	1.10	2 • 54	1 • 80	1 • 30	1.50	1.60	1.90
	Fluoride		-	1	1	1	1	0	1	;	• •	0.1	-
	N: trate		NO3	1	1	1	1	0	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 9	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
	Chlo	i	ō	3.95	3.67	131 3•69	1020	1330	1300	1390 39•20 75	1440	1380 38•92 76	742
milligrams per liter equivolents per million percent reactance value	Sulfate		504	584 12.16	713	984	504	520 10.83	502	523 10.89 21	509 10.60 20	477 9.93 19	-
milligrams per liter equivolents per mill percent reactance v	Bicor-		HCO 3	211	233	214	162	145 2 • 38	136	138 2.26 4	136	139 2•28 4	1
įE & č	Carbon-	1	CO 3	0	0	0	0	0	0	0	0	0	1
	Potas-		¥	ł	l	1	i	0.13	1	0.18	0.10	0.15	+
Mineral Constituents in	Sodium		₽	355	390	395	33.48	975 42•39 85	970	1000	1060	1010483.91	1140
Mineral C	Magne		Wg	1.89	2.55	1.73	31.	2 2 3 8 5 5 5 5	1.97	2 - 14	2 • • • • •	1.32	1
Minero	Colcium		3	2.10	2.20	1 . 80	123	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110	111 5.54 11	1195.94	1296 • 44	1
Specific canduct-	ance (micro-	mhos	(2 CZ 1B	1930	2160	2040	4290	5140	5130	5330	5360	5390	5590
	Ξ,	1		7.1	7.5	7.5	7.4	ω •	7.5	7.8	7.5	89 - 12	1
Temp.	when			48	78	88	98	88	88	88	8 6	98	88
State Well		Date Sampled Agy.	1	13S/12E-35N 1 M 8-15-51 5000	13S/12E-36D 2 M 8-15-51 5000	13S/12E-36M 1 M 8-15-51 5000	13S/13E- 9E 3 M 8-14-51 5000	13S/13E- 90 1 M 8-23-51 5000	135/13E-14N 1 M 8-14-51 5000	-14N 1 M 8-11-52 5050	-14N 1 M 7- 7-53 5050	-14N 1 M 7-20-54 5050	-14N 1 M 7-28-55 5050

۹,
ARE/
α
4
_
_
RA
OZ.
U
a
MADE
₹.
_
•
_
O
z
S
ш
FRESNO
li.
-

	TOTAL		412	326	38 83	271	344	153	239	122	103	206
ents in ion	Computed	Evap 180°C										1487
neral constituents parts per million	ilis 8	SIO 2	1	ŀ	1	1	1	ł	ł	1	+	75
Mineral constituents in parts per million	Boron	æ	}	1.50	0 • 10	0 8	1.70	3 • 20	1.90	1.90	0 • 70	1 • 42
	Fluoride	u.	1	1	-	ł	1	1	i	1	ł	ω •
	N:	° 0 Z	!	ł	1	1	1	1	1	1	1	0 0 0 3
	Chlo-	ō	718	1040	1160	19.23	1100	139	2.79	191	3.02	291 8 • 21 37
milligrams per liter equivalents per million percent reoctance value	Sulfate	504	1	505	395	370	507	13.93	630	626	436	478 9 • 95 45
milligrams per liter equivalents per million percent reoctance value	Bicar-	HCO 3	1	148	164	212	168	218	221	2 6 1 4•28	231	228 3•74 17
Eĕă	Carbon-	8	-	0	0	0	0	0	0	0	0	0
	Potas-	¥	1	1	1	1	1	1	1	1	}	0.15
Minerol Canstituents in	Sodium	ž	1070	840 36 • 52	810	590 25• 6 5	870	425 18•48	305	435 18•91	315	450 19•57 82
Minerol Co	Magne-	W 8	1	1.73	1.81	1.32	20	1,40	32.	9 0 • 7 4	0.41	1.32
	Colcium	ß	1	96	117	4 • 0 9 4 • 0 9 4 • 0 9	105	1 6 6 8	2.15	34	1 6 3 55 3	2.79
Specific conduct-	ance (micro-	mhos at 25 C)	5660	4380	4540	3110	4540	2140	1870	2160	1620	2300
	Ξ,	2.	1	7.5	7.5	7.3	7.4	7.6	7.6	7 • 8	7.4	8 1
Temp.	when	o Tr	87	87	85	8 2	87	87	87	8 9	1	1
= 1		Coll.	4N 1 M 5050	50 1 M 5000	5R 1 M 5000	5N 1 M 5000	7P 1 M 5000	0R 1 M 5000	2N 2 M 5000	3N 2 M 5000	7N 1 M 5000	0D 1 M 5000
State Well	20110	Date Sampled Time	3S/13E-14N 10-11-55	135/13E-16N 1 8-14-51 500	135/13E-16R 1 M 8-14-51 5000	135/13E-25N 1 8-15-51 50	135/13E-27P 1 8-15-51 50	13S/13E-30R 1 8-15-51 50	135/13E-32N 2 M 8-15-51 5000	135/13E-33N 2 8-15-51 500	135/14E- 7 8-15-51	135/14E-10D 1 8-23-51 500

CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & B	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in ports per million	neral constituents parts per million	nts in on	
	Sampled	Ξ.	ance (micra-	Calcium	Magne- sium	Sodium	Potas.	Carbon- ate	Bicar- bonate	Sulfate	Chloride	Ni- trote	Fluo- ride	Boran	ilis 8	Computed	TOTAL
Date Sampled, Agy.	a a		mhas at 25°C)	3	W	ž	×	00 3	HCO 3	50 4	ō	ν 0 2	4	60	SIO 2	Evap 180°C	03 COCO 3
145/12E- 2N 1 M 8-15-51 5000	8 5	0 8	3280	3.04	2.96	6009	1	0	250	10.39	18+05	1	1	5.70	1		300
145/12E- 30 1 M 8-15-51 5000	9.4	7.1	4410	1417.04	7.65	30.44	1	0	205	780	925	1	ł	5.20	1		735
14S/12E-11F 1 M 8-15-51 5000	85	7.2	2550	2.94	3.70	445	3	0	211	741	272	1	1	04•4	ł		332
145/12E-12N 1 M 8-15-51 5000	84	7.5	2310	2.59	23	425 18•48	1	0	220 3.61	13.49	232	1	1	4.10	i		224
-12N 1 M	85	-	2400	2 • 40 10	30 2.47	430 18•70 79	0.10	0	220 3.61 15	640 13 • 32 56	240	1.4	1	4•10	1	1506	244
145/12E-13N 1 M 8-16-51 5000	80 17	7.5	2100	3.19	3 • 42	389	1	0	3.61	742	190	1	1	4.10	1		332
10-16-51 5001	84	1	2300	3 . 39	3 5 1 1 1 1 1	400 17•39 71	0.13	0	220 3•61 15	730	190 5•36 22	1.6	-	1	£	1546	347
145/12E-14D 1 M 8-23-51 5000	80	7.9	4200	186 9.28 21	0 • 6 6	800 34•78	0.23	0	290 4•75 11	925 19.26 45	598 16.86 40	98 1 58 4	1	8 • 91	43	2818	497
145/12E-80280 M 9-20-58 5050	74	7.4	16900	28 • 34 15	294 24•18 13	3070 133.48 72	19	0	110	0.04	6650 187.53 99	8 • 5	0	21.00	24	10711	2628
145/13E- 7N 1 M 8-15-51 5000	86	7.5	1900	2 89	2.63	320	ŧ	0	3.33	687	98	1	1	2 • 70	1		276

State Well	Temp.		Specific canduct-		Mineral Co	Mineral Constituents in		E &	milligrams per liter equivalents per million	er liter ser million				Mineral constituents in ports per million	neral constituents ports per million	ents in	
Number	when		ance		Magne-	-	Patas.	ė	Biar-	fance volue	Chlo	ż	Flue		Sili:	<u>sor</u>	TOTAL
Date Sampled Agy.	Sampled	۵.	mhos	English	E	Enipos	E O	8	banate	e de la compansión de l	- join	trate	- Pir	Boron	8	Computed	hardness
Time Coll.			at 25°C)	ვ	Mg	Š	¥	co 3	нсо з	504	ō	NO 3	L	B	510 2	Evap 180°C	CoCO 3
145/13E- 8N 1 M 8-15-51 5000	8	7.4	1880	1.75	1.56	365	1	0	219	607	99	ł	1	3.10	1		166
145/13E-12N 1 M 8-15-51 5050	48	7.4	1110	0.95	0.49	210	1	1	268	268 5.58	1.21	i	1	0 80	1	678	72
-12N 1 M 8-11-52 5050	84	8 4	1300	1.05	0.58	260 11.30 87	0.10	0	253 4 • 15 33	302	78 2.20 17	1.5	o •	1.90	6.3	863	82
-12N 1 M	48	7.7	1320	22 1.10	0 0 0 0	263 11•44 86	0.10	0	257 4.21 32	309 6 4 9 4 9	86 2.43 19	0 • 0	0 0	2 • 50	47	869	3
-12N 1 M	88	8 • 6	1180	18 0.90	0 28 4	244 10•61 87	0 0 0 0	14 0 • 47	271	274 5 • 70 47	1 1 1 1 1 1 1 1 1 1	1.9	0 0	06.0	61	813	74
-12N 1 M 7-28-55 5050	48	i	1330	1	1	259	1	-	1	1	88 2•48	1	1	1.20	1		
-12N 1 M 6-26-56 5050	82	1	1190	1	1	228 9•91	1	1	1	Į.	1.72	1	1	06 • 0	ł		78
-12N 1 M	88	1	1280	1	1	259	1	1	1	1	8 8 2 • 4 8	1	1	1.20	ł		78
-12N 1 M 6-24-58 5050	හ න	7 • 7	1150	19 0 • 95 8	4 6 6	237 10•30 88	0.10	0	262 4.29 37	261 5 • 43 46	70 1.97 17	0.01	0 • 0	1.10	79	790	4
-12N 1 M 7-14-59 5050	92	8 • 1	1290	20 1,00 8	0 • 4 & &	262 11•39 89	0.10	0	261 • 28 33	293 6 • 10 47	2.54	1.7	0	1.40	49	88 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	67
DWR 1982			STATE	STATE OF CALIFORN	INIA - THE	RESOURCES	AGENCY C	F CALIFO	RNIA - DE	IA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JE WATER RE	SOURCES					

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

	TOTAL	coco 3	69	71	165	414	377	781		401	390	424
ants in ian	Computed	Evop 180°C	8 8 8 8 8 8	900			1509	2045				
neral constituents ports per millian	ilis 8	SIO 2	63	o o	1	1	44	7 7 7	i	1 7	1	1
Mineral constituents in ports per millian	Boron	6	1.12	0 • 93	1.30	3.20	9 • 60	2.20	2.60	1	3.20	3 • 30
	Fluoride	ш	9•0	4.0	I	1	0 •	0 4	i	{	1	1
	Ni- frote	ε 0 2	1.7	1.0	1	1	0.03	0.01	1	1	1	!
	Chlo-	ū	2.54	2 • 3 1 1 8	586	3.30	114 3•21 14	146 4•12 13	3.10	3.10	3.41	120
milligrams per liter equivalents per million percent reactance value	Sulfate	50 4	287 5 • 98 47	292	1	797	769 16.01 70	1150 23.94 76	!	1	1	-
milligrams per liter equivalents per milt percent reactance v	Bicar- banate	нсо з	254 4•16 33	265	1	225	216	220 3.61 11	1	1	1	-
E & Q	Carbon-	0	0	0	1	1	1	0	1	Ĭ,	1	-
	Patas. sium	¥	0.08	0.13	1	1	0.10	0.18	l	1	1	*
Mineral Constituents in	Sodium	ž	262 11•39 89	267 11.61 88	556	355	350 15.22 67	348 15•13 49	340	336	342	330
Mineral C	Mogne- sium	Wg	0 4 m w	0.41	1	57	54 4•44 19	120 9.87 32	1	1	1	-
	Calcium	ß	1.05	1.00 1.8	1	3.59	3.09	115 5.74 19	1	{	-	-
Specific conduct-	(micro-	mhos at 25°C)	1250	1240	2930	2170	2110	2690	2100	2090	2110	2150
	Ξ.		7.8	&	1	7.8	7.9	7.6	1	1	1	1
Тепр.	Sampled	,	80	81	87	88	88	86	1	88	88	88
State Well	-	Date Sampled Agy.	14S/13E-12N 1 M 7-19-60 5050	-12N 1 M 4-26-62 5050	-12N 1 M 8-13-63 5050	14S/13E-21N 1 M 8-15-51 5050	-21N 1 M	7- 7-53 5050	-21N 1 M 7-28-55 5050	_21N 1 M 10-11-55 5050	-21N 1 M 6-26-56 5050	-21N 1 M 7-31-57 5050

State Well	Temp		Specific conduct-		Mineral Co	Mineral Constituents in		Eĕĕ	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	ents in lion	
	Sampled	Ξ.	(micro-	Calcium	Magne- sium	Sodium	Potas-	Carban- ate	Bicar- bonate	Sulfate	Chlo-	Ni- trate	Fluo- ride	Boron	Sili:	Computed	TOTAL
Date Sampled Agy. Time Coll.			mhas ot 25 C)	კ	6 W	2	~	00	нсо з	504	ō	NO 3	u.	60	SIO 2	Evap 180°C	03 CaCO 3
145/13E-21N 1 M 6-25-58 5050	88	7.6	2300	3.89 16	84 6.91 28	322 14•00 56	0.15	0	210	874 18•20 71	3 • 9 5 1 5	1.7	9	3.50	46	1659	540
-21N 1 M 7-14-59 5050	80	8 . 2	2210	3.54	73	342 14•87 61	0.10	0	246 4.03 16	818 17.03 69	123 3.47 14	0 .2	0 4	3.00	43	1599	477
-21N 1 M 7-19-60. 5050	8 5	8 • 0	2540	132	140 11.51	274 11•91 40	0.13	0	222 3•64 12	1120	132 3•72 12	4.6	0 • 2	3.10	21	1971	906
-21N 1 M	06	8 . 4	1760	1.90	23	320 13.91 78	0 0 0 0	6 0.20 1	165 2.70 16	584 12•16 71	74 2.09 12	2 • 2 0 • 0 4	0 •	1 • 90	4	1178	190
-21N 1 M 6-19-62 5050	91	1	1760	1	1	298 12•96	0 8 9	1 0	1	612	76	1	i i	1 • 80	‡		208
145/13E-25N 1 M 8-15-51 5050	80	7.3	1990	34	13	375	1	1	172	637	141 3.98	i	i	1.60	1 8		139
-25N 1 M 8-11-52 5050	06	ω • π	1970	34 1.70 8	17	390 16•96 84	0 0	0.20	160	622 12.95 65	141 3•98 20	0.03	9 •	2 • 70	0 4	1337	155
7- 7-53 5050	06	7.6	1900	1.60	1,40	366 15.91 84	0.10	0	178 2.92 15	591 12.30 64	139 3•92 20	1.1	9	1.10	47	1266	150
-25N 1 M 7-20-54 5050	89	8 • 1	1930	1.75	1.23	365 15.87 84	0 0 0	0	175 2•87 15	592 12.33 64	139 3•92 20	1.7	0	1.50	4	1285	149
7-28-55 5050	06	1	1940	1	i	387	1	1	1	1	139	1	1	1.90	1		
DWR 1982			STATE	OF CALIFOR	NIA - THE F	RESOURCES	AGENCY C)F CALIFO	RNIA - DE	PARTMENT (STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	ESOURCES					

CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	25 CaCO 3	149	192	198	272	297	283	392	517	533	155
ants in ian	Computed	Evap 180°C				1392	1484	1483	1636			
neral constituents parts per millian	± 8	SIO 2	1	į.	1	94	47	94	8 4	1	ł	-
Mineral constituents in parts per millian	Boran	ω	1	1.43	1.90	2.10	2 • 50	2.70	1.90	2.40	2.20	2.50
	Fluoride	u.	1	1	1	9	9	0 • 7	4.0	1	1	:
	Ni- trate	ν 0 2	1	ł	1	4.3	7.0	6.2	7 • 8 0 • 13	1	1	
	Chlo	ō	130	156	1.27	175 4•94 23	197	178	222 6 26 25	232	218	3.72
milligrams per liter equivalents per millian percent reactance value	Sulfate	804	1	ŀ	1	614 12•78 61	657 13.68 61	691 14•39 64	741	882 18•36	1	749
milligrams per liter equivalents per mill percent reactance v	Bicor-	HCO 3	1	1	1	198 3 • 25 15	187 3•06 14	180 2•95 13	151 2.47 10	1	1	156 2•56
E & &	Carban-	် ဗွ		1	1	0	0	0	0.27	ł	i	0
_	Potas-	¥	1	ł	1	0.10	0 0 0	0.08	0 0 0	6.10	1	-
Mineral Constituents in	Sodium	ž	365	377	366	362 15•74	383 16.65	377	408 17•74 69	384	390	425 18•48
Minerol Co	Magne-	\$	•	1 2	!	2 94 2 80 13	3.04	36 2.96 13	54 4.44 17	1	•	1.40
	Calcium	3	1	1	;	53 2.64 12	58 2.89 13	54 2.69	68 3.39 13	1	1	34
Specific conduct-	ance (micro-	mhos at 25°C)	1860	2010	1960	2120	2150	2200	2410	2610	2600	2170
	I,	۵	1	1	1	7.8	8 • 2	8 • 2	4 • 8	1	1	7•4
Тетр.	Sampled		89	88	89	88	89	1	88	87	86	92
State Well	Jaguioki	Date Sampled Agy.	145/13E-25N 1 M 10-11-55 5050	-25N 1 M 6-29-56 5050	-25N 1 M 7-31-57 5050	-25N 1 M 6-25-58 5050	7-14-59 5050	-25N 1 M 7-19-60 5050	-25N 1 M 8-25-61 5050	-25N 1 M 4-26-62 5050	-25N 1 M 8-13-63 5050	145/13E-26M 1 M 8-15-51 5000

			Specific					Ē	milligrams per liter	ar liter				Mineral constituents in	onstitue	nts in	
State Well	Temp.		conduct-		Mineral C	Mineral Constituents in			uivalents p rcent react	equivalents per million percent reactance value				parts p	parts per million		
	Sompled	Ξ,	ance (micro-	Calcium	Mogne-	Sodium	Potas-	Carbon- ote	Bicar- bonate	Sulfate	Chlo-	rate .	Fluoride	Boron	ii B	TDS Computed	TOTAL
Date Sampled Agy.			mhas at 25°C)	S	Б. W	ž	¥	9	HCO 3	504	ס	NO 3	u.	80	SIO 2	Evap 180°C	as CoCO 3
145/13E-29Q 1 M 8-16-51 5000	9 S	7.6	2160	19	0.41	460	1	0	254	13.89	3.72	1	1	3.60	1		8 9
145/13E-30N 1 M 8-16-51 5000	M 87	7.6	1920	2.10	1.97	342	1	0	204	658	2.68	1	1	2.60	1		204
145/13E-300 1 M 8-16-51 5000	ω ω ΣΟ	7.3	1740	57	3.62	285	1	0	198	652	2.26	1	1	2 • 30	1		323
145/13E-35E 1 M 8-15-51 5000	M 93	7.3	2160	36	1.48	392	!	0	160	746	130	1	1	1 • 80	{		164
145/14E- 7M 1 M 8-13-51 5000	M 87	7.7	2100	i	1	445	1	0	210	470	9.93	l	1	1.50	1		146
14S/14E~ 9E 1 M 7-14~59 5050	0 M	7 • 7	3520	3.99 12	22 1.81 5	642 27•91 83	0.10	0	180 2.95 9	487 10•14 30	752 21•21 62	1.7	4	1.50	45	2124	290
- 9E 1 M 7-19-60 5050	Σ0	7.3	3770	280 13•97	146 12.01 27	414 18.00 41	0.31	0	220 3•61 8	1150 23.94 54	601	1.1	1.0	1.40	73	2788	1300
- 9E 1 M 8-25-61 5125	5 7 8 7 8	88	3840	302 15.07	138 11•35 25	43 2 18•78 41	0.31	0	3.13	1180 24.57 56	570 16•07	0 9 0 0	0 • 2	1.70	8 9	2801	1322
- 9E 1 M 4-26-62 5050	M 78	7 • 8	3910	275 13•72 35	134 11•02 28	317 13•78 35	16 0.41	0	218	861 17.93 47	584 16•47 43	90.0	0 • 2	1.79	9	2356	1238
- 9E 1 M 8-13-63 5050	Σ 0	1	4190	1	\$ 1	439	1	1	1	1	631	1	1	1 • 80	1		1390
DWR 1982			STATE	OF CALIFO	RNIA - THE	RESOURCES	AGENCY	OF CALIFO	RNIA - DE	PARTMENT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	ESOURCES					

TABLE E-2
CONFINED AQUIFER
MINERAL ANALYSES OF GROUND WATER

	TOTAL	50	10003	1630	917	188	171		175	181	236	219	188
ents in ion	Computed	9	Evap 160 C		4446	1635	1287					1280	
neral canstituents parts per millian	: <u>i</u> 8	9	202	1	24	41	89	1	-	1	į	41	1
Mineral constituents in parts per million	Boron	c	n	1.90	1.40	1.30	2.50	1.50	[1.23	1.50	1.50	2.50
	Fluo-		-	1	0.5	9 • 0	0 •	1	1	ì	1	9	1
	N: frote	2	NO.3	ł	5.4	0.0	2.3	1	1	-	!	3 • 0	1
	Chloride	į	Ū	844	2310 65.14 86	388 10•94 43	192 5•41 27	159	152	3.38	152	155 4•37 22	13.25
milligrams per liter equivolents per millian percent reactance value	Sulfate		50 4	1	398 8•29 11	551 11.47 45	535 11.14	1	!	1	i i	561 11.68 60	580
milligrams per liter equivalents per mill percent reactance v	Bicar- banete		HCO 3	1	126	184 3 • 02 12	198 3•25 16	1	1	1	1	204 3•34 17	186 3.05
EĕĞ	Carbon-	3 (60	1	0	0	0	į	i	1	1	0	0
e	Potos-		¥	1	0.33	0.08	0.08	1	1	1	1	0.10 1	1
Mineral Constituents in	Sodium		Ž	496	1260 54.78 75	492 21•39 85	361 15.70 82	361	346	321	342	337	490
Mineral C	Magne-		Wg	1	3.21	1.07	1.07	1	8	-	į.	18 1•48	†
	Colcium		ვ	1	303 15•12 21	2.69	2.35	1	1	1	1	2.89	1
Specific canduct-	micro-	mhas	or 23 C)	4800	7540	2200	1970	1860	1840	1760	1850	1860	2490
	Ŧ,	<u> </u>		7.1	8	& •	7.6	1	1	1	1	7.7	7.7
Temp.	when			1 2	85	82	82	82	82	80	82	82	893
State Well		Date Sampled Agy.		145/14E- 9E 1 M 7-28-64 5050	145/14E* 9M 1 M 8-23-51 5000	10-14-52 5050	7-53 5050	7-28-55 5050	- 9M 1 M	- 9M 1 M 8-23-56 5050	- 9M 1 M 1-57 5050	- 9M 1 M 6-24-58 5050	145/14E-10N 1 M 8-13-51 5000
6		Date		145/	145/	10-	7-	7	10-	1 00	, &	9	145/8-

FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Canstituents in		E & 6	milligrams per liter equivalents per millian	milligrams per liter equivalents per millian				Mineral constituents in parts per million	neral constituents parts per millian	ants in ion	
Number	when	r	ance	Cateium	Magne-	Sodium	Patas-	ģ	Bicar-	Suffate	Chlo-	ż	Fluo-	Boron	Sili	<u>IDS</u>	TOTAL
Date Sampled Agy. Time Call.	3 0	<u>o</u>	mhas at 25 C)	ی	E 4	ž	Ē 2	e C	e CO	ç	Ē	o S	<u> </u>	cc	8 5	Evan 180	CoCO 2
14S/14E-12N 1 M 5-18-51 5050	C 80	7.7	2520	1.55	0.49	506 22.00 91	£ 60		2 • 84	544	20 975 443	1.0	1	1.61	1	1553	102
-12N 1 M 5-19-51 5050	75	о́ •	2560	000	0.58	558 24.26 94	m 80 • 0	18 0•60 2	155 2 • 54 10	240 11.24 45	382 10•77 43	η • •	ł	1.82	,t	1651	7.5
-12N 1 M 8-13-51. 5000	78	7.5	1790	1	ā	385	i	0	174	590	178	1	1	1.90	1		R/
-12N 1 M 11-13-51 5050	79	ж О	1860	1.30	0.33	385 16•74 90	0.13	0	174 2.85 16	514 10.70 59	4 • 6 0 5 0 5 0 5	3.0	ω •	0 0	69	1257	92
-12N 1 N 8-12-52 5050	42	აე "	1960	1.25	0.33	377 16.39	0 1 0 1 1	0	176 2•88 16	525 10.93	156 4•40 24	0	0 •	1.40	89	1247	5/
-12N 1 M	1	7 • 8	1850	1.30	0. 4 % 2 %	385 16•74 91	0.10 1	0	176 2 • 88 16	507 10•56 59	157	0	0	999	Ø 9	1239	0 2
-12N 1 H 7-20-54 5050	İ	20.	1980	1.45	0 4 %	409 17 • 78 90	0 • 10 1	C . 27	167 2•74 14	526 10.95	131 5•10 27	1.5	4.0	1.20	67	1313	89
-12N 1 M 7-28-55 5050	1	1	2050	i E	1	420	i i	1	-	1	200	į.	1	1 • 60	-		91
-12N 1 M	1	1	2040	t i	1	414	1	1	1	ł	211	1	ł	1	- 1		.76
-12N 1 M 7-31-57 5050	1	-	2110	l	1	413	1	1	-	1	228	1	1	1.00	+		140
DWR 1982			STATE	OF CALIFOR	NIA - THE	RESOURCES	AGENCY	OF CALIFC	DENIA - DE	PARTMENT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	ESOURCES					

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

	TOTAL	% CoCO 3	, c 1	943	O C	ر ار ار	8 2 4	840		α	76	αŞ
nts in on	Computed	Evap 180°C	0001	3006	2891	3107	2750	2129		1206		issi
neral canstituents parts per million	: 8 : 8	SIG 2	ρ ο ο	7.2	22	6/2	4	c)		2	1	63
Mineral canstituents in parts per million	Boron	60	1.50	ή. • •	1.64	7 • 46	1.64	i•69	Ĭ•60	1 • 30	n •	1.20
	Fluo- ride	u.	O • O	1	i i	1	1	1	1	4.0	4 1	0.7
	rote trote	ς O Z	4.5	11.0 0.18	10.0	0 T C C C C C C C C C C C C C C C C C C	4 • 0 • 0	0 + 0	1	0 • 1	;	0.0
	Chlo-	ō	200 7. yū	1080	1060 29.87 63	1100 31.00 61	1040	1070	1046	532 15.00	236	23y 6•74 34
milligrams per liter equivalents per millian percent reactance value	Sulfate	SO 4	576 11.999 52	742 15.45	673 14.01	750	614 12.78 28	571 11.687 26	720	118 2•46 12	570	00° 10•51 52
milligrams per liter equivalents per mill percent reactance ve	Bicor- bonote	HCO 3	178 2.92 13	3.62	221 3•62	222	212	221 3•62	2.51	180 2 • 95 14	176	172 2•82 14
E & C.	Carbon- ote	S	0	0	0	0	0	J	5	0	0	0
	Potas- sivm	×	0.20	0.31	0.31	14 0•36	1. 0.28 1	14 0 • 36	1	0.08	l	0.10
Mineral Canstituents in	Sodium	ž	19.35	737 32.04	671 29•18 6 2	32.52	573 29.26 64	540 27.83 62	30.44	355 15•44 89	405	430 18•70 92
Mineral C	Mogne- sium	W	7.00	117	96 7.93	126 10.36	108 8 • 88 19	8 55 19	!	0 2 4 8 5	1	0 • 3 3
	Colcium	ვ	2.59	9 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	189 9.43 20	174 8.68 17	152 7.58 16	165 8 • 23 18	1	29 1.45	1	26 1•30 6
Specific canduct	ance (micra-	mhas at 25°C)	2320	4810	4620	4800	4480	4550	4150	1700	1308	2390
	Ξ.		7.6	7.3	7.3	7 • 4	7 • 2	7.8	7.3	α • 5	7.6	7.9
Temp.	Sompled	° .	38	74	74	74	8 9	74	79	78	42	78
		Agy. Coll.	1 1 X 5050	2 M 5000	2 M 5000	2 M 5000	1 2 M 5000	2 M 5000	2 M 5000	1 M 5000	2 M 5000	2 M 5050
State Well		Date Sampled Time	145/14E-12N 6-24-58	145/14E-12N 2 M 5-18-51 5000	-12N 2 M 5-18-51 5000	-12N 2 M 5-18-51 5000	-12N 2 5-19-51 500	-12N 2 M 5-20-51 5000	-12N 2 M 8-13-51 5000	145/15E-13E 1 M 8-23-51 5000	145/15E-18E 2 M 8-13-51 5000	-13E 2 M 8-12-52 5050

FRESNO - MADERA AREA

Specific Mine conduct-	Mineral Constituents in	1		milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	ints in	
micra- Colcium sium	Sodium	Patas- sium	Carban. ate	Bicar. banate	Sulfate	Chlo- ride	rg t	Fluo.	Boron	≅ 8	Camputed	TOTAL hardness
at 25°C) Co Mg	Ž	¥	co 3	нсо з	SO 4	Ü	NO 3	L.	89	SIO 2	Evap 180 C	CoCO 3
1380	275 11.96	Ĭ.	1	3.05	400 • 83	1.69	1	1	1.90	1		140
1940	1 1	t	0	176	650	152	ł	1	1.60	1		162
1530 1.50 0.	.41 13.48	1	0	145	530	1.97	1	å i	0 8 0	ł	1085	9 %
1460 32 0•	.41 12.22 3 85	0.18	0	184 3•02 21	4 to 20 to 2	2 • 4 3 1 7	2 · 1 0 · 0 3	ίη •	1.50	74	1011	101
1460 31 0.55 0.11	.49 12.09 3 85	0.10	0	1,89 3 • 10 21	434 9 • 04 62	2 8 8 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 •	1.70	72	1006	102
1400 33 1.65 0.	5 282 •41 12•26 3 85	0 10	0	182 2•98 21	443 9 • 22 64	2.20 15	1 • 4	0	1.40	7.5	1011	105
1470 32 0. 1.60 0.	.58 11.83 4 84	0.10	0 • 13 1	179 2•93 21	404 8•41 60	2.28 16	10.0	٠	1.50	72	9 7 6	109
1460 32 0• 1.60 0•	6 266 •49 11•57 4 84	0.10	0	181 2•97 21	445 9 • 20 64	2.09	1.1	η •	1.40	71	7 0 7	105
1500	273	1	f B	1	1	2.17	1	1	1.40	1		103
1790	375	1	0	178	13.32	160	ł	1	2 • 20	1		9
 E OF CALIFORNI	375 16.31 THE RESOURCE		S AGENCY	S AGENCY OF CALIFO	2 • 92 S AGENCY OF CALIFORNIA - DE	0 178 640 2.92 13.32 3 AGENCY OF CALIFORNIA - DEPARTMENT	0 178 640 160 2.92 13.32 4.51 S AGENCY OF CALIFORNIA - DEPARTMENT OF WATER R	0 178 640 160 2.92 13.32 4.51 SAGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOUR		1	5 - 20	5 - 20

TABLE E-2 CONFINED AUUIFER MINERAL ANALYSES OF GROUND WATER

	TOTAL	5 (Caco 3	345	545	346	399	413	411	505	494	491	アケビ
ints in	Camputed		Evap 180 C			2075	2086					2525	3024
neral canstituents parts per millian	Sili-		SIO 2	-	1	4	8 4	1	1	-	1	44	44
Mineral canstituents in parts per million	Boron		20	3.40	5.10	2.40	2.60	3.50	!	3 • 50	3.40	9.60	4.40
	Fluo-		.	1	1	9	0	1	E t	-	1	9.0	0.7
	N: trote	Ç	NO 3	-	-	9 • ċ 0 • 1 · 6 1	9 • ë 0 • 16 1	-	1	1	1	8 • 1 • 0	16.0 0.26 1
	Chloride		Ū	205	300.000	178 5•02 16	175	185	187	236	200	242 0 • 8 2 1 8	271 7.64 17
milligrams per liter equivalents per million percent reactance value	Sulfate		50 4	1210	1760	1090 22.69 73	1080 22.49 73	1	1	1	1	1310 27.27 73	1625 33.63 75
milligrams per liter equivalents per mill percent reactance v	Bicar-		HCO 3	218.	3.70	196 3.21 10	194 3•18 10	1	1	-	ł	202 3 • 31	217 3.56
Eĕč	Carbon-		CO 3	0	0	0	0	1	1	1	1	0	O
	Patas-		×	1	1	0 20	0.18	ŀ	1	1	1	10 0.26 1	0.23
Mineral Canstituents in	Sodium	:	Ž	594	737	539 23.44 74	540 23.48 74	584	578	614	610	648 28•18 74	32.85 32.85 73
	Magne-		Wg	-	1	52 4 28 14	4.00 4.00 13	1) I	1	8	58 4•77 12	74 6.09 14
	Calcium		ථ	1	-	3.64	3.94	1	}	!	1	101 5.04 13	118 5•89 13
Specific conduct-	ance (micro-	mhas	af 25 C)	2926	3785	2890	2830	3080	3080	3540	3300	3560	4030
	Ξ	a.		7.4	7.2	7.5	7.3	1	i i	ł	1	7.2	2 • 2
Тетр.	when	· L		83	e0 80	9 C	81	82	82	8 1	80	82	82
_		Agy.		E 1 M 5000	N 1 M 5000	N 1 K	1N 1 X	1M 1 M 5050	IN I M	N 1 N S C S C S C S C S C S C S C S C S C S	N 1 M	- 1N 1 H 58 5050	- 1N 1 M
State Well	age of the second	Date Sampled	lime	15s/i2E- 18 8-15-51	155/12E- 1N 1 M 8-15-51 5000	8-12-52	7- 7-53	7-28-55 50	1:-12-55	- 1N 1 M 6-29-56 5050	7-31-57 5050	- 1N 6-25-58	7-14-59

No. 2 No. 3 No. 3 No. 3 No. 3 No. 4 No. 5 No.			Mineral Canstitu	Mineral Canstitu	nstitu	ents in	Potos.	eq pe	milligrams per liter equivalents per mil percent reactance v	milligrams per liter equivalents per million percent reactance value	Chio	ż	ir o	Mineral constituents in parts per million	parts per million	on TDS	TOTAL
7 0.23 0.26 3.28 37.68 9.19 0.8 5.30 42 3407 6 0.23 0.20 3.28 37.68 9.19 0.37 7 0 196 1300 205 1 3.60 8 0.21 27.07 5.78 1 1.90 8 0.269 11.66 2.65 1 1.80 9 0.242 1320 206 1.80 10 0.98 5.64 1.80 10 0.98 5.64 1.80 74 72.90 10 0.05 0.330 215 5.64 1 2.00 10 0.88 0.99 0.93 0.2 0.2 1.80 74 729 11 0.05 0.300 12.70 2.54 2.00 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0		I.	. 0	Colcium S	Mogne- sium Mg	Sodium	sium X	CO 3	bonote HCO 3	Sulfote SO 4	ş ş z	NO State	j j	Boron	SiO 2	Computed Computed Evap 180 C	hardness as
627	80		4560	1125.59	7 • 4	0	- 2	.2	20	1810 37.68 74	326	23.0 0.37	•	·Ω	45	3407	009
15.22	7.2	0.1	2950	1	i	627	i	0	196 3•21	1300	205		1	3.60			375
12.85	7 • 8	ω	1740		* i	350	1	0	164	560	9. 2. 6.0 8.0	1	1	1.90	1		195
	7 • 6	9	1740	1	1 1	\sim	İ	0	160	690	8 5 6 4 0	1	1	1 • 80	-		210
0 198 540 90 0 198 540 90	7.6	.0	2797	i	1	644	1	0	242	1320	200	i i	1	4.10	1		300
0.80 0.41 9.57 0.05	7.9	2	1650	1	i i	1	1	0	3.25	540	•	1	1	1	1		155
340 0 164 610 90 2.00 2	ო •		1040	16	0 • 4 1 7	220 9•57 88	•	0	330	215 4•48 41	7 M D M D	0 • 5	•	1 • 80	42	729	61
205 0 186 590 50 2.40 2.40 13.91 0 156 650 100 2.00 2.00 13.91 2.56 13.53 2.82	7	<u>س</u>	1780	1	1	4	1	0	164	\sim	90 2 • 54	1	1	2 • 00	1		120
320 0 156 650 100 2.00 2.00 13.91	7.6	9	1540	3	8 1	205 8•91	1	0	186	-1	50	1	1	2.40	1		250
	7.6	v0	1770	1	\$ 1	320	1	0	156	C)	100	!	1	2 • 00			160

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	03°C)	71	265	100	110	001	155		127	112	136
ants in ion	Camputed	Evap 180°C	720				1000	1074				
neral constituents parts per million	: S	SIO 2	ł	1	1	1	30	0.0	-	1	1	1
Mineral constituents in parts per million	Boron	60	1	2.10	2.00	1 • 90	1.80	1.30	2.20	1	0 6 • 2	2 • 00
	Fluo- ride	u.	1	1	1	1	0 • 7	9 • 0	-	ì	1	1
	Ni. trate	NO 3	1	†	i	İ	0	0	}	1	ł	1
	Chloride	ō	1.72	45	1.13	2.40	74 2.09 13	2.62	2.17	2.09	2 .40	2.03
milligrams per liter equivalents per million percent reactance value	Sulfate	50 4	340	680 14•16	580	640	528 11.62	547 11•39 72	1	}	1	1
milligrams per liter equivalents per mill percent reactance v	Bicar- banate	HCO 3	130	134	140	124 2 • 03	118 1•93 12	110 1.80 11	1	ł	1	
E & g	Carban- ote	8	0	0	0	1	၁	0	i	}	1	-
-	Patas-	×	0.13	1	}	1	0.08	0 0 0	1	;	1	}
onstituents ir	Sodium	Z	220	275	245	320 13•91	285 12•44 82	290 12.61 80	306	288	325	281
Mineral Constituents in	Magne- sium	w 6W	0 • 4	1	1	ł	0 4 9 8	11 C•90	1	ì	!	ł
	Calcium	3	20	1	ł	1	42 2•10 14	44 2.20 14	;	1	1	1
Specific conduct-	ance (micro-	mhas at 25 C)	1100	1600	1340	1880	1570	1530	1580	1550	1640	1530
	Ŧ,		1	7.5	7.9	7.4	8 • 1	7.5	1	!	1	1
Тотр.	Sampled	, o	65	87	66	80	80	8 6	88	89 80	80	87
State Well		Date Sampled, Agy.	155/14E-15E 4 M 12-22-50 5001	155/14E-30E 1 M 8-14-51 5000	155/14E-31N 2 M 8-14-51 5000	155/14E-36G 2 M 8-14-51 5050	-360 2 M 8-14-52 5050	-360 2 M - 8-53 5050	-360 2 M 7-28-55 5050	-360 2 M	-360 2 M 6-26-56 5050	-360 2 M 7-31-57 5050
		۵	155.	158	158	155	œ	-2	7.	10	•	. 2

FRESNO - MADERA AREA

State Well	Temp		Specific conduct-		Mineral Co	Mineral Canstituents in		18 8	milligrams per liter equivalents per millian	er liter ser millian				Mineral constituents in parts per million	neral constituents parts per million	ion	
Number	Sampled	Ι	ance micro-	Calcium	Mogne-	Sodium	Polas-	Carbon-	Bicar.	Bicar. Suffate	Chlo	Z. Z.	Fluo.	Boron	Sili	Computed	TOTAL
Date Sampled Agy.	u. O	٥.	mhas at 25 C)	S	ø. W	Z	×	° o	HCO 3	50 4	ū	NO S	is.	85	SIO 2	Evap 180°C	CoCO 3
153/14E-36Q 2 M 6-25-58 5050	83	7.5	1580	35 1•75 12	0.41	289 12•57 85	0.05	0	114	518 10•78 71	85 2.40 16	2.6	ω •	1.60	28	1023	108
-360 2 M	87	0	1650	1 90 1 12	0.08	308 13.39	0.05	0	264 4•33 28	419 8 • 72 56	2.57	0 • 1	∞ •	2.10	32	1024	<u>بر</u>
-360 2 M 7-31-62 5050	88	1	1640	1	!	274	0 0 0 5	1	!	564	2.43	1	1	2.20	1		130
-360 2 M 8-13-63 5050	00 /	1	1650	i	!	361	1	1	1	<u> </u>	2.37	1	1	2.00	t 1		133
16S/14E- 2J 1 M 8-23-51 5050	00	80 •	1780	3.29	1.40	335 14.57	0.05	0	124 2•03 11	703 14•64 79	1 • 92 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V • 0	7.4	0 4	1257	235
16S/14E-14N 1 M 8-15-51 5050	80	7.4	1540	109	3.04	180	1	0	134	652	1 + 40	1	1	1 • 50	1		454
-14N 1 M 8-14-52 5050	ω ω	8 • 1	1580	115 5•74 34	32 2.63 16	190 8•26 49	0 • 10 1	0	134 2 • 20 13	658 13•70 81	37	• • 0	0 - 2	1 • 90	31	1135	419
16S/14E-23N 1 M 8-15-51 5050	87	7.5	1790	138	5.10	195	-	0	160	756	1.78	1	!	1.30	1		000
16S/15E-20G 3 M 8-15-51 5050	84	7•1	1370	57	24	210	1	0	. 129	10.39	1 . 56	}	!	2.20	1		241
165/15E-23F 1 M	78	7.2	1770	109	73	188	1	0	153	714	95 2.68	†	1	1.30	1		572
WR 1982			STATE	OF CALIFOR	RNIA - THE	RESOURCES	AGENCY	OF CALIFO	DRNIA - DE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JE WATER RE	SOURCES					

TABLE E-2 CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER

		-	365	805	623	6 615	νυ 4	80 8	803	773	120	312
Camputed						123						
Sili	3	SIO ₂	1	1	1	98	{	i	-	1	-	1
Boran		89	2.10	1.10	0 • 50	0.40	1 • 70	09.0	0 80	06 • 0	2 • 30	2.70
Fluo-		u.	i	1	1	0	-	1	1	1	1	1
Ni-		ε ON	1	i i	1	1 • 5	1	1	1	;	1	1
Chlo		ū	1.64	1.80	1.89	2.17	84	102	100	2.37	126 3 • 55	3 • 0 8 co
Sulfate		504	505	736	475	672	713	13.70	680	734	616	617
Bicar-		нсо з	158	228 3•74	234	204	176	226	3.70	228	148	194 3.18
ė		°00	0	0	0	0	0	0	0	0	0	0
Polas-		¥		1	1	0.10	1	1	1	1	1	-
Sodium		Na	186	136	3.96	160	215	104	114	156	400	300
Magne-		Mg	50	135	103	90 7 • 40 38	74	141	136	132	9	60 50 40 40
Calcium		ပိ	3.19	100	3,99	98 4.89 25	95	91	94	95	1 65	54
ance micra-	mhas	at 25 C)	1380	1770	1370	1620	1770	1730	1760	1810	1870	1810
I	a		7.3	7.4	7.6	ω 	7.3	7.5	7.3	7.4	7.3	7.3
when	, L		84	76	81	8 5	48	76	77	7.7	102	80
Number	pled.		65/15E-310 1 M 8-14-51 5050	75/15±- 50 1 M 8-14-51 5050	75/15E- 6M 1 M 8-14-51 5050	75/15E- 6N 1 M 8-22-51 5000	75/15E- 60 1 M 8-14-51 5050	75/15E- 7N 1 M 8-14-51 5050	75/15E- 8N 1 M 8-14-51 5050	75/15E- 8P 1 M 8-14-51 5050	78/15E-13N 1 M 8-14-51 5050	175/15E-14E 1 M 8-14-51 5050
	when ance Magne Potas Carbon Bicar Chlo Ni Fluo Sili 105	when and the continuous signary of the continuous signary signary of the continuous signary of the continuous signary of t	Agy. e mhas Coldium Sodium Sodium Silm Corbination Computed Coldium Silm Computed Computed Chilo- Ni- Fluo- River Sili- IDS Agy. ° F mhas mhas Na K CO3 HCO3 SO4 CI NO3 F B SIO2 Even 180°C	Agy.	Defect Calcolium Magne Sodium	when same bands when polices Calcium sium Social sium sium Polices Carbon of each polices Sulfice bands Chlo- ride sium sium Polices Carbon of each polices Sulfice bands Chlo- ride sium sium of each polices Sulfice bands Chlo- ride sium sium of each polices Sulfice bands Chlo- ride sium sium of each polices Sulfice sium of each polices Sulfice sium of eac	Sample Part Sample Part Sadium Sadium Sadium Sadium Part Sadium Sadiu	when bases Problem is a composed of same and states are same as a composed of same and same as a composed of same	wheth principles Office of the principles States of the principles All the principles States of the principles All the principles States of the principles All the principles States of the principles All the principles States of the principles All the principles States of the principles All the principles States of the principles All the principles States of the principles All the principles	Second Part Column Magnet Section Magnet Section Magnet Section Magnet Section Magnet Section Magnet Section Magnet Section Magnet Section Magnet Section Magnet Magnet Magnet Section Magnet Ma	Second Color Mapper Color Mapper Color Mapper Color Mapper Color Mapper Color Mapper Color Mapper Color Mapper Color Mapper Color Mapper Color C	No. Color Color No.

Temp.		Specific canduct- ance		Mineral Ca	Mineral Canstituents in	Potos	eq carbon.	milligrams per liter equivalents per millian percent reactance value	milligrams per liter equivalents per millian percent reactance value	Chlo	Ż	Flua-	Mineral canstituents in parts per millian	neral canstituents parts per millian	VSI VSI	TOTAL
Sampled	±_	(micra- mhos at 2S ^C)	Calcium	mais @W	Sodium	, ×	GO g	banate HCO 3	Sulfate SO 4	ęp D	at N S	ebir T	B	sio 2	ر. 0° ه	hardness as CaCO 3
06	8 • 3	1750	2.50	3.37	280 12•17 67	0.08	0	178 2•92 16	596 12•41 68	105 2.96 16	3.1	9.0	2.20	30	1198	294
86	7.2	1820	3.75	3.78	245	-	0	153	695	2 • 48	i i	1	3.10	-		376
80	7 • 8	1790	3.59	41 3•37 18	260 11.30 62	0.10	0	142 2•33 12	671 13.97 75	2.40	2.6	4.0	3.00	27	1236	348
9	7.9	1600	59 2.94 16	50 4 • 11 23	246 10•70 60	0.10	0	168 2•75 15	597 12.43 70	2 • 5 4 1 4	5 0 0 0 0 8	0 •	0.27	32	1166	800
	78 7.4	2160	117	139	186	i	0	213	881	146	i t	1	1 • 30	1		864
CT1	78 8.1	2290	125	132 10•86 40	221 9•61 36	0 • 13	0	196 3•21 12	900 18•74 71	158	10.0	0 • •	1 • 90	ים ריו	1683	.0 .0
	0 8	2020	109	110	182	1	0	3.25	840	3.44	1	1	2.20	1		725
1.03	78 8•0	1760	3.94	121 9.95	166	0 0 0	0	234 3 • 84 19	645 13.43 66	2.96	6 • 6 0 • 11 1	0 4	1 • 16	36	1278	695
1~	77 7.3	1670	3.44	13.73	165	;	0	264	626	76	1	1	1 • 50	1		859
7 8	3 7.1	2540	138	162	200	1	0	200 ° 6 4 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 °	988	229	1	1	1.90	1		1011
		STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	RNIA - THE	RESOURCES	AGENCY	OF CALIFO	DENIA DE	PARTMENT	OF WATER RI	ESOURCES]

STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARIME

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	S (19703	956	763	444	4 2	869	556	1100	706	1001	168
ion	TDS		Evap 180 C				1247						
neral constituents parts per million	Silii		310 2	1	i	1	0	1	1	1	-	1	1
Mineral constituents in parts per million	Boron		20	2.00	2 • 00	3.00	2.50	2.70	4.60	3.70	3.70	4 • 20	1.50
	Fluo- ride		-	1	1	i t	4	1	Į.	1	1	1	1
	rote	9	E 02	1	1	1	0 • 1	1	1	1	1	1	1
	Chloride		5	225	162	3.07	108 3.05 16	170 4.79	158	7.47	217	232	76
milligrams per liter equivalents per millian percent reactance value	Sulfate		50 4	947	838 17•45	711	644 13•41 70	823	1030	1420 29.56	1190	1410	10.08
milligrams per liter equivalents per mill percent reactance v	Bicar-		HCO ₃	216	189	164	164 2•69 14	216	200	178	175	158 2.59	94
E & 8	Carbon-	,	00	0	0	0	0	0	0	0	0	0	0
	Potas-		×	1	1	1	0.10	1	1	1	1	1	-
anstituents ir	Sodium		Z	200	200	245	245 10•65 56	230	365	355	340	385	10.00
Mineral Canstituents in	Magne-		Mg	12.66	107	4 93	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	101	5.67	15.50	121	128	8
	Calcium		ვ	129	129	3.94	3.84	113	109	202	162 8 08	210	2.69
Specific conduct-	ance (micro-	mhos	of 25 C	2450	2220	1800	1780	2150	2500	3280	2840	3220	1300
	I	۵.		7•3	7.1	7.2	7.7	7.3	7.0	7.1	6 • 9	6 • 9	7.0
Temp.	when	, P		80	4 8	80	88	84	8 8	8 3	86	86	36
State Well	Number	Date Sampled Agy.	lime	175/15E-210 1 M 8-14-51 5050	175/15E-22B 1 M 8-14-51 5050	17S/15E-23N 1 M 8-14-51 5050	-23N 1 M. 8-13-52 5050	175/15E-27B 1 M 8-14-51 5050	175/15E-27K 1 M 8-14-51 5050	17S/15E-27Q 1 M 8-14-51 5050	17S/15E-27R 1 M 8-14-51 5050	17S/15E-35M 1 M 8-14-51 5050	17S/16E-26N 1 M 8-15-51 5050
		٠		17	17	17		17	17	17	17	17	17

H-W-1-19			Specific			1		Ē	milligrams per liter	er liter				Mineral constituents in	onstitue	nts in	
Number	Temp.		canduct-		Mineral	Mineral Constituents in		be	percent reactance volue	ance volue				parts p	parts per million		
_ -	Sompled	Ξ.	(micro-	Calcium	Magne- sium	Sodium	Patas- sium	Carban- ate	Bicar- banate	Sulfate	Chlo- ride	Ni- trate	Fluo	Boron	: ii: 8	TDS Computed	TOTAL
Date Sampled Agy. Time Call.	°		mhos at 25 C)	კ	Wa	₽	×	00	нсо з	504	CI	NO 3	F	89	SIO 2	Evap 180°C	coco 3
175/16E-29N 1 M 8-15-51 5050	88	χ • • •	1360	2.69	0.58	220	1	0	57	504	2 • 14	1	1	1.80	1		164
17S/16E-30A 4 M 7-26-52 5001	6	-	2000	3 • 69 20 20	0.25	340 14•78 78	0.13	0.50	25 0•41 2	640 13.32 71	160 4 • 51 24	0 • 2	1	1	i i	1249	197
-30A 4 M	80	ł	0007	1	!	1	1	ł	-	l I	1	ŀ	+	1	1		
175/16E-30A 5 M 7-26-52 5001	9.5	1	1400	1.63	0.16	260 11.30	0 0 0 5	0	1.15	490 10.20 77	1.97	0 • 2	1	1	1	892	16
175/16E-30A 6 M 7-26-52 5001	80	1	1900	1.65	0.16	360	0.05	0	110 1.80 10	320	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 • 5	1	1.20	1	1102	9.1
175/16E-30N 1 M 8-14-51 5050	06	6.9	1730	81	1.56	270	-	0	1.29	650	2.79	1	1	1.50	1		280
175/16E-32N 1 M 8-15-51 5050	60	6.9	1710	3.69	10	295	1	0	1 • 36	634	2 • 1 0 2 • 8 8	ł	1	2 • 20	-		226
-32N 1 M 8-13-52 5050	9 2	7.7	1700	3.54	11 0.90	281 12.22 73	0 0 0	0	80 1 • 31 8	630 13•12 76	101	0.1	O •	2 • 20	28	1166	222
175/16E-33N 1 M 8-15-51 5050	101	6.7	1630	36	4.8	330	1	0	1 • 31	500	3.45	1	1	1 . 80	1		107
175/17E-31Q 1 M 8-15-51 5050	ω Ω	φ • •	1150	54	12	175	1	0	86	428 8•91	41	1	1	0 8	1		184
DWR 1982			STATE	STATE OF CALIFORNIA	RNIA - THE	RESOURCES	AGENCY	OF CALIFC	DRNIA - DE	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JE WATER RE	SOURCES					7

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

	TOTAL	caco 3	27	
ents in lian	Computed			
neral constituents parts per millian	: <u> </u> 8	SIO 2	1	
Mineral constituents in parts per millian	Boran	ω.	0 0	
	Fluo-	Ľ.	1	- 1
	Ni. Irote	NO 3	1	
	Chlo	ō	0.00	
milligrams per liter equivalents per millian percent reactance value	Sulfate	504	351	
milligrams per liter equivalents per mill percent reactance v	Bicar- banale	HCO 3	1.10	
E @ Q.	Carban-	9	0	
	Patas-	¥	1	
Mineral Constituents in	Sodium	ž	189 7 • 83	
Mineral C	Mogne-	Wg	0	
Specific conduct-	Calcium	J	1 4 2 5 9	
	ance (micro-	mhos at 25 C)	9 4	
	Ξ,	1	1	
Temp.	Sompled	a,	98	
State Well		Date Sampled Agy. Time Coll.	175/17E-33N80 M 9-25-29 5050	
	Sompled	Agy. Coll.	φ ω	

QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT TRACE ELEMENT ANALYSES OF GROUND WATER

								3	5		í										
										Constituents In	rts In Parts	Per Billion	co								
State Well Number	Use	Date	Alumi- num (Al)	Arsenic (As)	Beryl- lrum (Be)	Bismuth (Bi)	Cadmium (Cd)	Cabolf (Ca)	Chra- mum (Cr)	Copper (Cu)	Iran Go (Fe)	Gallium G	Germa- nium (Ge)	Manga- nese (Mn)	Malyb- denum (Ma)	Nickel (Ni)	[8] (a)	Titonium (Ti)	Vanadium (V)	Zinc (Zn)	T
11S/14E-33P1-M	Irr.	19/11 /6									0,0										_
11S/17E-25B1-M	Mun.	3/19/61	00.00																		
12S/14E-27J2-M	Dom.	19/11/6									<u>۔۔</u>										
14S/25E-35QS1-M	Spring	19/01/9	15		< 0.57	62.0 v	4.1.4	v 1, t	v 1.4.	4 1.¢	73	5.7	€ 0.29	17	7.1	1.9	A 1.4	< 0.57	57	< 5.7	
14s/26E-32HS1-M	Spring	19/72/9	74		4 0.57	4 0.29	4.1.4 A 1.4	4 1.4	4.1.4.	4 1.4	<u>v</u> 8	5.7	0.29	16	62.0	2,3	A 1.4	× 0.57	21	< 5.7	
15S/17E-10R1-M	in.	7/28/64	&								8			0.0							
15S/25E-3DS1-M	Spring	6/10/64	88		< 0.57	4 0.29	4.1.4 A.1.4	4 1.t	A 1.t	1.4	v 001	5.7	0.29	₹.	0.29	2.0	4 1.4	6.9	83	< 5.7	
17s/23E-8J2-M	Dom.	3/26/64	07																		
21S/16E-1N1-M	Abnd.	3/17/64 \$ 3.3			4 1,3	- 79.0 >	× 3.3	4 3,3	v 333	3.3	240	13	₹0.67	 &	79.0	2.5	۸ 3,3	4 1.3	× 0.67	A 13	
21S/16E-2R1-M	į	3/18/64 < 3.3			A 1.3	- 79.0 ×	A 3.3	A 3.3	v 3.3	3.3	6.7	ე 13	19.0	9.3	79°0	2.5	3.3	4 1.3	< 0.67	< 13	
21S/18E-17M1-M	Ė.	5/21/64	8																		
21S/20E-22M2-M	Dom.	19/11/7	91																		
24S/2ZE-35N1-M	Irr & Stock	1/29/67	35	190	4 1,3	- 0.67	× 3.3	4 3,3	v 3°3	3.3	35	ુ જા	3.3		8	1.2	۸ 3.3	۸ 1.3	≥ 0,67	15	
26S/27E-9G1-M	Dom & Stock 8/26/64	_{49/92/8}	8.7	91	4 1,3	- 0.67	4 3.3	4 3,3	v 3.3	3.3	15		× 0.67 ×	3.3	14	1,4	A 3.3	4 1,3	79.0 >	4 13	
29S/27E-21R1-M	Dom.	2/ 7/64						-				0.0									
29S/29E-34N1-M	Dom.	12/11/63	3.7		4 1.5	× 0.77	3.8	A 3.8	v 3.8	3.8	9.5	15	2.4	55	7.4	3.1	, 3.8 	4 1.5	~ 0.77	< 15	
32S/29E-35M1-M	in.	19/82/8		0						_											
32S/31E-36C1-M	Dom.	2/ 3/64 < 3.3	4 3.3		4 1.3	- 79.0 ×	× 3.3	4 3.3	4 3.3 v	< 3.3	4.7	13 A	× 0.67	7.1	6.7	1.2	× 3.3	A 1.3	5.7	< 13	_
32S/32E-13F1-M	Dona.	11/18/63	30		4 1.0	< 0.50	< 2.5	< 2.5	< 2.5 ×	< 2.5	<u>v</u>	۷ 9	4 0.50 ×	2.5	0.4	2.0	4 2.5	1.0	7.0	a 10	
32S/32E-26Q1-M	ļīr.	11/18/63	1,4		4 1,0	< 0.50	< 2.5	< 2.5	4 2.5 A	: 2.5	5.0	9	4 0.50 A	2.5	0.6	1.4	4 2.5	0.1	0.6	a 10	
32S/32E-28H1-M	Stock	11/18/63	3.9		4 1.0	< 0.50	< 2.5	< 2.5	4 2.5 A	: 2.5	7 [†]	91	× 0.50 ×	2,5	< 0.50 ×	8.0	< 2.5 →	4 1.0	15	A 10	
32S/32E-34G2-M	Don.	2/ 3/64 < 3.3	3.3		4 1,3	- 75.0 >	3.3	4 3,3	4 3,3	< 3.3 < <	3,3	13.	× 0.67	17	- 0.67	98.0	4 3.3	< 1.3	< 0.67	199	
32S/33E-2TD2-M	Don.	11/18/63	0.9		4 1.0	< 0.50	< 2.5 ×	< 2.5	4 2.5 ▲	4 2,5 <<	₹ 78	۷ 9	× 0.50 ×	2.5	< 0.50	2.7	< 2.5	A 1.0	1,2	v 10	
32S/33E-29F1-M	Fi.	12/ 9/63	1.8	•	4 1.3	- 79.0 >	4 3.3	4 3,3	4 3,3	4 3.3	1.7	13	× 0.67	3,3	8.0	1.3	4 3.3	A 1.3	∠ 0.67	< 13	
32S/34E-34B1-M	Dom.	2/ 3/64 < 3.3	< 3.3		4 1,3	- 0.67	۸ 3.3	4 3,3	4 3,3	< 3.3	٧ 6.4	13	₹0.67	п	3,1	1.7	4 3,3	× 1.3	2.7	< 13	
More than the service to the court							1		1	1	1	1		1	1						1

> Mare than the amount indicated.

TABLE E-4

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

ANALYSES OF MISCELLANEOUS CONSTITUENTS

		CONS	TITUENTS IN PA	RTS PER MILLION (ppm)
STATE WELL NUMBER	DATE	Alkyl- Benzene- Sulfonate (ABS)	Lithium (Li)	Nutrients1/
4s/ 9E-22Cl-M	6-30-64	4 . 6	0.00	NH ₄ as N - 0.00 NO ₂ as N - 0.00 NO ₃ as N - 11 Organic N as N - 0.1
13S/20E-30Q1-M	6-11-64	0.0		
30Q2 -M	6-11-64	0.0		
21S/27E-21K1-M	8-11-64	0.0		
22El-M	8-11-64	0.1		
22Jl -M	8-11-64	0.0		
23L1 -M	8-11-64	0.0		
26F2 -M	8-11-64	0.0		
26Pl -M	8-11-64	0.0		
27Cl-M	8-10-64	0.0		
27F1 -M	8-12-64	1.9		NH ₄ as N - 0.01 NO ₂ as N - 0.00 NO ₃ as N - 9.7 Organic N as N - 0.5 Organic & Total PO ₄ -
27Gl -M	8-10-64	0.0		
27Ll -M	8-10-64	0.0		Organic & Total PO4 -
27Rl -M	8-11-64	0.0		
28Al-M	8-10-64	0.0		
28K]M	8-11-64	0.0		
28N1 -M	8-11-64	0.0		
34Bl-M	8-11-64	0.0		
34Dl -M	8-11-64	0.0		
26S/27E- 9Gl-M	8-26-64		0.18	

^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄)

TABLE E-4

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

ANALYSES OF MISCELLANEOUS CONSTITUENTS

		CONS	TITUENTS IN PARTS	PER MILLION (ppm)
STATE WELL NUMBER	DATE	Alkyl- Benzene- Sulfonate (ABS)	Lithium (Li)	Nutrients $\frac{1}{2}$
28 5/ 24E - 1F1-M	6-23-64		0.00	
2Bl-M	6-23-64		0.00	
2P1-M	6-23-64		0.00	
3N1-M	6-23-64		0.00	
6F1-M	7- 9-64		0.00	
7Bl-M	7- 9-64		0.00	
9н1 -м	7- 9-64		0.00	
11F3-M	7- 9 - 64		0.00	
12A1-M	6-23-64		0.00	
16A1 -M	6-23-64		0.00	
32P1-M	6-23-64		0.00	
36Rl-M	6-24-64		0.00	
28s/25E- 2Al-M	6-23-64		0.00	
4F1-M	7- 9-64		0.00	
4P2 -M	6-23-64		0.00	
20Dl -M	6-23 - 64		0.00	
24Pl-M	6-25-64		0.08	
25L1 -M	6-24-64		0.00	
32P1 -M	6-24-64		0.00	
29S/24E- 4D1-M	6-23-64		0.00	
7C1 -M	6-23-64		0.00	
21B1 -M	6-23-64		0.00	
24Fl -M	6-24-64		0.00	
33P3 -M	7- 9-64		0.02	

^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄)

TABLE E-4

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

ANALYSES OF MISCELLANEOUS CONSTITUENTS

· STATE WELL NUMBER	DATE	CONSTITUENTS IN PARTS PER MILLION (ppm)		
		Alkyl- Benzene- Sulfonate (ABS)	Lithium (Li)	Nutrients 1/
29S/25E- 3N1-M	6-24-64		0.00	
lon1-M	6-24-64		0.00	
12N1-M	6-23-64		0.00	
13R1-M	7- 9-64		0.00	
32F1-M	7- 8-64		0.00	
30S/24E- 3El-M	6-24-64		0.00	
5L2-M	6-24-64		0.03	
6н1 -м	6-24-64		0.02	
8P1-M	8-28-64		0.09	
llGl -M	6-25-64		0.00	
11J1-M	6-24-64		0.00	
15D1 -M	6-24-64		0.02	
30S/25E- 1H1-M	6-25-64		0.00	
2Al-M	6-23-64		0.02	
2KJ-M	6-23-64		0.00	
7Pl-M	6-23-64		0.00	
8pl-M	6-23-64		0.00	
9Al -M	6-23-64		0.00	
14H1 -M	7- 7-64		0.00	
26Al -M	7- 7-64		0.01	
31P1 -M	6-25-64		0.00	
32S/29E-35Ml-M	8-28-64		0.01	

^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄)

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

KERN COUNTY PIEZOMETER SAMPLING PROGRAM

STATE WELL NUMBER	DEPTH TO WATER (FT.)		MP ME -MIN.)	E C.d	PUMP RATE (GPM.)	REMARKS
25S/23E-28 -D1-M -D2-M -D3-M	40.4 111.0 190.0	1 1 1	10	1380 <u>b</u> / 1125 <u>b</u> / 192	5/50 ^a , 5/9 ^a , 5/3	b/ b/ Sampled
25S/24E-15 -H1-M -H2-M -H3-M 25S/25E/22	87.5 139.0	1 1 -		1650 1100 <u>b</u> /	5/9 5/11 ^a ,	b/ Water muddy sampled Dry at 175'. Obstruction
-D1-M -D2-M 25S/26E-16	172.7 168.0	- -	40 40	595 350	5/2 5/2	Sampled Sampled
-P1-M -P2-M 27S/23E-1	114.0 243.0	1	30 20	400 2 7 5	5/9 5/6	Sampled Sampled
-R1-M -R3-M -R4-M	112.7 210.0 206.6	18 21 20		/3100 / 200 / 185	5/105 5/90 5/7,5/	Sampled Sampled Two rates due to different pumping depths - sampled
-R5-M 27S/24E-1	201.2	22	305/	235	5/9,5/	
-I2-M -L3-M -L4-M 27S/25E-1	220.6 223.1 221.9	1 - 1	45 	430 140 140	5/4 5/15 5/3	Sampled Sampled Sampled
-N1-M -N3-M 28s/22E-9	119.9 261.0	2	40 30	390 130	5/13 5/11	Sampled Sampled
-D1-M -D2-M 28s/24E-23	27.2 33.5	-	45 45	3700 4300	5/2 5/2	Sampled Sampled
-D1-M -D2-M -D3-M 28s/26E-21	180.2 182.0 180.1	1	10	240b/ 140 280	5/2 ^{a,b} 5/3 5/2	Plugged @ 300' Sampled Sampled
-H1-M -H2-M -H3-M 29S/25E-12	159.0 205.0 239.0	1	30 30 40	630 400 400	5/31 5/27 5/4	Sampled Sampled
-M3-M -M4-M	142.5 137.7	-	40 40	150 810	5/2 5/2	Sampled Sampled

O-ONLY ABLE TO PUMP 5 GALLONS

b-FIRST 5 GALLONS

c-ON AND OFF FOR THIS PERIOD

d-MICROMHOS ELECTRICAL CONDUCTIVITY=KXIO6

TABLE E-5

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

KERN COUNTY PIEZOMETER SAMPLING PROGRAM

STATE WELL NUMBER	DEPTH TO WATER (FT.)	PUMP TIME (HRSMIN.)	E.C. ^d	PUMP RATE (G.P.M.)	REMARKS	1
29S/27E-34						
-N1-M	73.4	2 30	220	5/18	Sampled	
-N2-M	101.4	- 45	360	5/2 5/2	Sampled	
-N3-M -N ¹ +-M	105.0	1 1	135 200	5/2 5/17	Sampled Sampled	
30S/24E-4C	114.0	1	200	J/ ±1	Башртец	
-C1-M	66.1	- 30	1300	5/2	Sampled	
-C)+-M	74.5	2 20	400	5/5	Sampled	
-C5-M	88.2	1	108	5/3	Sampled	
-c6-M	92.3	1 20	97	5/3	Sampled	
30S/26E-22				,		
-Pl-M	68.0	- 30	172	5/2	Sampled	
-P2-M	69.6	- 35	182	5/2	Sampled	
-P3-M 30s/28E-10	74.3	- 25	205	5/2	Sampled	
-N1-M	38.5	1 10	1100	5/6	Obstruction @ 60' -	camnl
-N2-M	136.7	1 20	220	5/2	Sampled	DCIMPT
-N3-M	125.2	1	330	5/3	Sampled	
-N4-M	144.4	- 30	220	5/4	Sampled	
31S/25E-27		•			-	
-F1-M	33.6	1	2250	5/3	Sampled	
-F2-M	67.9	1 25	2000	5/5	Sampled	
-F3-M	68.7	1 10	880	5/4	Sampled	
-F4-M	55.5	1 20	900	5/3	Sampled	
32S/28E-30 -D1-M	52.2	0 5	620	5/9	Sampled	
-D1-M -D2-M	178.2	2 5 4 20	360	5/43	Sampled	
-D3-M	170.5	3 15	460	5/7	Sampled	
-D4-M	217.2				Would not pump	
32S/29E-19	,				* *	
-H2-M	202.0	1 20	700	5/6	Sampled	
- Н3-М	324.2	1 35	320	5/7	Sampled	
-H4-M	326.0				Obstruction - could	not p
11N/19W-7	D				No sestar	
-R2-S	Dry 465.2		~-		No water	
-R3-S -R ¹ 4-S	464.3				Too deep to pump Too deep to pump	
-1/4-12	404.3				100 deep to pump	

o-ONLY ABLE TO PUMP 5 GALLONS

b-FIRST 5 GALLONS

c-ON AND OFF FOR THIS PERIOD

d-MICROMHOS ELECTRICAL CONDUCTIVITY=KXIO6

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
4S/9E-22Cl-M Drainage	$NO_3 \frac{1}{=} 60 \text{ ppm}^2/$ $ABS_3 = 4.6 \text{ ppm}$	This well is near the Ceres Sewage Treatment Plant and appears to be affected by it. A detailed investigation will be instituted for this area.
7S/15E-30E1-M Irrigation	High EC4/ 676 mu5/in 1963 879 mu in 1964 Area EC = 200 to 300 mu	Above normal EC values in ground water limited to small (1 sq. mi.) area. No source for high values could be located.
9S/9E-2Ll-M Irrigation & stock	EC increasing 964 mu in 1961 1660 mu in 1962 2050 mu in 1 9 63	Increase appears to be due to the influence of the highly mineralized perched water table
llS/10E-23Kl-M Irrigation	NO ₃ = 94 ppm	Cause being investigated
12S/15E-4F1-M Irrigation	EC increasing from 380 in 1957 to 634 in 1964	Cause being investigated
12S/21E-17L1-M Irrigation	$NO_3 = 41 ppm$	Cause being investigated
13S/19E-24Q1-M Irrigation	$NO_3 = 47 \text{ ppm}$	This well was previously polluted. Pollution abatement has resulted in a reduction of the total dissolved solids but during the same period the nitrates have increased. The reason for this will be investigated.
175/23E-8J2(8H1)6/-M Domestic	High NO ₃ 40 ppm in 1962 Area NO ₃ = <101/ppm	NO3 concentrations in immediate area found to be greater than 100 ppm. No cause determined. Further investigation underway.

^{1/} NO3 = Nitrate

^{2/} ppm = parts per million
3/ ABS = alkyl benzene sulfonate (detergent surfactant)
4/ EC = Electrical Conductivity in micromhos at 25°C

mu = Micromhos

well number in () is number previously reported

< = less than

TABLE E-6

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
18S/26E-10M1(10N1)-M Irrigation	High NO3 78 ppm in 1963 Area NO3 = 10 ppm	High NO3 concentrations apparently caused by percolation of nitrogen supplemented irrigation water. Depth to water approximately 10 ft. NO3 concentrations in ground water found to be greater than 100 ppm.
18S/26E-36C1-M Domestic & irrigation	$NO_3 = 44$ ppm	Cause being investigated
18S/27E-10C2-M Domestic	$NO_3 = 52 ppm$	Cause being investigated
21S/27E-27F1-M	ABS = 1.9 ppm in 1964, 0.44 ppm in 1963 NO ₃ = 43 ppm	Source of ABS and high NO ₃ is Porterville Sewage Treatment Plant. ABS found in 10 wells. Office report to be published in 1965.
24S/22E-35Nl -M Irrigation & stock	Arsenic = 0.19 ppm in 1964, 0.25 ppm in 1963	Cause and areal extent bein investigated.
28S/25E-4F1-M Irrigation	$NO_3 = 81 ppm$	Cause being investigated
28S/25E-4P2-M Domestic	$NO_3 = 47 ppm$	Cause being investigated
28S/25E-9E2-M Domestic	$NO_3 = 77 ppm$	Cause being investigated
28S/25E-24P1-M Domestic & irrigation	$NO_3 = 54 ppm$	Cause being investigated

TABLE E-6

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
305/28E-10N1 ·M Test Well	NO3 = 43 ppm	This well is near the Bakersfield Sewage Treatment Plant ponds. An investigation of the area is being conducted to determine the effect of the sewage treatment plant's discharges on the ground water.
32S/29E-35M1(35M2)-M Irrigation	High NO ₃ 159 ppm in 1962 227 ppm in 1964	NO3 concentration greater than 60 ppm found only in small area (1 sq. mi.). Due to complex conditions no definite source found.

0 0420 Mariposa Bypass near Crane Ranch

0 0770 Delta-Mendota Canal to Mendota I

10 3105 Stanislaus River near Mouth

10 3115 Stanislaus River at Koetitz Rand

30 3125 Stanislaus River at Ripon

30 3145 Stanislaus River at Riverbank

NO 3175 Stanislaus River at Orange Blos

30 4105 Tuolumne River at Tuolumne City

80 4120 Tuolumne River at Modesto

30 4130 Dry Creek near Modesto

0 4150 Tuolumne River at Hickman Bridg

30 4165 Tuolumne River at Roberts Ferry

30 4175 Tuolumne River at LaGrange Brid

30 5138 Merced River near Livingston

30 5155 Merced River at Cressey

30 5170 Merced River below Snelling

30 5570 Bear Creek below Bear Reservoir

30 6170 Owens Creek below Owens Reserve

30 7020 San Joaquin River near Vernalis

30 7040 San Joaquin River at Maze Road

30 7060 San Joaquin River at Hetch Hetch

30 7070 San Joaquin River at West Stan

30 7080 San Joaquin River at Grayson

30 7200 San Joaquin River at Patterson

80 7250 San Joaquin River at Crows Land

30 7300 San Joaquin River near Newman

30 7375 San Joaquin River near Fremont

80 7400 San Joaquin River near Stevins

180 7575 San Joaquin River above Sand S

BO 7610 San Joaquin River near Dos Pal

BO 7710 San Joaquin River near Mendota

BO 7885 San Joaquin River below Friant

BO 8720 Orestimba Creek near Crows Lan

B5 1250 Maxwell Creek near Coultervill

* Not shown

SURFACE WATER MEASUREMENT STATIONS

Б		Nar osa Bypass . Panch	85	3900	North Fork Merced Raver near . (te: .11)
ВО		Delta-Mendota Canal - J. ta Pool	В5	5400	Bear Creek near Catheys Valley
ВО	-	Stan 4 aus River hobr Mout	85	6100	Burns Creek below Burns Reservoir
80		Stanislaus River at Koetitz Ranch	85	6400	Burns Creek near Hornitos
BO	125	Sminista s R ver ar Ripon	В6	2100	Mariposa Creek below Mariposa Reservoir
Во	45	Stanielaus R ver at Riverbank	Вь	2400	Mariposa Creek near Catheys Valley
80		Stanistaus River at Orange Blossom Bridge	В6	4200	Chowchilla River near Raymond
80	41	Tuolumne River at Tuolumne City	86	4260	Striped Rock Creek near Raymond
BG	4 2	Tuniunne Paver at Modesto	В6	4300	West Fork Chowchilla Rivor near Mariposa
BO	4 (3)	Dry tro > near Modesto	56	4360	Middle Fork Chowchilla River near Nipinnawas
80	4,5	Tu , - 1 River at Hickman Bridge	B6	4400	East Fork Chowchilla River hear Ahwahnee
BO	416.	Tuniumne River at Robert: Perry Bridge	Вь	7300	Maama Creek near Oakhurst
ВО	4 75	Tuolumne River at LaGrange Bridge	В6	7325	Lewis Fork Freeno River near Oakhurst
Bu		Merced River near Livingston	Вь	7920	Big Creek Diversion near Fish Camp
80		Merced Naver at Cressey	В7	1100	Daily Content Millerton Lake
во	12	Merced River below Smelling	В7	1121	Inflow to Millerton Lake
80	c : 7	Bear Creek below Bear Reservoir	89	5925	Delta-Mendota Canal near Tracy
80	= 170	Ovens Creek below Owens Peservoir	CO	1120	South Fork Kings River below Empire Weir #2
BO	~ 120	San Joaquin River near Vernalis	CQ	2602	Cross Creek below Lakeland Canal =2
BO	° 140	San Joaquin River at Maze Road Bridge	CO	3110	Tulare Lake
80	7 160	San Joaquin River at Hetch Hetchy Aqueduct Crossing	CO	3130	Elk Bayou near Tulare
BO	7070	San Josquin River at West Stanislaus I.D. Intake	CO	3169	Tule River below Porterville
BO	2 7817	San Joaquin River at Grayson	co	3182	Porter Slough at Porterville
80	7200	San Joaquin River at Patterson Bridge	CO	3187	Porter Slough near Porterville
80	7250	San Joaquin River at Crows Landing	CO	3913	Friant-Kern Canal Delivery to Pozter Slough
80	7300	San Joaquin River near Newman	¢o	3923	Friant-Kern Canal Delivery to Tule River
30	7375	San Joaquin River near Fremont Ford Bridge	CO	3925	Hubbs-Miner Ditch at Porterville
BO	7400	San Joaquan Raver near Stevanson	CO	3940	Rhodes-Fine Oitch near Porterville
BO		San Joaquin River above Sand Slough	CO	394B	Woods-Central Ditch near Porterville
BO	7610	San Joaquin River near Dos Palos	60	3960	Poplar Ditch near Porterville
ВО	7710	San Joaquin River near Mendota	co	3965	Vandalla Ditch near Porterville
80	7885	San Joaquin Piver below Friant	CO	3970	Campbell Moreland Ditch above Porterville
80	B720	Orestimba Creek near Crows Landing	CO	3984	Porter Slough Ditch at Porterville
85	1250	Maxweil Creek near Coulterville	co	5150	Kern River near Bakersfield
			C3	2100	North Fork Tule River at Springville

* Not shown on Plate as station is outside of district boundary.

LEGEND

DISTRICT OR AREA BOUNDARIES.

NUMBERS INDICATE CODE CLASSIFICATION.

DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF - 5.0 FEET OR MORE IN THE UNCONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964.

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT **HYDROLOGIC DATA 1964**

GROUND WATER LEVEL CHANGES IN DISTRICTS OR AREAS UNCONFINED AND SEMICONFINED AQUIFERS **SPRING 1963 — SPRING 1964**

LEGEND

~

DISTRICT OR AREA BOUNDARIES.

NUMBERS INDICATE CODE CLASSIFICATION.

DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF +5.0 FEET OR MORE IN THE CONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964.

DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF -5.0 FEET OR MORE IN THE CONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964.

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

GROUND WATER LEVEL CHANGES
IN DISTRICTS OR AREAS
CONFINED AND SEMICONFINED AQUIFERS

SPRING 1963 — SPRING 1964

SCALE OF MILES

12

Σ

כ

4 ۵

Ø Q Ø

S

W Ш

Z

Z 0

4

Ш

MILL CREEK GROUND WATER AREA AREA 12825 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 305'

TULARE GROUND WATER AREA
AREA 12107 SQUARE MILES
AVERAGE GROUND SURFACE ELEVATION 363'

ELK BAYOU GROUND WATER AREA AREA 67.6 SQUARE MILES

AVERAGE GROUNG SURFACE ELEVATION 295

ROUND

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1964

FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY

Σ

٥

ø Ö Ø Ö ø j

Z

Z 0

Ш

ARVIN-EDISON GROUND WATER AREA AREA 205.18 SQUARE MILES

NOTE: SEE PLATE C-4 FOR GROUND WATER AREA LOCATION

STATE OF CALIFORNIA THE RESOURCES AGENCY

DEPARTMENT OF WATER RESOURCES

SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1964

FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY

MIDDLE DEER CREEK GROUND WATER AREA AVERAGE BROUGG SURFACE ELEVATION PAGE

LOWER DEER CREEK GROUND WATER AREA

SYTRAGE BROUND SURFACE ELEVATION POT

110 PERSONAL ENGRACES

RABY

19-48

1940

NOTE SEE PLATE C-4 FOR GROUND MATER AREA LOCATION

> STATE OF CALIFORNIA THE RESOURCES ASSPCT DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964

FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY

	∑ + 0
	0 0 0 0 0 0 0 1 1
 CONNECTS MEASUREMENTS MADE AT INTERVALS	ليا ليا لد
 OF ONE YEAR OR MORE GROUND LEVEL	Z
	Z C

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

MERCED IRRIGATION DISTRICT 15-22 091

WELL 75/HE-INI, MDR &M

GROUND SURFACE SLEVATION IIS 120 ---------

DELTA-MENDOTA AREA -SHALLOW ZONE (5-22 II) WELL 35/6E-IBNI, N O B &M

FRESNO (ARIGATION DISTRICT (S-22 IS)

DELTA-MENDOTA AREA-DEEP ZONE (\$-22 II)

MADERA IRRIGATION DISTRICT (5-22 13)

CHOWCHILLA WATER DISTRICT (5-2212)

WELL IDS/ISE-23KI, M D 8 8M GROUND SURFACE ELEVATION 194

STATE OF CALIFORNIA THE RESOURCES AGENCY

HYDROLOGIC DATA 1964

LEGENO

FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY

DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT

Σ ⊃

40

Ø

Ö

Ö

S

Ш

Ш

Z

Z

0

∢ >

Ш

EXETER IRRIGATION DISTRICT (5-22.26) WELL 185/27E-2901, M.D.B.A.M. GROUND SURFACE ELEVATION 446

LINDSAY-STRATHMORE IRRIGATION DISTRICT (5-22.27)

LEGEND

----- CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE

--- GROUND LEVEL

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

KAWEAH DELTA WATER CONSERVATION DISTRICT (5-22.24)

ALTA IRRIGATION DISTRICT (5-22.19)

IVANHOE IRRIGATION DISTRICT (5-22.23) WELL 175/25E-36MI, M. D. G. & M.

ORANGE COVE IRRIGATION DISTRICT (5-22.21)
WELL 165/25E - 4C2, M. D. B. B. M.

SROUND EURFACE ELEVATION 418'

STONE CORRAL IRRIGATION DISTRICT (5-22.22)
WELL 165/26E-32RL M.O. B.B.M.

GROUND SURFACE ELEVATION 406

TULARE IRRIGATION DISTRICT (5-22.25) WELL 203/23E-9JI, M. D. B. & M. PROUND SURFACE ELEVATION ZAB

EXETER IRRIGATION DISTRICT (5-22.26) WELL 185/27E-290, MORAM GROUND SURFACE ELEVATION 446

LINDSAY - STRATHMORE IRRIGATION DISTRICT (5-22.27) WELL 205/27E-681, M.O.B. 8 M.

LEGEND

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT

Σ 4 ۵ 0 0 Q Ö 0 j Ш Ш L Z Z 0 4 > Ы

Ш

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

SAUCELITO IRRIGATION DISTRICT (5-2232)

WELL 225/26E-1511. # 0 85#

GARDED SURFACE ELEVATION 17+ 130

110

10

DELAND-EARLIMART INRIGATION DISTRICT (5-22 35)

WELL 205/26E-32GI, MD 8 8 W

____ GROUND LEYEL

NORTH KERN WATER STORAGE DISTRICT (5-22 37) WELL 275/25E-22AI, M D 8 & M SECUND SURFACE ELEVATION SOZ

> STATE OF CALIFORNIA THE RESOURCES AGENCE DEPARTMENT OF WATER RESOURCES

FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY

SAN JOAQUIN DISTRICT HYOROLOGIC DATA 1964

O

Ü

ゴ

Z

Z 0

∢

LEGEND

CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE

___ _ OROUND LEVEL

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

LEGEND

O WELL LOCATIONS

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1964

LOCATION OF SELECTED WELLS FRESNO-MADERA AREA

SCALE OF MILES

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

1.1.1 17 1978

NOV 11 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6,'66 (G3855s4)458

Nº 482511

California. Dept. of Water Resources. Bulletin.

C2 A2 no.130:64

TC824

PHYSICAL SCIENCES LIBRARY v.4 c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number:

482511
California. Dept.
of Water Resources.
Bulletin.

TC824 C2 A2 no.130:64

